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Abstract

Gait recognition, applied to identify individual walking

patterns in a long-distance, is one of the most promising

video-based biometric technologies. At present, most gait

recognition methods take the whole human body as a unit

to establish the spatio-temporal representations. However,

we have observed that different parts of human body pos-

sess evidently various visual appearances and movement

patterns during walking. In the latest literature, employ-

ing partial features for human body description has been

verified being beneficial to individual recognition. Taken

above insights together, we assume that each part of human

body needs its own spatio-temporal expression. Then, we

propose a novel part-based model GaitPart and get two as-

pects effect of boosting the performance: On the one hand,

Focal Convolution Layer, a new applying of convolution, is

presented to enhance the fine-grained learning of the part-

level spatial features. On the other hand, the Micro-motion

Capture Module (MCM) is proposed and there are several

parallel MCMs in the GaitPart corresponding to the pre-

defined parts of the human body, respectively. It is worth

mentioning that the MCM is a novel way of temporal model-

ing for gait task, which focuses on the short-range temporal

features rather than the redundant long-range features for

cycle gait. Experiments on two of the most popular public

datasets, CASIA-B and OU-MVLP, richly exemplified that

our method meets a new state-of-the-art on multiple stan-

dard benchmarks. The source code will be available on

https://github.com/ChaoFan96/GaitPart.

1. Introduction

Gait is a kind of physical and behavioural biometric

characteristic that depicts the walking patterns of a person.

Compared with other biometric modalities, e.g., face, fin-
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Figure 1. (a): Different parts of human gait possess evidently dif-

ferent shapes and moving patterns during walking. (b): Overview

of the GaitPart, consisting of the Frame-level Part Feature Extrac-

tor(FPFE) and Micro-motion Capture Module(MCM).

gerprint and iris, it can be easily captured at a long-distance

and requires no explicit co-operation of interest-subjects.

Thus, gait recognition has enormous potential in crime in-

vestigation, access control and social security. As an iden-

tification task in vision, the essential goal of gait recog-

nition is to learn the unique and invariant representation-

s from the temporal changing characteristics about human

body shape. However, in real-world scenarios, variation-

s like bag-carrying, coat-wearing and camera viewpoints

cause dramatic changes in gait appearance, which bring sig-

nificant challenges to gait recognition.

To alleviate these issues, lots of deep-learning based

methods have provided promising solutions[30, 25, 5, 26,

18, 29, 21, 14]. Thomas et al.[25] applied 3D-CNN to ex-

tract the spatio-temporal information, trying to find a gen-

eral descriptor for human gait. GaitNet[30] proposed an

Auto-Encoder framework to extract the gait-related features

from raw RGB images and then used LSTMs to model

the temporal changes of gait sequence. And GaitSet[5] as-

sumed that the appearance of a silhouette has contained its
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position information and thus regarded gait as a set to ex-

tract temporal information.

These prior methods treat the whole human body shape

as a unit to extract the spatio-temporal information for final

identification. However, we observe that the different parts

of human body possess evidently various shapes and mov-

ing patterns during walking, as shown in Fig. 1(a). More

evidences from [6, 15, 20, 5, 12, 13, 19, 28] have implied

that partial features for human body description can offer

fine-grained information, which is conducive to individu-

al identification task. For the temporal changing charac-

teristics, some of these state-of-art methods do not model

temporal features explicitly, which leads to the loss of im-

portant invariant features in time series[23, 7, 3, 26]. Some

other methods model the long-range dependencies to repre-

sent the global understanding of gait sequence, via deeply

stacking 3D-convolutional or recurrent operations[25, 30].

However, these methods are believed to retain unnecessary

long-range sequential constraints for the periodic gait and

thus lose the flexibility of gait recognition[5].

Motivated by above findings, we assume that each part

of human body needs its own expression, in which the lo-

cal short-range spatio-temporal features (micro-motion pat-

terns) are the most discriminative characteristics for human

gait. Therefore, we propose a novel temporal part-based

framework called GaitPart. As shown in Fig. 1(b), Gait-

Part consists of two novel well-designed components, i.e.,

the Frame-level Part Feature Extractor(FPFE) and Micro-

motion Capture Module(MCM).

The input of GaitPart is a sequence of gait silhouettes.

The FPFE, a special but concise stacked CNN, firstly takes

each frame as input and then conducts pre-defined horizon-

tal partition on the output feature map. In this way, we can

obtain several sequences of part-level spatial feature colored

in Fig. 1(b), each of which corresponds to a certain pre-

defined part of human body and its micro-motion patterns

will be captured by the corresponding MCM. Note that the

parameters among these parallel MCMs are independent,

which reflects GaitPart is a part-independent approach. And

the final gait representations is formed by simply concate-

nating all the output of these MCMs. More specifically, we

make the following three major contributions.

• In FPFE, we propose a simple yet effective applying of

convolution, called Focal Convolution (FConv), to en-

hance the fine-grained learning of the part-level spatial

features. Its core idea is to enable top convolution ker-

nel focus on more local details inside each certain part of

the input frame, intuitively exploiting more fine-grained

partial information.

• In MCM, we argue that the local short-range spatio-

temporal features(micro-motion patterns) are the most

discriminative features for periodic gait while the long-

range dependencies are lengthy and inefficient. And

more, an attention-based MCM is proposed to model the

local micro-motion features and the global understanding

of entire gait sequence.

• We propose a novel temporal part-based framework for

gait recognition, called GaitPart. Extensive experiments

conducted on the widely used gait databases, CASIA-

B[17] and OU-MVLP[21], demonstrate that GaitPart

outperforms prior state-of-the-art methods by a large

margin, showing its superiority. Lots of rigorous ablation

experiments conducted on CASIA-B[17] further prove

the effectiveness of each component within GaitPart.

2. Related Work

Gait Recognition. Most state-of-art works have taken

spatial feature extraction and temporal modeling as the

focus[16, 23, 7, 3, 26, 2, 1]. For the first issue, prior CNN-

based studies often performed the regular either 2-D[30, 5]

or 3-D[25, 27] convolution operation on entire feature map.

While this uniform operation in spatial dimension is natu-

rally and widely employed, these methods ignore the signif-

icant differences among human body parts in gait task.

To get the spatio-temporal representations, many work-

s tend to explicitly model the temporal changes[30, 25]

or directly compress the whole gait sequence into one

frame[5, 23, 7, 3, 26, 29]. However, RNN-based method-

s are believed to retain unnecessary sequential constrains

for the periodic gait[5], while another kind of GEI-based

methods[23, 7, 3, 26] are sensitive to the variations in real-

world scenarios, despite the simplicity advantage of them.

Part-based model. Splitting the feature map into strips

and pooling them into column vectors have been commonly

used in the very related field. e.g., person Re-ID[6, 20, 15].

With ignoring the spatial alignment, these methods assume

that each column vector could represent a certain corre-

sponding part of human body[20].

Different from the field of person Re-ID, we argue that

the part-based schemas applied in gait task should be de-

signed in a part-dependent way. Since there are significant

differences among human body parts in terms of appearance

and moving patterns in gait task, while it is entirely possi-

ble that different parts of human body share the common

attributes, e.g., color and texture in person Re-ID 1. Thus,

GaitPart have been designed as a part-dependent approach,

whose parameters are part-dependent at the stage of gener-

ating the spatio-temporal representations.

And more, this paper proposes the Focal Convolution (F-

Conv), which is a novel applying of convolution and has

made up the FPFE. More specifically, the FConv first slices

the input feature map into several parts and then performs

the regular convolution over these parts separately. When

1We guess that’s part of the reason why prior works[6, 20, 15] tended

to use part-shared kernels in the field of person Re-ID.
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Figure 2. The framework of GaitPart. The Block1, 2 and 3 are composed of FConvs and pooling layers. The HP represents Horizontal

Pooling and MCM represents Micro-motion Capture Module. In particular, MCMj is responsible for aggregating all the vectors at row j

in Part Representation Matrix to generate the spatio-temporal feature vj for the final identification.

deeply stacking the FConv, the receptive field of top-layer

neurons will be restricted and is expected to focus on more

local details inside the corresponding part of input frame.

Temporal model. The approaches of modeling temporal

changes of gait can be generally divided into three cate-

gories: 3DCNN-Based [25], LSTM-based[30, 14] and Set-

based[5]. Among them, the 3DCNN-based methods[2, 1,

22, 25] directly extract the spatio-temporal features for gait

recognition, but these methods are usually difficult to train

and can’t bring much considerable performance. Zhang et

al.[30] proposed a novel Auto-Encoder framework to ex-

tract the pose features from raw RGB video, and used a

three-layer LSTM to aggregate those pose features in time

series to generate the final gait feature[30]. However, the

LSTM-based methods are believed to retain unnecessary se-

quential constraints for periodic gait[5]. By assuming the

appearance of a silhouette has contained its position infor-

mation, GaitSet[5] proposed to regard the gait as a set and

extracted the spatio-temporal features in a temporal pooling

way. This way is concise and effective enough but doesn’t

model the temporal changes explicitly.

In contrast to above, we observe that the frames with a

similar visual appearance are likely to appear periodically in

the periodic gait, indicating there would be no discrimina-

tive information gain after a complete gait cycle. This phe-

nomenon implies that the long-range dependencies(longer

than a complete gait cycle, for example) may be redundant

and ineffective for gait recognition. Thus, GaitPart turns the

attention to local short-range temporal modeling, and pro-

poses the Micro-motion Capture Module. More details will

be discussed in Sec.3.3.

3. Proposed Method

In this section, we first present the pipeline of GaitPart,

followed by the Frame-level Part Feature Extractor (FPFE),

and end with the Temporal Feature Aggregator (TFA) and

implementation details. The framework is shown in Fig.2.

3.1. Pipeline

As shown in Fig.2, a sequence of gait silhouettes con-

taining t frames is fed into GaitPart frame by frame. The

Frame-level Part Feature Extractor (FPFE), a specially de-

signed convolution network, is used to extract the spatial

features Fi for each frame fi

Fi = FPFE (fi) (1)

where i ∈ 1, 2, ..., t denotes the index of frame in gait

sequence, and the details of FPFE will be introduced in

Sec.3.2. In this way, a sequence of feature maps denoted

as SF = {Fi|i = 1, ..., t} can be obtained, where Fi is a

three-dimensional tensor, i.e., the channel, height and width

dimension.

Then, the Horizontal Pooling(HP) module, aiming at ex-

tracting the discriminative part-informed features of partial

human body, horizontally splits the feature map Fi into n

parts. For the j-th part of Fi, Fj,i, the HP module down-

samples it into a column vector pj,i by Global Average

Pooling and Global Max Pooling

pj,i = Avgpool2d (Fj,i) + Maxpool2d (Fj,i) (2)

the similar operations are commonly used in [5, 6, 20, 15].

As an intermediate result, each feature map in SF can be

transformed into n part-level feature vectors, from which

the Part Representation Matrix (PR-Matrix) can be ob-

tained, denoted as P = (pj,i)n×t. As shown in Fig.2, ob-

viously, the corresponding row of vectors in PR-Matrix, de-

noted as Pj,· = {pj,i|i = 1, 2, ..., t}, is expected to repre-

sent the gait changes of part j. Thus, it comes naturally that

the spatio-temporal feature of part j could be extracted by

aggregating Pj,· into a feature vector vj , formulated as

vj = MCMj (Pj,·) (3)
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Figure 3. (a): The expansion of top-layer neurons’ receptive field

in deep network. Top: the regular case. Bottom: using the FConvs.

(b): The illustration of FConv, and the feature maps are shown by

their dimensions, e.g., C×H×W.

where MCMj denotes the j-th Micro-motion Capture Mod-

ule (MCM). And there are n parallel MCMs, whose param-

eters are independent, making up the Temporal Feature Ag-

gregator (TFA). In the end, several separate FC layers are

employed to map the feature vectors extracted from TFA to

metric space for the final individual identification.

3.2. Framelevel Part Feature Extractor

The Frame-level Part Feature Extractor (FPFE), aim-

ing at extracting the part-informed spatial features for each

frame, is composed of three blocks and each block consists

of two Focal Convolution Layers (FConv). Next, the FCon-

v will be described in detail first, and followed by the exact

structure of FPFE.

Definition. The FConv, a novel applying of convolution,

could first split the input feature map into several parts hor-

izontally and then perform a regular convolution over each

part, separately. Let p be the number of pre-defined parts,

in particular, the FConv is equivalent to the regular convo-

lution layer when p = 1.

Motivation. In order to enhance the fine-grained learning

of part-informed spatial features, the FConv is develope-

d. As shown in Fig.3(a), with the network going deeper,

the receptive field of the top-layer neurons will be restricted

to be narrower than the normal case by setting the hyper-

parameter p in FConv, which makes it possible for the top-

layer neurons to focus on more local details inside the cor-

responding part of input frame even in a deep network. This

constraint on the receptive field is expected to extract more

fine-grained and precisely features for each part.

Operation. As shown in Fig.3(b), the input feature map

is first split into p pre-defined parts horizontally and then a

regular convolution operation will be performed over these

part, separately. After that, the output feature maps will be

concatenated horizontally and used as the final output of F-

Table 1. The exact structure of Frame-level Part Feature Extractor.

In C, Out C, Kernel and Pad represent the input channels, output

channels, kernel size and padding of the FConv, respectively. In

particular, p indicates the number of pre-defined parts in FConv.

Frame-level Part Feature Extractor

Block Layer In C Out C Kernel Pad p

Block1

FConv1 1 32 5 2 1

FConv2 32 32 3 1 1

MaxPool, kernel size =2, stride=2

Block2

FConv3 32 64 3 1 4

FConv4 64 64 3 1 4

MaxPool, kernel size =2, stride=2

Block3
FConv5 64 128 3 1 8

FConv6 128 128 3 1 8

Conv. And more, the exact structure of FPFE are shown in

Tab.1 and the ablation study of setting the hyper-parameter

p for each FConv will be discussed in Sec.4.3.

3.3. Temporal Feature Aggregator

As mentioned in Sec.3.1, the Temporal Feature Aggrega-

tor (TFA) is composed of n parallel Micro-motion Capture

Modules (MCMs) and each MCM is responsible for mod-

eling the short-range spatio-temporal representations of the

corresponding part. Next, we take the details of MCM as

focus and thus ignore the index of pre-defined parts.

The MCM contains two parts: the Micro-motion Tem-

plate Builder (MTB) and Temporal Pooling (TP). Let Sp =
{pi|i = 1, 2, ..., t} be a row of the PR-Matrix, which is a

two-dimensional tensor with the sequence and channel di-

mension. The MTB is designed to map the sequence of part-

level feature vectors Sp into the sequence of micro-motion

feature vectors Sm, formulated as Sm = MTB(Sp). After

that, by aggregating the sequence Sm, the TP module will

extract the most discriminative motion feature vector v, for-

mulated as v = TP(Sm), for the final identification. Next,

the MTB module will be described in detail first, and fol-

lowed by the TP module.

Micro-motion Template Builder

Description. Map the frame-level part-informed feature

vectors into the micro-motion feature vectors.

Motivation. Assume the short-range spatio-temporal repre-

sentations (micro-motion features) are the most discrimina-

tive features for the cycle gait, and think the micro-motion

patterns at any certain moment should be totally determined

by itself and its neighbor frames.

Operation. Let R (pi, r) = {pk|k = i− r, ..., i, ..., i+ r}
represent the sub-sequence composed of pi and its r-

neighbor frames, and then the micro-motion feature at mo-

ment i can be defined as

mi = TempFunc (R (pi, r)) (4)

where the TempFunc denotes micro-motion template func-

tion, and aim at compressing the sub-sequence R (pi, r).
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Figure 4. The detailed structure of Micro-motion Capture Module

(MCM, including the MTB and TP module). The MTB module

slides on sequence dimension, and aggregates each adjacent 2r +

1 column vectors into a micro-motion feature vector. And then,

the TP module applies a simple max function to gather the most

discriminative micro-motion features among frames and channels

dimension for the final recognition.

Refer to the GEI’s practice of taking the average of all

frames in the sequence as the spatio-temporal representation

for gait[7], we join two statistical functions as the instanti-

ation of template function. As shown in Fig.4, applying

template function to every moment of Sp, we are actual-

ly performing 1-D Global Average Pooling and 1-D Global

Max Pooling with the kernel size of 2r + 1. In this way,

the sequence of micro-motion feature vectors, Sm, will be

obtained, and can be formulated as

Sm = Avgpool1d (Sp) + Maxpool1d (Sp) (5)

Further, in order to obtain the more discriminative rep-

resentations for micro-motion, the channel-wise attention

mechanism is introduced to re-weight the feature vector at

each moment[9, 24, 12, 4]. In practice, 1-D convolutional

kernel is employed and the re-weighted micro-motion se-

quence Sre
m can be formulate as

Slogits = Conv1dNet (Sp)

Sre
m = Sm · Sigmoid (Slogits)

(6)

where the Conv1dNet denotes a small network composed

of two 1-D convolution layers.

Figure 5. The abstract structure of Micro-motion Capture Module

in practice, containing the TP and two parallel MTBs module with

different window size (3 and 5).

Table 2. The exact structure of MTB1 and MTB2. In C, Out C,

Kernel and Pad represent the input channels, output channels, k-

ernel size and padding of the 1-D convolution layer, respectively.

In particular, C and s represent the channels of input feature map

and the squeeze ratio, respectively. Note that the values around ’|’
represent the setting of MTB1 and MTB2, respectively.

Module MTB1 | MTB2

Layer Conv1d 1 Conv1d 2 Avgpool1d Maxpool1d

In C C | C C/s | C/s × ×
Out C C/s | C/s C | C × ×
Kernel 3 | 3 1 | 3 3 | 5 3 | 5

Pad 1 | 1 0 | 1 1 | 2 1 | 2

As shown in Fig.4, the MTB is just like a sliding-window

detector. On the one hand, all the frame-level feature vec-

tors inside window will be compressed into a micro-motion

vector by TempFunc. On the other hand, the channel-wise

attention mechanism is introduced to make the model en-

ables to re-weight micro-motion vector according to the fea-

tures inside window, so that more discriminative motion ex-

pressions could be highlighted for the final identification.

In practice, there are two MTBs, using different window

size (3 and 5) in MCM, as shown in Fig 5. And the exact

structures of Conv1dNet in each MTB are shown in Tab. 2.

The purpose of this design is to fuse the multi-scale infor-

mation in sequence dimension, so as to gather more abun-

dant characteristics of micro-motion. The ablation study

will be shown in Sec.4.3.

Temporal Pooling

Description. Aggregate the sequence of micro-motion fea-

ture vectors, Sre
m (t) = {mre

i |i = 1, ..., t}, to represent the

gait motion patterns, formulated as

v = TP (Sre
m (t)) (7)

where v denotes the output of TP module (a column vector).

Principle. As a periodic motion, a complete cycle should be

able to thoroughly represent the entire gait sequence under

the ideal condition 2. So, let Sre
m (T ) = {mre

i |i = 1, ..., T}
represent the sequence of micro-motion features inside a

complete gait cycle (T denotes the period), and the TP mod-

ule should satisfy the following formulation:

For ∀t > T, ∃ TP (Sre
m (t)) = TP (Sre

m (T )) (8)

This is the Ground Principle of Gait Temporal Aggregation,

whose core idea is that there could be no discriminative in-

formation gain after a complete cycle for periodic gait.

Operation. Two natural and simple statistical functions ap-

plied on sequence dimension have been taken as the instan-

tiation of TP module, namely the mean(·) and max(·).
When TP (·) = mean (·)

TP (Sre
m (t)) =

∑t

1
mre

i

t
(9)

2The individual gait is a pure periodic process without any interfer-

ences, e.g., view change, gait-unrelated motion and so on.
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TP (Sre
m (T )) =

∑T

1
mre

i

T
(10)

It is obvious that if and only if t is an integral multiple of

T , Eq.9=Eq.10 (here mre
i would’t be a constant). However,

the length of real-world gait video is uncertain, the statisti-

cal function of mean(·) seem like a bad choice.

When TP (·) = max (·)

TP (Sre
m (t)) = max (mre

1 , ...,mre
T , ...,mre

t ) (11)

TP (Sre
m (T )) = max (mre

1 , ...,mre
T ) (12)

Since gait is a periodic action, it is obvious that E-

q.11=Eq.12. Thus, the function max (·) is employed in final

descision. The ablation study will be discussed in Sec.4.3.

3.4. Implementation Details

Network hyper-parameters. As shown in Tab. 1, the F-

PFE is made up by FConv Layers, Max Pooling Layers[11]

and Leaky ReLU activations. What needs to be pointed out

is the setting of pre-defined parts number p in the FCon-

v. When p is larger, the constraint applied on the receptive

field is stronger. And when p = 1, the FConv is equivalent

to regular convolution layer and the constraint would be re-

moved. Therefore, the experience of setting the value of p

is increasing as the network going deeper.

Loss and Sampler. As mentioned in Sec3.1, the output-

s of GaitPart are n column feature vectors. In this work,

the separate Batch All (BA+) triplet loss[8] is employed

to train the network, and the corresponding column feature

vectors among different samples will be used to compute

the loss. The training batch size is (pr,k), where pr denotes

the number of persons and k denotes the number of samples

for each person in a training batch. In addition, at the test

phase, the raw gait video will be directly fed into the model;

at the train phase, for the length of gait video is uncertain,

the sampler should collect a fixed-length segment as input:

intercept a 30-40 frame-length segment first, and then ran-

domly extract 30 sorted frames for training. Specially, if

the length of raw video is less than 15 frames, it will be dis-

carded. And while the length is more than 15 frames but

less than 30 frames, it will be repeatedly sampled.

Testing. At the test phase, the distance between gallery and

probe is defined as the average of Euclidean distance of the

corresponding feature vectors.

4. Experiments

Two open databases have been applied to evaluate the

GaitPart, namely CASIA-B[17] and OU-MVLP[21]. In

this section, these databases will be described firstly. And

then, the performances of GaitPart will be compared with

that of other state-of-the-art methods. Finally, the detailed

ablation studies will be conducted strictly on CASIA-B[17]

to verify the effectiveness of each component in GaitPart.

4.1. Datasets and Training Details

CASIA-B. Composed of 124 subjects, the CASIA-B[17] is

a widely applied gait dataset, in which each subject con-

tains 11 views and each view contains 10 sequences. And

this 10 sequences are obtained under 3 walking conditions,

the first 6 sequences are obtained under normal case (NM),

the other 2 sequences are obtained with subjects carrying

bags (BG), and the last 2 are obtained with subjects wearing

coats or jackets (CL). In other word, each subject contain-

s 11×(6+2+2)=110 sequences. Based on CASIA-B, there

are various experimental protocols[30], and for the fair-

ness, this paper strictly follows the popular protocol carried

out by [26]. In addition, the first 74 subjects are grouped

into train set, and the remaining 50 subjects are reserved

for testing. During the test, the first 4 sequences of NM

condition(NM#1-4) are regarded as gallery, and the remain-

ing six sequences are divided into three subsets according to

the walking conditions, i.e., the NM subset contains NM#5-

6, the another BG subset contains BG#1-2, and the last CL

subset contains CL#1-2.

OU-MVLP. The OU-MVLP gait database[21] is so far the

world’s largest public gait dataset. It is composed of 10307

subjects (5153 subjects for training and the rest 5154 sub-

jects for test). In addition, each subject contains 14 views

(0,15, ...,90; 180, 195, ..., 270) and each view embodies 2

sequences. At the test phase, the sequences with index #01

are grouped into the galleries while the rest sequences with

index #02 are grouped into the probes.

Training details. 1) Common configuration: the input sil-

houettes are aligned by the approach mentioned in [21] and

resized to the size of 64×44. Adam optimizer is used with

the learning rate of 1e-4, and the momentum of 0.9[10].

The margin in separate triplet loss is set to 0.2[8]. 2) In

CASIA-B[17], the batch size is set to (8, 16) following the

manner introduced in Sec3.4. Moreover, we train the mod-

el for 120K iterations. 3) In OU-MVLP, due to it contains

almost 20 times more sequences than CASIA-B, an addi-

tional block composed of two FConv Layers is stacked into

the FPFE (the output channel is set to 256) and the value of

p of each block is set to 1, 1, 3, 3 respectively. The batch

size is set to (32, 16), the iterations is set to 250K, and the

learning rate would be reduced to 1e-5 at 150k iterations.

4.2. Comparison with Stateofart Methods

CASIA-B. As shown in Tab.3, to ensure the GaitPart can

be compared systematically and comprehensively with oth-

er state-of-the-art methods, all the cross-view and cross-

walking-condition cases are included in the comparison s-

cope. 1) Expect CNN-LB[26] is GEI-based, other meth-

ods shown in Tab.3 are video-based and all of which out-

perform CNN-LB significantly. This indicates that video-

based methods have great potential in extracting more fine-

grained and discriminative information from the raw gait se-
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Table 3. Averaged rank-1 accuracies on CASIA-B, excluding identical-view cases. CNN-LB:[26], GaitSet[5], GaitNet[30].

Gallery NM#1-4 0◦ − 180◦
mean

Probe 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM #5-6

CNN-LB[26] 82.6 90.3 96.1 94.3 90.1 87.4 89.9 94.0 94.7 91.3 78.5 89.9

GaitSet[5] 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0

GaitNet[30] 91.2 92.0 90.5 95.6 86.9 92.6 93.5 96.0 90.9 88.8 89.0 91.6

GaitPart(ours) 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2

BG #1-2

CNN-LB[26] 64.2 80.6 82.7 76.9 64.8 63.1 68.0 76.9 82.2 75.4 61.3 72.4

GaitSet[5] 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2

GaitNet[30] 83.0 87.8 88.3 93.3 82.6 74.8 89.5 91.0 86.1 81.2 85.6 85.7

GaitPart(ours) 89.1 94.8 96.7 95.1 88.3 94.9 89.0 93.5 96.1 93.8 85.8 91.5

CL #1-2

CNN-LB[26] 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0

GaitSet[5] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4

GaitNet[30] 42.1 58.2 65.1 70.7 68.0 70.6 65.3 69.4 51.5 50.1 36.6 58.9

GaitPart(ours) 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7

Table 4. Averaged rank-1 accuracies on OU-MVLP, excluding

identical-view cases. GEINet:[18], GaitSet:[5].

Probe
Gallery All 14 views

GEINet[18] GaitSet[5] GaitPart(ours)

0◦ 11.4 79.5 82.6

15◦ 29.1 87.9 88.9

30◦ 41.5 89.9 90.8

45◦ 45.5 90.2 91.0

60◦ 39.5 88.1 89.7

75◦ 41.8 88.7 89.9

90◦ 38.9 87.8 89.5

180◦ 14.9 81.7 85.2

195◦ 33.1 86.7 88.1

210◦ 43.2 89.0 90.0

225◦ 45.6 89.3 90.1

240◦ 39.4 87.2 89.0

255◦ 40.5 87.8 89.1

270◦ 36.3 86.2 88.2

mean 35.8 87.1 88.7

quence. 2) Compared with GaitSet[5], the GaitPart clearly

presents better performance with possessing a similar back-

bone (In fact, the parameters of GaitPart are only about

half of GaitSet’s 3). This result experimentally reveal-

s the superiority of the FConv and MCM. 3) Compared

with GaitNet[30], these two methods bear the same pur-

pose but different means. In GaitNet, an Auto-Encoder

framework was introduced to obtain more discriminative

features, and the multi-layers LSTM was applied for spatio-

temporal modeling[30]. And in our model, FConv and M-

CM have been proposed, respectively. From the view of

experiments, the GaitPart achieves better performance un-

der various walking conditions on CASIA-B.

OU-MVLP. In order to verify its generalization, the eval-

uation of GaitPart is completed on the worldwide largest

public gait dataset[21]. As shown in Tab.4, GaitPart meets

a new state-of-the-art under various cross-view conditions.

It should be pointed out that the maximum value of rank-1

accuracy cannot reach 100% due to the missing of the se-

quences in some subjects and this situation is neglected at

3About 2.56× 10
6 for GaitSet[5] while 1.47× 10

6 for GaitPart.

Table 5. Ablation Study, Group A. Control Condition: the value

of p in each block. Results are rank-1 accuracies averaged on 11

views, excluding identical-view cases.

Group A Block1 Block2 Block3 NM BG CL

a 1 1 1 95.6 88.4 76.1

b 1 1 8 96.6 90.4 77.1

c 1 4 8 96.2 91.5 78.7

d 2 4 8 95.8 90.7 78.4

the test phase. If the subjects in probe without correspond-

ing samples are discarded, the average rank-1 accuracy of

all probe views should be 95.1%, instead of 88.7%.

4.3. Ablation Study

To verify the effectiveness of each component in Gait-

Part, several ablation studies with various settings will be

conducted on CASIA-B, including setting the different p

values in FConv, setting only one or two MTBs in MCM

module, w/ and w/o applying attention mechanism in M-

CM module and using the different instances for TP mod-

ule. The experiments result and analysis are as follows.

Effectiveness of FConv. Following the manners of setting

the hyperparameter p in FConv mentioned in Sec.3.4, four

controlled experiments (numbered as A-a, b, c and d, re-

spectively) are conducted in experiment Group A, and all

the results are shown in Tab.5. It is worth noting that in

the backbone of experiment A-a, the p value of all the F-

Convs is set to 1, that is, the backbone is totally composed

of regular layers. 1) It is clearly discovered that all the ex-

periments with using FConvs (including A-b, c and d) gain

better performance than the experiment A-a. On the one

hand, this verifies the effectiveness of FConv. On the oth-

er hand, the robust of varying the value p in FConv is also

declared in GaitPart. 2) The comparison between A-d with

A-c shows that the performance is negatively affected by

using the FConv at Block1 (bottom layers). The possible

reason is that on the bottom layers, the edge and contour

information between adjacent parts would be damaged by

the FConvs. 3) By comparing the differences among exper-
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Table 6. Ablation Study, Group B. Control Condition: w/ and w/o

applying MTB1 or MTB2, w/ and w/o attention mechanism in MT-

B and different instantiations of TP. Results are rank-1 accuracies

averaged on 11 views, excluding identical-view cases.

Group B
MTB TP

NM BG CL
MTB1 MTB2 Attention Max Mean

a X X X X 96.2 91.5 78.7

b X × X X 95.8 90.8 76.2

c × X X X 96.1 90.6 77.3

d X X × X 95.4 89.3 73.1

e X X X X 93.6 86.5 70.1

iment A-a, b and c, it can be found that the average rank-1

accuracies first go up and then decrease on the NM subset,

but keep in increasing under the BG and CL subset. The

cause of this phenomenon is believed that the different re-

ceptive field of top-layer neurons could be fit to different

walking conditions.

In addition, there is another thing worth mentioning that,

the experiment A-a without employing the FConvs at al-

l, achieves the worse performance in Group A but the best

performance among other benchmarks mentioned in Tab.3.

Because the backbone applied in A-a is lighter and more

concise than that of other benchmarks, so it can loosely and

partially verify the effectiveness of the MCM module. Fi-

nal, the experiment A-c with impressive comprehensive per-

formance is selected as the baseline of GaitPart.

Effectiveness of MCM. As shown in Tab.6, there are 5 con-

trolled experiments (numbered as B-a4, b, c, d and e, respec-

tively) in Group B, among which B-a, b, c and d focus on

the design of MTB module while the rest B-e only takes

the instantiation of TP module into consideration. 1) By

comparing the differences between experiment B-a, b and

c, we find the best performance is achieved by using MTB1

and MTB2 together. This shows the multi-scale design in

MCM (mentioned in Sec.3.3) is helpful to capture the dis-

criminative micro-motion features. 2) By comparing the ex-

periment B-a with B-d, we find the introduction of attention

mechanism is necessary. And it indeed enable the model to

highlight the most representative micro-motion features. 3)

The comparison between experiment B-a with B-e declares

that the instantiation of TP module is of vital importance

for GaitPart. When it doesn’t satisfy the ’The Ground Prin-

ciple of Gait Temporal Aggregation’, taking instantiated as

the function mean(·) as example, the worst performance a-

mong all the experiments in Group B and A is obtained.

4.4. Spatiotemporal Study

We generally think that both static appearance features

and dynamic temporal information are representative char-

acteristics for individual gait. But many prior approach-

es have achieved good performances without modeling the

4This experiment is identical to the Group A-c.

Table 7. Spatio-temporal Study, Group C. Control Condition:

sort/shuffle the input sequence at train/test phase. Results are rank-

1 accuracies averaged on 11 views, excluding identical-view cases.

Group C
Train Test

NM BG CL
Shuffle Sorted Shuffle Sorted

a X X 95.6 89.9 71.5

b X X 96.2 91.5 78.7

c X X 92.5 85.8 65.1

temporal features explicitly, in the other word, the or-

der of input frames don’t matter in these state-of-the-art

methods[26, 5]. So in this section, we aim at openly explor-

ing what roles do the temporal information and appearance

features play in GaitPart, respectively.

To this end, experiment Group C is conducted and all the

results are shown in Tab.7. As you can see, the worse per-

formances are achieved by shuffling the input frames at both

train (C-a) and test phase (C-c), but the accuracy degrada-

tion is not so serious. It reveals that even under the scram-

bled temporal information of input sequence, the model can

still achieve not bad performance. This phenomenon indi-

cates the static appearance features indeed play a vital role

in gait recognition. But we don’t think the temporal infor-

mation is trivial or inessential, because the model gained a

considerable accuracy boost under cross-wearing condition,

where the gait appearance changes a lot in the real-world s-

cenarios. Tab.7 shows that temporal information is also very

important robust features in GaitPart.

5. Conclusion

In this paper, we present a novel insight that each part of

human body needs its own spatio-temporal modeling, ow-

ing to the different visual appearance and moving patterns

among human body during walking. Thus, GaitPart is pro-

posed, which includes the Frame-level Part Feature Extrac-

tor composed of FConv and the Temporal Feature Aggre-

gator consisting of several parallel and dependent Micro-

motion Capture Modules. The core goal of these two part-

s is to enhance the fine-grained learning of part-level fea-

tures and extract the local short-range spatio-temporal ex-

pressions, respectively. In final, experiments conducted on

the well-known public databases, CASIA-B[17] and OU-

MVLP[21], experimentally demonstrate the superiority of

GaitPart as well as all its components.
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