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Abstract

Neural architecture search (NAS) has dramatically ad-

vanced the development of neural network design. We re-

visit the search space design in most previous NAS methods

and find the number and widths of blocks are set manually.

However, block counts and block widths determine the net-

work scale (depth and width) and make a great influence

on both the accuracy and the model cost (FLOPs/latency).

In this paper, we propose to search block counts and block

widths by designing a densely connected search space, i.e.,

DenseNAS. The new search space is represented as a dense

super network, which is built upon our designed routing

blocks. In the super network, routing blocks are densely

connected and we search for the best path between them to

derive the final architecture. We further propose a chained

cost estimation algorithm to approximate the model cost

during the search. Both the accuracy and model cost are op-

timized in DenseNAS. For experiments on the MobileNetV2-

based search space, DenseNAS achieves 75.3% top-1 ac-

curacy on ImageNet with only 361MB FLOPs and 17.9ms

latency on a single TITAN-XP. The larger model searched

by DenseNAS achieves 76.1% accuracy with only 479M

FLOPs. DenseNAS further promotes the ImageNet classi-

fication accuracies of ResNet-18, -34 and -50-B by 1.5%,

0.5% and 0.3% with 200M, 600M and 680M FLOPs reduc-

tion respectively. The related code is available at https:

//github.com/JaminFong/DenseNAS.

1. Introduction

In recent years, neural architecture search (NAS) [48,

49, 34, 36] has demonstrated great successes in designing

neural architectures automatically and achieved remarkable

performance gains in various tasks such as image classifica-

tion [49, 34], semantic segmentation [5, 27] and object de-

tection [16, 43]. NAS has been a critically important topic
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Figure 1: Search space comparison between conventional

methods and DenseNAS. Upper: Conventional search

spaces manually set a fixed number of blocks in each stage.

The block widths are set manually as well. Bottom: The

search space in DenseNAS allows more blocks with vari-

ous widths in each stage. Each block is densely connected

to its subsequent ones. We search for the best path (the red

line) to derive the final architecture, in which the number of

blocks in each stage and the widths of blocks are allocated

automatically.

for architecture designing.

In NAS research, the search space plays a crucial role

that constrains the architectures in a prior-based set. The

performance of architectures produced by NAS methods

is strongly associated with the search space definition. A

more flexible search space has the potential to bring in ar-

chitectures with more novel structures and promoted per-

formance. We revisit and analyze the search space design

in most previous works [49, 39, 3, 41]. For a clear illustra-

tion, we review the following definitions. Block denotes a

set of layers/operations in the network which output feature

maps with the same spatial resolution and the same width

(number of channels). Stage denotes a set of sequential

blocks whose outputs are under the same spatial resolution

settings. Different blocks in the same stage are allowed to

have various widths. Many recent works [3, 41, 7] stack the

inverted residual convolution modules (MBConv) defined

in MobileNetV2 [37] to construct the search space. They
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search for different kernel sizes and expansion ratios in each

MBConv. The depth is searched in terms of layer numbers

in each block. The searched networks with MBConvs show

high performance with low latency or few FLOPs.

In this paper, we aim to perform NAS in a more flexi-

ble search space. Our motivation and core idea are illus-

trated in Fig. 1. As the upper part of Fig. 1 shows, the num-

ber of blocks in each stage and the width of each block are

set manually and fixed during the search process. It means

that the depth search is constrained within the block and the

width search cannot be performed. It is worth noting that

the scale (depth and width) setting is closely related to the

performance of a network, which has been demonstrated in

many previous theoretical studies [35, 32] and empirical re-

sults [17, 40]. Inappropriate width or depth choices usually

cause drastic accuracy degradation, significant computation

cost, or unsatisfactory model latency. Moreover, we find

that recent works [37, 3, 41, 7] manually tune width settings

to obtain better performance, which indicates the design of

network width demands much prior-based knowledge and

trial-and-error.

We propose a densely connected search space to tackle

the above obstacles and name our method as DenseNAS.

We show our novelly designed search space schematically

in the bottom part of Fig. 1. Different from the search

space design principles in the previous works [3, 41], we

allow more blocks with various widths in one stage. Specif-

ically, we design the routing blocks to construct the densely

connected super network which is the representation of the

search space. From the beginning to the end of the search

space, the width of the routing block increases gradually to

cover more width options. Every routing block is connected

to several subsequent ones. This formulation brings in vari-

ous paths in the search space and we search for the best path

to derive the final architecture. As a consequence, the block

widths and counts in each stage are allocated automatically.

Our method extends the depth search into a more flexible

space. Not only the number of layers within one block but

also the number of blocks within one stage can be searched.

The block width search is enabled as well. Moreover, the

positions to conduct spatial down-sampling operations are

determined along with the block counts search.

We integrate our search space into the differentiable

NAS framework by relaxing the search space. We assign

a probability parameter to each output path of the routing

block. During the search process, the distribution of prob-

abilities is optimized. The final block connection paths in

the super network are derived based on the probability dis-

tribution. To optimize the cost (FLOPs/latency) of the net-

work, we design a chained estimation algorithm targeted at

approximating the cost of the model during the search.

Our contributions can be summarized as follows.

• We propose a densely connected search space that en-

ables network/block widths search and block counts

search. It provides more room for searching better net-

works and further reduces expert designing efforts.

• We propose a chained cost estimation algorithm to pre-

cisely approximate the computation cost of the model

during search, which makes the DenseNAS networks

achieve high performance with low computation cost.

• In experiments, we demonstrate the effectiveness of

our method by achieving SOTA performance on the

MobileNetV2 [37]-based search space. Our searched

network achieves 75.3% accuracy on ImageNet [9]

with only 361MB FLOPs and 17.9ms latency on a sin-

gle TITAN-XP.

• DenseNAS can further promote the ImageNet classi-

fication accuracies of ResNet-18, -34 and -50-B [18]

by 1.5%, 0.5% and 0.3% with 200M, 600M, 680M

FLOPs and 1.5ms, 2.4ms, 6.1ms latency reduction re-

spectively.

2. Related Work

Search Space Design NASNet [49] is the first work to

propose a cell-based search space, where the cell is repre-

sented as a directed acyclic graph with several nodes inside.

NASNet searches for the operation types and the topolog-

ical connections in the cell and repeat the searched cell to

form the whole network architecture. The depth of the ar-

chitecture (i.e., the number of repetitions of the cell), the

widths and the occurrences of down-sampling operations

are all manually set. Afterwards, many works [28, 34, 36,

30] adopt a similar cell-based search space. However, ar-

chitectures generated by cell-based search spaces are not

friendly in terms of latency or FLOPs. Then MnasNet [39]

stacks MBConvs defined in MobileNetV2 [37] to construct

a search space for searching efficient architectures. Some

works [3, 13, 41, 8] simplify the search space by searching

for the expansion ratios and kernel sizes of MBConv layers.

Some works study more about the search space. Liu

et al. [29] proposes a hierarchical search space that allows

flexible network topologies (directed acyclic graphs) at each

level of the hierarchies. Auto-DeepLab [27] creatively de-

signs a two-level hierarchical search space for semantic seg-

mentation networks. CAS [46] customizes the search space

design for real-time segmentation networks. RandWire [42]

explores randomly wired architectures by designing net-

work generators that produce new families of models for

searching. Our proposed method designs a densely con-

nected search space beyond conventional search constrains

to generate the architecture with a better trade-off between

accuracy and model cost.
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various paths to transmit tensors.

3.1.1 Basic Layer

We define the basic layer to be the elementary structure in

our search space. One basic layer represents a set of candi-

date operations which include MBConvs and the skip con-

nection. MBConvs are with kernel sizes of {3, 5, 7} and

expansion ratios of {3, 6}. The skip connection is for the

depth search. If the skip connection is chosen, the corre-

sponding layer is removed from the resulting architecture.

3.1.2 Routing Block

For the purpose of establishing various paths in the super

network, we propose the routing block with the ability of ag-

gregating tensors from preceding routing blocks and trans-

mit tensors to subsequent ones. We divide the routing block

into two parts, shape-alignment layers and basic layers.

Shape-alignment layers exist in the form of several par-

allel branches, while every branch is a set of candidate op-

erations. They take input tensors with different shapes (in-

cluding widths and spatial resolutions) which come from

multiple preceding routing blocks and transform them into

tensors with the same shape. As shape-alignment layers are

required for all routing blocks, we exclude the skip con-

nection in candidate operations of them. Then tensors pro-

cessed by shape-alignment layers are aggregated and sent to

several basic layers. The subsequent basic layers are used

for feature extraction whose depth can also be searched.

3.1.3 Dense Super Network

Many previous works [39, 3, 41] manually set a fixed num-

ber of blocks, and retain all the blocks for the final archi-

tecture. Benefiting from the aforementioned structures of

routing blocks, we introduce more routing blocks with vari-

ous widths to construct the dense super network which is the

representation of the search space. The final searched archi-

tecture is allowed to select a subset of the routing blocks and

discard the others, giving the search algorithm more room.

We define the super network as Nsup and assume it to

consist of N routing blocks, Nsup = {B1, B2, ..., BN}.

The network structure is shown in Fig. 2. We partition the

entire network into several stages. As Sec. 1 defines, each

stage contains routing blocks with various widths and the

same spatial resolution. From the beginning to the end of

the super network, the widths of routing blocks grow grad-

ually. In the early stage of the network, we set a small

growing stride for the width because large width settings

in the early network stage will cause huge computational

cost. The growing stride becomes larger in the later stages.

This design principle of the super network allows more pos-

sibilities of block counts and block widths.

We assume that each routing block in the super network

connects to M subsequent ones. We define the connection

between the routing block Bi and its subsequent routing

block Bj (j > i) as Cij . The spatial resolutions of Bi

and Bj are Hi × Wi and Hj × Wj respectively (normally

Hi = Wi and Hj = Wj). We set some constraints on the

connections to avoid the stride of the spatial down-sampling

exceeding 2. Specifically, Cij only exists when j − i ≤ M
and Hi/Hj ≤ 2. Following the above paradigms, the

search space is constructed as a dense super network based

on the connected routing blocks.

3.2. Relaxation of Search Space

We integrate our search space by relaxing the architec-

tures into continuous representations. The relaxation is im-

plemented on both the basic layer and the routing block.

We can search for architectures via back-propagation in the

relaxed search space.

3.2.1 Relaxation in the Basic Layer

Let O be the set of candidate operations described in

Sec. 3.1.1. We assign an architecture parameter αℓ
o to the

candidate operation o ∈ O in basic layer ℓ. We relax the

basic layer by defining it as a weighted sum of outputs from

all candidate operations. The architecture weight of the op-

eration is computed as a softmax of architecture parameters

over all operations in the basic layer:

wℓ
o =

exp(αℓ
o)∑

o′∈O
exp(αℓ

o′)
. (1)

The output of basic layer ℓ can be expressed as

xℓ+1 =
∑

o∈O

wℓ
o · o(xℓ), (2)

where xℓ denotes the input tensor of basic layer ℓ.

3.2.2 Relaxation in the Routing Block

We assume that the routing block Bi outputs the tensor bi
and connects to m subsequent blocks. To relax the block

connections as a continuous representation, we assign each

output path of the block an architecture parameter. Namely

the path from Bi to Bj has a parameter βij . Similar to

how we compute the architecture weight of each operation

above, we compute the probability of each path using a soft-

max function over all paths between the two routing blocks:

pij =
exp(βij)∑m

k=1
exp(βik)

. (3)

For routing block Bi, we assume it takes input tensors

from its m′ preceding routing blocks (Bi−m′ , Bi−m′+1,
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Bi−m′+2 ... Bi−1). As shown in Fig. 2, the input tensors

from these routing blocks differ in terms of width and spa-

tial resolution. Each input tensor is transformed to a same

size by the corresponding branch of shape-alignment layers

in Bi. Let Hik denotes the kth transformation branch in

Bi which is applied to the input tensor from Bi−k, where

k = 1 . . .m′. Then the input tensors processed by shape-

alignment layers are aggregated by a weighted-sum using

the path probabilities,

xi =

m′∑

k=1

pi−k,i ·Hik(xi−k). (4)

It is worth noting that the path probabilities are normalized

on the output dimension but applied on the input dimen-

sion (more specifically on the branches of shape-alignment

layers). One of the shape-alignment layers is essentially

a weighted-sum mixture of the candidate operations. The

layer-level parameters α control which operation to be se-

lected, while the outer block-level parameters β determine

how blocks connect.

3.3. Chained Cost Estimation Algorithm

We propose to optimize both the accuracy and the cost

(latency/FLOPs) of the model. To this end, the model cost

needs to be estimated during the search. In conventional

cascaded search spaces, the total cost of the whole network

can be computed as a sum of all the blocks. Instead, the

global effects of connections on the predicted cost need to

be taken into consideration in our densely connected search

space. We propose a chained cost estimation algorithm to

better approximate the model cost.

We create a lookup table which records the cost of each

operation in the search space. The cost of every operation

is measured separately. During the search, the cost of one

basic layer is estimated as follows,

cost
ℓ =

∑

o∈O

wℓ
o · cost

ℓ
o, (5)

where cost
ℓ
o refers to the pre-measured cost of operation

o ∈ O in layer ℓ. We assume there are N routing blocks in

total (B1, . . . , BN ). To estimate the total cost of the whole

network in the densely connected search space, we define

the chained cost estimation algorithm as follows.

˜cost
N

= cost
N
b

˜cost
i
= cost

i
b +

i+m∑

j=i+1

pij · (cost
ij
align + cost

j
b),

(6)

where costib denotes the total cost of all the basic layers of

Bi which can be computed as a sum cost
i
b =

∑
ℓ cost

i,ℓ
b ,

m denotes the number of subsequent routing blocks to

which Bi connects, pij denotes the path probability be-

tween Bi and Bj , and cost
ij
align denotes the cost of the

shape-alignment layer in block Bj which processes the data

from block Bi.

The cost of the whole architecture can thus be obtained

by computing ˜cost
1

with a recursion mechanism,

cost = ˜cost
1
. (7)

We design a loss function with the cost-based regularization

to achieve the multi-objective optimization:

L(w,α, β) = LCE + λ logτ cost, (8)

where λ and τ are the hyper-parameters to control the mag-

nitude of the model cost term.

3.4. Search Procedure

Benefiting from the continuously relaxed representa-

tion of the search space, we can search for the architec-

ture by updating the architecture parameters (introduced in

Sec. 3.2) using stochastic gradient descent. We find that at

the beginning of the search process, all the weights of the

operations are under-trained. The operations or architec-

tures which converge faster are more likely to be strength-

ened, which leads to shallow architectures. To tackle this,

we split our search procedure into two stages. In the first

stage, we only optimize the weights for enough epochs to

get operations sufficiently trained until the accuracy of the

model is not too low. In the second stage, we activate the

architecture optimization. We alternatively optimize the op-

eration weights by descending ∇wLtrain(w,α, β) on the

training set, and optimize the architecture parameters by

descending ∇α,βLval(w,α, β) on the validation set. More-

over, a dropping-path training strategy [1, 3] is adopted to

decrease memory consumption and decouple different ar-

chitectures in the super network.

When the search procedure terminates, we derive the fi-

nal architecture based on the architecture parameters α, β.

At the layer level, we select the candidate operation with the

maximum architecture weight, i.e., argmaxo∈O αℓ
o. At the

network level, we use the Viterbi algorithm [15] to derive

the paths connecting the blocks with the highest total tran-

sition probability based on the output path probabilities. Ev-

ery block in the final architecture only connects to the next

one.

4. Experiments

In this section, we first show the performance with the

MobileNetV2 [37]-based search space on ImageNet [9]

classification. Then we apply the architectures searched on

ImageNet to object detection on COCO [25]. We further ex-

tend our DenseNAS to the ResNet [18]-based search space.

Finally, we conduct some ablation studies and analysis. The

implementation details are provided in the appendix.
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