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Abstract

From a streaming video, online action detection aims to

identify actions in the present. For this task, previous meth-

ods use recurrent networks to model the temporal sequence

of current action frames. However, these methods overlook

the fact that an input image sequence includes background

and irrelevant actions as well as the action of interest. For

online action detection, in this paper, we propose a novel

recurrent unit to explicitly discriminate the information rel-

evant to an ongoing action from others. Our unit, named

Information Discrimination Unit (IDU), decides whether to

accumulate input information based on its relevance to the

current action. This enables our recurrent network with

IDU to learn a more discriminative representation for iden-

tifying ongoing actions. In experiments on two benchmark

datasets, TVSeries and THUMOS-14, the proposed method

outperforms state-of-the-art methods by a significant mar-

gin. Moreover, we demonstrate the effectiveness of our re-

current unit by conducting comprehensive ablation studies.

1. Introduction

Temporal action detection [3, 20, 31, 34, 35] has been

widely studied in an offline setting, which allows making

a decision for the detection after fully observing a long

untrimmed video. This is called offline action detection.

In contrast, online action detection aims to identify ongoing

actions from streaming videos, at every moment in time.

This task is useful for many real-world applications (e.g.,

autonomous driving [18], robot assistants [19], and surveil-

lance systems [16, 25]).

Recent methods [7, 32] for online action detection

mostly employ recurrent neural networks (RNNs) with re-

current units (e.g., long short-term memory (LSTM) [14]

and gated recurrent unit (GRU) [4]) for modeling the tem-

poral sequence of an ongoing action. They introduce ad-
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Figure 1. Comparison between GRU [4] and Information Discrim-

ination Unit (IDU) which is proposed for our online action detec-

tion system. Our IDU extends GRU with two novel components, a

mechanism utilizing current information (blue lines) and an early

embedding module (red dash boxes). First, reset and update mod-

ules in our IDU additionally takes the current information (i.e.,

x0), which enables to consider whether the past information (i.e,

ht−1 and xt) are relevant to an ongoing action such as x0. Second,

the early embedding module is introduced to consider the relation

between high-level features for both information.

ditional modules to learn a discriminative representation.

However, these methods overlook the fact that the given

input video contains not only the ongoing action but irrel-

evant actions and background. Specifically, the recurrent

unit accumulates the input information without explicitly

considering its relevance to the current action, and thus the

learned representation would be less discriminative. Note

that, in the task of detecting actions online, ignoring such a

characteristic of streaming videos makes the problem more

challenging [8].
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In this paper, we investigate on the question of how

RNNs can learn to explicitly discriminate relevant informa-

tion from irrelevant information for detecting actions in the

present. To this end, we propose a novel recurrent unit that

extends GRU [4] with a mechanism utilizing current infor-

mation and an early embedding module (see Fig. 1). We

name our recurrent unit Information Discrimination Unit

(IDU). Specifically, our IDU models the relation between

an ongoing action and past information (i.e., xt and ht−1)

by additionally taking current information (i.e., x0) at ev-

ery time step. We further introduce the early embedding

module to more effectively model the relation. By adopting

action classes and feature distances as supervisions, our em-

bedding module learns the features for the current and past

information describing actions in a high level. Based on

IDU, our Information Discrimination Network (IDN) effec-

tively determines whether to use input information in terms

of its relevance to the current action. This enables the net-

work to learn a more discriminative representation for de-

tecting ongoing actions. We perform extensive experiments

on two benchmark datasets, where our IDN achieves state-

of-the-art performances of 86.1% mcAP and 60.3% mAP

on TVSeries [8] and THUMOS-14 [17], respectively. These

performances significantly outperform TRN [32], the pre-

vious best performer, by 2.4% mcAP and 13.1% mAP on

TVSeries and THUMOS-14, respectively.

Our contributions are summarized as follows:

• Different from previous methods, we investigate on

how recurrent units can explicitly discriminate relevant

information from irrelevant information for online ac-

tion detection.

• We introduce a novel recurrent unit, IDU, with a mech-

anism using current information at every time step and

an early embedding module to effectively model the

relevance of input information to an ongoing action.

• We demonstrate that our IDN significantly outper-

forms state-of-the-arts in extensive experiments on two

benchmark datasets.

2. Related Work

Offline Action Detection. The goal of offline action

detection is to detect the start and end times of action in-

stances from fully observed long untrimmed videos. Most

methods [3, 24, 35] consist of two steps including action

proposal generation and action classification. SSN [35] first

evaluates actionness scores for temporal locations to gener-

ate temporal intervals. Then, these intervals are classified

by modeling the temporal structures and completeness of

action instances. TAL-Net [3] including the proposal gen-

eration and classification networks is the extended version

of Faster R-CNN [22] for offline action detection. This

method changes receptive field alignment, the range of re-

ceptive fields, and feature fusion to fit the action detection.

Other methods [6, 33] with LSTM have been also studied

for per-frame prediction.

Early Action Prediction. This task is similar to online

action detection but focuses on recognizing actions from the

partially observed videos. Hoai and la Torre [13] introduced

a maximum margin framework with the extended structured

SVM [29] to accommodate sequential data. Cai et al. [1]

proposed to transfer the action knowledge learned from full

actions for modeling partial actions.

Online Action Detection. Given a streaming video, on-

line action detection aims to identify actions as soon as each

video frame arrives, without observing future video frames.

Geest et al. [8] introduced a new large dataset, TVSeries,

for online action detection. They also analyzed and com-

pared several baseline methods on the TVseries dataset. In

[9], a two-stream feedback network with LSTM is proposed

to individually perform the interpretation of the features and

the modeling of the temporal dependencies. Gao, Yang, and

Nevatia [7] proposed an encoder-decoder network with a re-

inforcement module, of which the reward function encour-

ages the network to make correct decisions as early as pos-

sible. TRN [32] predicts future information and utilizes the

predicted future as well as the past and current information

together for detecting a current action.

Aforementioned methods [8, 7, 32] for online action de-

tection adopt RNNs to model a current action sequence.

However, the RNN units such as LSTM [14] and GRU [4]

operate without explicitly considering whether input infor-

mation is relevant to the ongoing action. Therefore, the cur-

rent action sequence is modeled based on both relevant and

irrelevant information, which results in a less discriminative

representation.

3. Preliminary: Gated Recurrent Units

We first analyze GRU [4] to compare differences be-

tween the proposed IDU and GRU. GRU is one of the re-

current units, which is much simpler than LSTM. Two main

components of GRU are reset and update gates.

The reset gate rt is computed based on a previous hidden

state ht−1 and an input xt as follows:

rt = σ(Whrht−1 + Wxrxt), (1)

where Whr and Wxr are parameters to be trained and σ is

the logistic sigmoid function. Then, the reset gate deter-

mines whether a previous hidden state ht−1 is ignored as

h̃t−1 = rt ⊙ ht−1, (2)

where h̃t−1 is a new previous hidden state.

Similar to rt, the update gate zt is also computed based

on ht−1 and xt as

zt = σ(Wxzxt + Whzht−1), (3)
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(a) Information Discrimination Unit (IDU) (b) Information Discrimination Network (IDN)

Figure 2. Illustration of our Information Discrimination Unit (IDU) and Information Discrimination Network (IDN). (a) Our IDU extends

GRU with two new components, a mechanism using current information (i.e., x0) (blue lines) and an early embedding module (red boxes).

The first encourages reset and update modules to model the relation between past information (i.e., ht−1 and xt) and an ongoing action.

The second enables to effectively model the relation between high-level features for the input information. (b) Given an input streaming

video V = {ct}
0

t=−T consisting of sequential chunks, IDN models a current action sequence and outputs the probability distribution p0

of the current action over K action classes and background.

where Wxz and Whz are learnable parameters. The update

gate decides whether a hidden state ht is updated with a new

hidden state h̃t as follows:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t, (4)

where

h̃t = η(W
xh̃
xt + W

h̃h̃
h̃t−1). (5)

Here W
xh̃

and W
h̃h̃

are trainable parameters and η is the

tangent hyperbolic function.

Based on reset and update gates, GRU effectively drops

and accumulates information to learn a compact representa-

tion. However, there are limitations when we applied GRU

to online action detection as below:

First, the past information including xt and ht−1 directly

effects the decision of the reset and update gates. For on-

line action detection, the relevant information to be accu-

mulated is the information related to a current action. Thus,

it is advantageous to make a decision based on the relation

between the past information and the current action instead.

To this end, we reformulate the computations of the reset

and update gates by additionally taking the current infor-

mation (i.e., x0) as input.

This enables the reset and update gates to drop the ir-

relevant information and accumulate the relevant informa-

tion regarding the ongoing action. Second, it is implicitly

considered that the input features that the reset and update

gates use represent valuable information. We augment GRU

with an early embedding module with supervisions, action

classes and feature distances, so that the input features ex-

plicitly describe actions. By optimizing features for the tar-

get task and dataset, our early embedding module also lets

the reset and update gates focus on accumulating the rele-

vant information along with the recurrent steps.

4. Approach

We present the schematic view of our IDU and the frame-

work of IDN in Fig. 2. We first describe our IDU in details

and then explain on IDN for online action detection.

4.1. Information Discrimination Units

Our IDU extends GRU with two new components, a

mechanism utilizing current information (i.e., x0) and an

early embedding module. We explain IDU with early em-

bedding, reset, and update modules, which takes a previous

hidden state ht−1, the features at each time xt, and the fea-

tures at current time x0 as input and outputs a hidden state

ht (see Fig. 2.(a)).

Early Embedding Module. Our early embedding mod-

ule individually processes the features at each time xt and

the features at current time x0 and outputs embedded fea-

tures xe
t and xe

0 as follows:

xe
t = ζ(Wxext), (6)

xe
0 = ζ(Wxex0), (7)

where Wxe is a weight matrix and ζ is the ReLU [21] acti-
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vation function. Note that we share Wxe for xt and x0. We

omit a bias term for simplicity.

To encourage xe
t and xe

0 to represent specific actions, we

introduce two supervisions, action classes and feature dis-

tances. First, we process xe
t and xe

0 to obtain probability dis-

tributions pet and pe0 over K action classes and background:

pet = ξ(Wepx
e
t ), (8)

pe0 = ξ(Wepx
e
0), (9)

where Wep is a shared weight matrix to be learned and ξ is

the softmax function. We design a classification loss Le by

adopting the multi-class cross-entropy loss as

Le = −

K
∑

k=0

(

yt,klog(pet,k) + y0,klog(pe0,k)
)

, (10)

where yt,k and y0,k are ground truth labels. Second, we use

the contrastive loss [5, 10] proposed to learn an embedding

representation by preserving the distance between similar

data points close and dissimilar data points far on the em-

bedding space in metric learning [28]. By using xe
t and xe

0

as a pair, we design our contrastive loss Lc as

Lc =1{yt = y0}D
2(xe

t , x
e
0)

+ 1{yt 6= y0}max(0,m−D2(xe
t , x

e
0)),

(11)

where D2(a, b) is the squared Euclidean distance and m is

a margin parameter.

We train our embedding module with Le and Lc, which

provides more representative features for actions. More de-

tails on training will be provided in Section 4.2.

Reset Module. Our reset module takes the previous hid-

den state ht−1 and the embedded features xe
0 to compute a

reset gate rt as

rt = σ(Whrht−1 + Wx0rx
e
0), (12)

where Whr and Wx0r are weight matrices which are

learned. We define σ as the logistic sigmoid function same

as GRU. We then obtain a new previous hidden state h̃t−1

as follows:

h̃t−1 = rt ⊙ ht−1. (13)

Different from GRU, we compute the reset gate rt based

on ht−1 and xe
0. This enables our reset gate to effectively

drop or take the past information according to its relevance

to an ongoing action.

Update Module. Our update module adopts the embed-

ded features xe
t and xe

0 to compute an update gate zt as fol-

lows:

zt = σ(Wxtzx
e
t + Wx0zx

e
0), (14)

where Wxtz and Wx0z are trainable parameters. Then, a

hidden state ht is computed as follows:

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t, (15)

where

h̃t = η(W
xth̃

xe
t + W

h̃h̃
h̃t−1). (16)

Here h̃t is a new hidden state and η is the tangent hyperbolic

function. W
xth̃

and W
h̃h̃

are trainable parameters.

There are two differences between the update modules

of our IDU and GRU. The first difference is that our update

gate is computed based on xe
t and xe

0. This allows the update

gate to consider whether xe
t is relevant to an ongoing action.

Second, our update gate uses the embedded features which

are more representative in terms of specific actions.

4.2. Information Discrimination Network

In this section, we explain our recurrent network, called

IDN, for online action detection (see Fig. 2.(b)).

Problem Setting. To formulate the online action de-

tection problem, we follow the same setting as in previous

methods [7, 32]. Given a streaming video V = {ct}
0
t=−T

including current and T past chunks as input, our IDN out-

puts a probability distribution p0 = {p0,k}
K
k=0 of a cur-

rent action over K action classes and background. Here we

define a chunk c = {In}
N
n=1 as the set of N consecutive

frames. In indicates the nth frame.

Feature Extractor. We use TSN [30] as a feature extrac-

tor. TSN takes an individual chunk ct as input and outputs

an appearance feature vector xa
t and a motion feature vector

xm
t . We concatenate xa

t ∈ R
da and xm

t ∈ R
dm into a two-

stream feature vector xt = [xa
t , x

m
t ] ∈ R

dx . Here dx equals

to da + dm. After that, we sequentially feed xt and x0 into

our IDU.

Training. We feed the hidden state h0 at current time

into a fully connected layer to obtain the final probability

distribution p0 of an ongoing action as follows:

pe0 = ξ(Whph0), (17)

where Whp is a trainable matrix and ξ is the softmax func-

tion.

We define a classification loss La for a current action by

employing the standard cross-entropy loss as

La = −

0
∑

t=−T

K
∑

k=0

yt,klog(pt,k), (18)

where yt,k are the ground truth labels for the tth time step.

We train our IDN by jointly optimizing La, Le, and Lc by

designing a multi-task loss L as follows:

L = La + α(Le + Lc), (19)

where α is a balance parameter.
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5. Experiments

In this section, we evaluate the proposed method on two

benchmark datasets, TVSeries [8] and THUMOS-14 [17].

We first demonstrate the effectiveness of our IDU by con-

ducting comprehensive ablation studies. We then report

comparison results among our IDN and the state-of-the-art

methods for online action detection.

5.1. Datasets

TVSeries [8]. This dataset includes 27 untrimmed

videos on six popular TV series, divided into 13, 7, and 7

videos for training, validation, and test, respectively. Each

video contains a single episode, approximately 20 minutes

or 40 minutes long. The dataset is temporally annotated

with 30 realistic actions (e.g., open door, read, eat, etc).

The TVSeries dataset is challenging due to diverse unde-

fined actions, multiple actors, heavy occlusions, and a large

proportion of non-action frames.

THUMOS-14 [17]. The THUMOS-14 dataset consists

of 200 and 213 untrimmed videos for validation and test

sets, respectively. This dataset has temporal annotations

with 20 sports actions (e.g., diving, shot put, billiards, etc).

Each video includes 15.8 action instances and 71% back-

ground on average. As done in [7, 32], we used the valida-

tion set for training and the test set for evaluation.

5.2. Evaluation Metrics

For evaluating performance in online action detection,

existing methods [8, 7, 32] measure mean average precision

(mAP) and mean calibrated average precision (mcAP) [8]

in a frame-level. Both metrics are computed in two steps:

1) calculating the average precision over all frames for each

action class and 2) averaging the average precision values

over all action classes.

mean Average Precision (mAP). On each action class,

all frames are first sorted in descending order of their prob-

abilities. The average precision of the kth class over all

frames is then calculated based on the precision at cut-off i

(i.e., on the i sorted frames). The final mAP is defined as

the mean of the AP values over all action classes.

mean calibrated Average Precision (mcAP). It is dif-

ficult to compare two different classes in terms of the AP

values when the ratios of positive frames versus negative

frames for these classes are different. To address this prob-

lem, Geest et al. [8] propose the calibrated precision as

cPrec(i) =
wTP(i)

wTP(i) + FP(i)
, (20)

where w is a ratio between negative frames and positive

frames. Similar to the AP, the calibrated average precision

of the kth class over all frames is computed as

cAPk =

∑

i cPrec(i)1(i)

NP

. (21)

Module Type Weight Size

Early Embedding

Module
FC Wxe dx × 512
FC Wep 512×(K+1)

Reset
Module

FC Whr 512× 512
FC Wxar 512× 512

Update

Module

FC Wxtz 512× 512
FC Wx0z 512× 512
FC W

xth̃
512× 512

FC W
h̃h̃

512× 512

Classification FC Whp 512×(K+1)
Table 1. Specifications of our IDN. dx is the dimension of the two-

stream feature vector xt and K + 1 is the number of action and

background classes.

Then, the mcAP is obtained by averaging the cAP values

over all action classes.

5.3. Implementation Details

Problem Setting. We use the same setting as used in

state-of-the-art methods [7, 32]. On both TVSeries [8] and

THUMOS-14 [17] datasets, we extract video frames at 24
fps and set the number of frames in each chunk N to 6. We

use 16 chunks (i.e., T = 15), which are 4 seconds long, for

the input of IDN.

Feature Extractor. We use a two-stream network as a

features extractor. In the two-stream network, one stream

encodes appearance information by taking the center frame

of a chunk as input, while another stream encodes mo-

tion information by processing an optical flow stack com-

puted from an input chunk. Among several two-stream net-

works, we employ the TSN model [30] pretrained on the

ActivityNet-v1.3 dataset [12]. Note that this TSN is the

same feature extractor as used in state-of-the-art methods

[7, 32]. The TSN model consists of ResNet-200 [11] for

an appearance network and BN-Inception [15] for a motion

network. We use the outputs of the Flatten 673 layer in

ResNet-200 and the global pool layer in BN-Inception

as the appearance features xa
t and motion features xm

t , re-

spectively. The dimensions of xa
t and xm

t are da = 2048
and dm = 1024, respectively, and dx equals to 3072.

IDN Architecture. Table 1 provides the specifications

of IDN considered in our experiments. In the early embed-

ding module, we set the number of the hidden units for Wxe

to 512. In the reset module, both weights Whr and Wxar

have 512 hidden units. In the update module, we use 512

hidden units for Wxtz , Wx0z , W
xth̃

, and W
h̃h̃

. Accord-

ing to the number of action classes, we set K + 1 to 31 for

TVSeries and 21 for THUMOS-14.

IDN Training. To train our IDN, we use a stochastic

gradient descent optimizer with the learning rate of 0.01 for

both THUMOS-14 and TVSeries datasets. We set batch

size to 128 and balance the numbers of action and back-
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ground samples in terms of the class of c0. We empirically

set the margin parameter m in Eq. (11) to 1.0 and the bal-

ance parameter α in Eq. (19) to 0.3.

5.4. Ablation Study

We evaluate RNNs with the simple unit, LSTM [14], and

GRU [4]. We name these networks RNN-Simple, RNN-

LSTM, and RNN-GRU, respectively. Although many meth-

ods [8, 7, 32] report the performances of these networks as

baselines, we evaluate them in our setting to clearly confirm

the effectiveness of our IDU.

In addition, we individually add IDU components to

GRU as a baseline for analyzing their effectiveness:

Baseline+CI: We add a mechanism using current informa-

tion to GRU in computing reset and update gates. Specifi-

cally, we replace Eq. (1) for rt with

rt = σ(Whrht−1 + Wx0rx0) (22)

and Eq. (3) for zt with

zt = σ(Wxtzxt + Wx0zx0), (23)

where Whr, Wx0r, Wxtz , and Wx0z are trainable parame-

ters. We construct a recurrent network with this modified

unit.

Baseline+CI+EE (IDN): We incorporate our main com-

ponents, a mechanism utilizing current information and

an early embedding module, into GRU, which is our

IDU. These components enable reset and update gates to

effectively model the relation between an ongoing action

and input information at every time step. Specifically, Eq.

(12) and Eq. (14) are substituted for Eq. (1) and Eq. (3),

respectively. We design a recurrent network with our IDU,

which is the proposed IDN.

In Table 2, we report the performances of five networks

on the TVSeries dataset [8]. Among RNN-Simple, RNN-

LSTM, and RNN-GRU, RNN-GRU results in the high-

est mcAP of 81.3%. By comparing RNN-GRU (Baseline)

with Baseline+CI, we first analyze the effect of using x0

in calculating reset and update gates. This component en-

ables the gates to decide whether input information at each

time is relevant to a current action. As a result, Baseline-

CI achieves the performance gain of 2.1% mcAP, which

demonstrates the effectiveness of using x0. Next, we ob-

serve that adding the early embedding module improves

the performance by 1.3% mcAP from the comparison be-

tween Baseline+CI and Baseline+CI+EE (IDN). Note that

our IDN achieves mcAP of 84.7% with a performance gain

of 3.4% mcAP compared with Baseline.

We conduct the same experiment on the THUMOS-14

dataset [17] to confirm the generality of the proposed com-

ponents. We obtain performance gains as individually in-

corporating the proposed components into GRU (see Table

Method mcAP (%)

RNN-Simple 79.9

RNN-LSTM 80.9

RNN-GRU (Baseline) 81.3

Baseline+CI 83.4

Baseline+CI+EE (IDN) 84.7
Table 2. Ablation study of the effectiveness of our proposed com-

ponents on TVSeries [8]. CI and EE indicate additionally using

the current information and early embedding input information,

respectively.

Method mAP (%)

RNN-Simple 45.5

RNN-LSTM 46.3

RNN-GRU (Baseline) 46.7

Baseline+CI 48.6

Baseline+CI+EE (IDN) 50.0
Table 3. Ablation study of the effectiveness of our proposed com-

ponents on THUMOS-14 [17]. CI and EE indicate additionally

using the current information and early embedding input informa-

tion, respectively.

Figure 3. Qualitative comparisons on predicted and GT probabili-

ties for action (top) and background (bottom).

3), where our IDN achieves an improvement of 3.3% mAP

compared to Baseline. These results successfully demon-

strate the effectiveness and generality of our components.

Figure 3 shows qualitative comparisons on predicted and

GT probabilities, where our IDN achieves the best results on

both action and background frames.

To confirm the effect of our components, we compare

the values of the update gates zt between our IDU and GRU.

For a reference, we introduce the relevance score Rt of each

chunk regarding a current action. Specifically, we set the

scores of input chunks representing the current action as 1,

otherwise 0 (see Fig. 4). Note that the update gate con-

trols how much information from the input will carry over

to the hidden state. Therefore, the update gate should drop

the irrelevant information and pass over the relevant infor-

mation related to the current action. In Fig. 5, we plot the zt
values of IDU and GRU and relevance scores against each

time step. On the input sequences containing from one to
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Figure 4. Example of relevance scores Rt of input chunks.

(a) On the input sequences containing from one to five relevant

chunks (i.e., from t = 0 to t = −4).

(b) On the input sequences containing from 11 to 15 relevant

chunks (i.e., from t = −10 to t = −14).

Figure 5. Comparison between the update gate zt values of our

IDU and GRU [4]. Update gate values are measured on the input

sequences containing (a) from one to five relevant chunks and (b)

from 11 to 15 relevant chunks.

five relevant chunks, the zt values of GRU are very high at

all time steps. In contrast, our IDU successfully learns the

zt values following the relevance scores (see Fig. 5(a)). We

also plot the average zt values on the input sequences in-

cluding from 11 to 15 relevant chunks in Fig. 5(b), where

our IDU yields the zt values similar to the relevance scores.

These results demonstrate that our IDU effectively models

the relevance of input information to the ongoing action.

Compared to GRU, IDU has additional weights Wxe ∈
R

dx×512 and Wep ∈ R
512×(K+1) in the early embedding

module. Our early embedding module reduces the dimen-

sions of xt, x0 ∈ R
dx×512, which makes the parameters

(i.e., Wx0r, Wxtz ∈ R
512×512) in IDU less than the pa-

rameters (i.e., Wxr, Wxz ∈ R
dx×512) in GRU. The other

weights have the same number of parameters in IDU and

GRU. As a result, the number of parameters for IDU is

75.3% of that for GRU with dx = 3072 and K = 20.

5.5. Performance Comparison

In this section, we compare our IDN with state-of-the-art

methods on TVSeries [8] and THUMOS-14 [17] datasets.

We use three types of input including RGB, Flow, and Two-

Stream. As the input of our IDU, we take only appearance

features for the RGB input and motion features for the Flow

input. IDN, TRN [32], RED [7], and ED [7] use same two-

stream features for the Two-Stream input, which allows a

fair comparison. We also employ another feature extractor,

Input Method mcAP (%)

RGB

LRCN [6] 64.1

RED [7] 71.2

2S-FN [9] 72.4

TRN [32] 75.4

IDN 76.6

Flow
FV-SVM [8] 74.3

IDN 80.3

Two-Stream

RED [7] 79.2

TRN [32] 83.7

IDN 84.7

IDN-Kinetics 86.1
Table 4. Performance comparison on TVSeries [8]. IDN, TRN

[32], RED [7], and ED [7] use same two-stream features for the

Two-Stream input.

Setting Method mAP (%)

Offline

CNN [27] 34.7

CNN [26] 36.2

LRCN [6] 39.3

MultiLSTM [33] 41.3

CDC [23] 44.4

Online

RED [7] 45.3

TRN [32] 47.2

IDN 50.0

IDN-Kinetics 60.3
Table 5. Performance comparison on THUMOS-14 [17]. IDN,

TRN [32], RED [7], and ED [7] use same two-stream features.

the TSN model [30] pretrained on the Kinetics dataset [2].

We name our IDN with this feature extractor IDN-Kinetics.

We report the results on TVSeries in Table 4. Our

IDN significantly outperforms state-of-the-art methods on

all types of input, where IDN achieves 76.6% mcAP on

the RGB input, 80.3% mcAP on the Flow input, and

84.1% mcAP on the Two-Stream input. Furthermore, IDN-

Kinetics achieves the best performance of 86.1% mcAP.

Note that IDN effectively reduces wrong detection results

occurred from the irrelevant information by discriminat-

ing the relevant information. However, 2S-FN, RED, and

TRN accumulates the input information without consider-

ing its relevance to an ongoing action. In addition, our

IDN yields better performance than TRN [32] although

IDN takes shorter temporal information than IDN (i.e., 16

chunks vs. 64 chunks).

In Table 5, we compare performances between our IDN

and state-of-the-art approaches for online and offline action

detection. The compared offline action detection methods

perform frame-level prediction. As a result, both IDN and

IDN-Kinetics outperforms all methods by a large margin.

In online action detection, it is important to identify ac-

tions as early as possible. To compare this ability, we mea-
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Portion of action

Method
0%-

10%

10%-

20%

20%-

30%

30%-

40%

40%-

50%

50%-

60%

60%-

70%

70%-

80%

80%-

90%

90%-

100%

CNN [8] 61.0 61.0 61.2 61.1 61.2 61.2 61.3 61.5 61.4 61.5

LSTM [8] 63.3 64.5 64.5 64.3 65.0 64.7 64.4 64.4 64.4 64.3

FV-SVM [8] 67.0 68.4 69.9 71.3 73.0 74.0 75.0 75.4 76.5 76.8

TRN [32] 78.8 79.6 80.4 81.0 81.6 81.9 82.3 82.7 82.9 83.3

IDN 80.6 81.1 81.9 82.3 82.6 82.8 82.6 82.9 83.0 83.9

IDN-Kinetics 81.7 81.9 83.1 82.9 83.2 83.2 83.2 83.0 83.3 86.6
Table 6. Performance comparison for different portions of actions on TVSeries [8] in terms of mcAP (%). The corresponding portions of

actions are only used to compute mcAP after detecting current actions on all frames in an online manner.

Figure 6. Qualitative evaluation of IDN on TVSeries [8] (top) and THUMOS-14 [17] (bottom). Each result shows frames, ground truth,

and estimated probabilities.

sure the mcAP values for every 10% portion of actions on

TVSeries. Table 6 shows the comparison results among

IDN, IDN-Kinetics, and previous methods, where our meth-

ods achieve state-of-the-art performance at every time inter-

val. This demonstrates the superiority of our IDU in identi-

fying actions at early stages as well as all stages.

5.6. Qualitative Evaluation

For qualitative evaluation, we visualize our results on

TVSeries [8] and THUMOS-14 [17] in Fig. 6. The re-

sults on the TVSeries dataset show high probabilities on the

true action label and reliable start and end time points. Note

that identifying actions at the early stage is very challenging

in this scene because the only subtle change (i.e., opening

a book) happens. On THUMOS-14, our IDN successfully

identifies ongoing actions by yielding the contrasting prob-

abilities between true action and background labels.

6. Conclusion

In this paper, we proposed IDU that extends GRU [4]

with two novel components: 1) a mechanism using current

information and 2) an early embedding module. These com-

ponents enable IDU to effectively decide whether input in-

formation is relevant to a current action at every time step.

Based on IDU, our IDN effectively learns to discriminate

relevant information from irrelevant information for iden-

tifying ongoing actions. In comprehensive ablation stud-

ies, we demonstrated the generality and effectiveness of our

proposed components. Moreover, we confirmed that our

IDN significantly outperforms state-of-the-art methods on

TVSeries [8] and THUMOS-14 [17] datasets for online ac-

tion detection.
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