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Abstract

Neural Architecture Search (NAS) that aims to automate

the procedure of architecture design has achieved promis-

ing results in many computer vision fields. In this paper,

we propose an AdversarialNAS method specially tailored

for Generative Adversarial Networks (GANs) to search for

a superior generative model on the task of unconditional

image generation. The AdversarialNAS is the first method

that can search the architectures of generator and discrim-

inator simultaneously in a differentiable manner. Dur-

ing searching, the designed adversarial search algorithm

does not need to comput any extra metric to evaluate the

performance of the searched architecture, and the search

paradigm considers the relevance between the two network

architectures and improves their mutual balance. There-

fore, AdversarialNAS is very efficient and only takes 1 GPU

day to search for a superior generative model in the pro-

posed large search space (1038). Experiments demonstrate

the effectiveness and superiority of our method. The discov-

ered generative model sets a new state-of-the-art FID score

of 10.87 and highly competitive Inception Score of 8.74 on

CIFAR-10. Its transferability is also proven by setting new

state-of-the-art FID score of 26.98 and Inception score of

9.63 on STL-10. Code is at: https://github.com/

chengaopro/AdversarialNAS.

1. Introduction

Image generation is a fundamental task in the field of

computer vision. Recently, GANs [10] have attracted much

attention due to their remarkable performance for generat-

ing realistic images. Previous architectures of GANs are

designed by human experts with laborious trial-and-error

testings (Fig. 1 a)) and the instability issue in GAN train-

ing extremely increases the difficulty of architecture design.

Therefore, the architecture of the generative model in GAN
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Figure 1. Comparisons of different ways of designing GAN archi-

tectures. a) The previous hand-crafted GAN architectures depend

on the experience of human experts. b) AutoGAN [9] adopts IS or

FID as reward to update the architecture controller via reinforce-

ment learning. c) The proposed AdversarialNAS searches archi-

tecture in a differentiable way with an adversarial search mecha-

nism, which achieves better performance with higher efficiency.

literature has very few types and can be simply divided into

two styles: DCGANs-based [32] and ResNet-based [14].

On the other hand, the benefits of specially designing the

network architecture have been proven through lost of dis-

criminative networks, such as ResNet [14], DenseNet [17],

MobileNet [34], ShuffleNet [46], EfficientNet [36] and HR-

Net [35]. Therefore, the research about the backbone archi-

tecture of GANs needs more attention to further improve

the performance of the generative model.

Recently, Neural Architecture Search (NAS) has been

studied heatedly owing to its ability to automatically dis-

cover the optimal network architecture, which significantly

reduces human labor. However, on generation tasks, specif-

ically GANs-based generation, only AutoGAN [9] and
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AGAN [38] have explored the application of NAS.

To design a NAS algorithm specially tailored for GANs

on the unconditional image generation task, there are two

main challenges. First, it is expected to utilize an efficient

supervision signal to guide the search process in this un-

supervised task. However, the existing works [9, 38] both

adopt the Inception Score (IS) [33] or FID to evaluate the

architecture performance and take IS or FID as a reward to

update the architecture controller via reinforcement learn-

ing strategy. Obtaining IS or FID needs to generate hun-

dreds of images and use the statistics produced by an In-

ception network to calculate the final score. Thus it is ex-

tremely time-consuming, e.g. 200 GPUs over 6 days [38].

Second, the relevance and balance between generator and

discriminator need to be considered during searching since

the training process of GANs is a unique competition. How-

ever, AutoGAN search for a generator with a pre-defined

growing discriminator (Fig. 1 b)), where the architecture of

the discriminator can be regarded as fixed and may limit the

algorithm to search for an optimal architecture of generator.

In this work, we propose an Adversarial Neural

Architecture Search (AdversarialNAS) method to address

the above challenges (Fig. 1 c)). First, we design a large

search space (1038) for fragile GAN and relax the search

space to be continuous. Thus the architecture can be

represented by a set of continuous variables obeying cer-

tain probability distribution and searched in a differentiable

manner. Second, we propose to directly utilize the exist-

ing discriminator to evaluate the architecture of generator

in each search iteration. Specifically, when searching for

the generator architecture, the discriminator provides the

supervision signal to guide the search direction, which is

technically utilized to update the architecture distribution of

generator through gradient descent. Therefore, our method

is much more efficient since the extra computation cost for

calculating evaluation metric is eliminated. Third, in order

to consider the relevance and balance between the generator

and discriminator, we propose to dynamically change the

architecture of discriminator simultaneously during search-

ing. Accordingly, we adopt the generator to evaluate the ar-

chitecture of discriminator and comput the loss to update the

discriminator architecture through ascending the stochas-

tic gradient. The two architectures play against each other

in a competition to continually improve their performance,

which is essentially an adversarial searching mechanism.

Therefore, the AdversarialNAS gets rid of calculating extra

evaluation metric and solves the unsupervised task through

an adversarial mechanism. It adequately considers the mu-

tual balance between the two architectures, which benefits

for searching a superior generative model.

To sum up, our main contributions are three-fold.

• We propose a novel AdversarialNAS method, which is

the first gradient-based NAS method in GAN field and

achieves state-of-art performance with much higher ef-

ficiency. We design a large architecture search space

(1038) for GAN and make it feasible to search in. Our

AdversarialNAS can only tasks 1 GPU day for search-

ing an optimal architecture in the large search space.

• Considering GAN is an unique competition between

two networks, the proposed AdversarialNAS alter-

nately searches the architecture of both of them under

an adversarial searching strategy to improve their mu-

tual balance, which is specifically tailored for GAN.

• The searched architecture has more advanced transfer-

ability and scalability while achieving state-of-the-art

performance on both CIFAR-10 and STL-10 datasets.

2. Related Work

2.1. Generative Adversarial Networks

Although Restricted Boltzmann Machines [15] and flow-

based generative models [6] are all capable of generating

natural images, GANs [10] are still the most widely used

methods in recent years due to their impressive generation

ability. GANs based approaches have achieved advanced

results in various generation tasks, such as image-to-image

translation [18, 5, 19, 48], text-to-image translation [43, 45]

and image inpainting [29]. However, the potential of GANs

has not been fully explored since there is rare work [32]

studying the impact of architecture design on the perfor-

mance of GANs. In this work, we aim to search for a power-

ful and effective network structure specifically for the gen-

erative model via an automatic manner.

2.2. Neural Architecture Search

Automatic Machine Learning (AutoML) has attracted

lots of attention recently, and Neural Architecture Search

(NAS) is one of the most important direction. The goal of

NAS is to automatically search for an effective architecture

that satisfies certain demands. The NAS technique has ap-

plied to many computer vision tasks such as image classifi-

cation [2, 25, 26, 31, 49], dense image prediction [24, 47, 3]

and object detection [8, 30].

Early works of NAS adopt heuristic methods such as re-

inforcement learning [49] and evolutionary algorithm [41].

Obtaining an architecture with remarkable performance us-

ing such methods requires huge computational resources,

e.g., 2000 GPUs days [41]. Therefore, lots of works de-

sign various strategies to reduce the expensive costs includ-

ing weight sharing [31], performance prediction [1], pro-

gressive manner [25] and one-shot mechanism [26, 42].

The DARTS [26] in one-shot literature is the first approach

that relaxes the search space to be continuous and conducts

searching in a differentiable way. The architecture param-

eters and network weights can be trained simultaneously
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in an end-to-end fashion by gradient descent. Thus it ex-

tremely compresses the search time.

However, all of these methods are designed for recogni-

tion and supervision tasks. To the best of our knowledge,

there have been limited works [9] exploring applying NAS

to unsupervised or weakly supervised tasks. In this work,

we present the first gradient-based NAS method in GAN

field and achieve state-of-the-art performance with much

higher efficiency in the unsupervised image generation task.

2.3. NAS in GANs

Recently, a few works have attempted to incorporate

neural architecture search with GANs. AutoGAN [9]

adopts the reinforcement learning strategy to discover the

architecture of generative models automatically. However,

it only searches for the generator with a fixed architecture

of discriminator. This mechanism limits the performance

of the searched generator since the stability of GANs train-

ing is highly dependent on the balance between these two

players. Besides, the search space is relatively small (105),

thus its randomly searched architecture can achieve accept-

able results, e.g., FID (lower is better): 21.39 (random) and

12.42 (search) in CIFAR-10 dataset. The AGAN [38] en-

larges the search space specifically for the generative model,

but the computational cost is expensive (1200 GPUs days)

under the reinforcement learning framework. The perfor-

mance of the discovered model is slightly worse, e.g., FID:

30.5 in CIFAR-10. Moreover, the reward used to update the

weights of the network controller during evaluation stage is

Inception Score, which is not a suitable supervisory single

to guide the architecture search since it is time-consuming.

Instead, we search the architecture in a differentiable

way and discard the evaluation stage. The reward of pre-

vious methods is obtained after a prolonged training and

evaluation process, while our signal (loss) for guiding the

search direction is given instantly in each iteration. Thus

our method is more efficient. The designed adversarial

search algorithm improves the mutual balance of the two

networks for stabling and optimizing the search process.

3. Method

In this section, we first introduce the proposed search

space of GANs and the way for relaxing it to be continuous.

Then we describe the AdversarialNAS method.

3.1. Search Space for GANs

The goal of the proposed AdversarialNAS is to automati-

cally search for an superior architecture of generative model

through an adversarial searching mannr. Specifically, we

aim to search for a series of cells, including Up-Cell and

Down-Cell, as the building blocks to construct the final ar-

chitecture of GAN. Three Up-Cells and four Down-Cells

are stacked to form a generator and discriminator respec-

tively. Since the convolution neural network has a natural

hierarchical structure and each layer has unique function,

we search for the cells each with a different architecture.

We represent a cell as a Directed Acyclic Graph (DAG)

consisting of an ordered sequence of N nodes (Fig. 2). The

cell takes image features as input and outputs processed fea-

tures, where each node xi in DAG indicates an intermediate

feature and each edge fi,j between two nodes xi, xj is a

specific operation. Since we aim to search for an optimal

architecture of generator that is actually an upsampling net-

work, we design a search space for specific Up-Cell that

is almost fully connected topology, as given in the left of

Fig. 2. The Up-Cell consists of 4 nodes, and each node can

be obtained by its previous nodes through selecting an oper-

ation from a candidate set according to the search algorithm.

The search space of generator FG includes a candidate set

of normal operations, which is designed as below.

• None • Identity

• Convolution 1x1, Dilation=1

• Convolution 3x3, Dilation=1 • Convolution 3x3, Dilation=2

• Convolution 5x5, Dilation=1 • Convolution 5x5, Dilation=2

The ‘None’ means there is no operation between two cor-

responding nodes, which is used to change the topology of

the cell. The ‘Identity’ denotes the skip connection opera-

tion that provides multi-scale features. The stride of these

operations is 1 so that they will keep the spatial resolution.

The search space of generator also contains a subset of up-

sampling operations, which is devised as below.

• Transposed Convolution 3x3

• Nearest Neighbor Interpolation • Bilinear Interpolation

Note that, these operations can only be searched by edge

0 → 1 and 0 → 2 in a specific Up-Cell. To search for the

generator in an adversarial way, we simply invert the Up-

Cell to form a Down-Cell (shown in the right of Fig. 2) en-

suring their balance. The search space of discriminator FD

also contains a candidate set of normal operations, which is

the same as the one of Up-Cell. However, the candidate set

of downsampling operations is achieved by

• Average Pooling • Max Pooling

• Convolution 3x3, Dilation=1 • Convolution 3x3, Dilation=2

• Convolution 5x5, Dilation=1 • Convolution 5x5, Dilation=2

With stride equaling 2, the downsampling operations can

only be searched in edge 2 → 4 and 3 → 4. Therefore,

during searching, there are totally 1038 different network

architectures for GANs.

3.2. Continuous Relaxation of Architectures

The goal of the search algorithm is to select a specific

operation from the pre-defined candidate set for each edge.

Therefore, the intermediate node xn,j in the n-th cell can

be calculated through the selected functions and its previ-

ous connected nodes as xn,j =
∑

i<j fn,i,j(xn,i). For RL-
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based NAS algorithms, the function fn,i,j is directly sam-

pled from the candidate set according to the learnable ar-

chitecture controller. Inspired by Gradient-based NAS al-

gorithm [26], we relax the function fn,i,j to a soft version

through Gumbel-Max trick [27]:

fsoft
n,i,j (x) =

∑

f∈FG

exp((pfn,i,j + of )/τ)
∑

f ′∈FG
exp((pf

′

n,i,j + of ′)/τ)
f(x),

(1)

where of is the noise sampled from the Gumbel (0,1) dis-

tribution, and the τ is the softmax temperature. The pfn,i,j
is the probability of selecting a specific function f in edge

i → j of n-th cell. The Gumbel version softmax is ap-

plied to follow the learned probability distribution more

strictly. Therefore, each edge will contain a probability vec-

tor [pf1 , ..., pfm ],m = |FG|. This discrete probability dis-

tribution is calculated through a simple softmax function as

pf = exp(αf )
∑

f∈FG
exp(αf′ )

, where the α is the learnable param-

eter. Therefore, the goal of searching for an architecture is

converted to learning an optimal set of probability vectors

for every edge, and the architecture can be derived from

the learned probability distribution. Besides, in order to dy-

namically change the architecture of discriminator simulta-

neously, we also conduct a set of continuous parameters β
for calculating the probability of each function in discrim-

inator as qf = exp(βf )
∑

f∈FD
exp(βf′ )

. Therefore, the soft version

of the function can be achieved like the generator as

fsoft
n,i,j (x) =

∑

f∈FD

exp((qfn,i,j + of )/τ)
∑

f ′∈FD
exp((qf

′

n,i,j + of ′)/τ)
f(x).

(2)

Then, the proposed AdversarialNAS aims to learn a set of

continuous parameters α and β in a differentiable manner

and obtain the final architecture of generator by simply pre-

serving the most likely operations in the search space. Note

that, we term the networks with all operations softly com-

bined by the architecture parameters as Super-G and Super-

D. The topology of the network would be changed by the

learned high probability ‘None’ operation, and the ‘Iden-

tity’ operation would provide multi-scale fusion.

3.3. Adversarial Architecture Search

Before introducing the optimization strategy of the pro-

posed AdversarialNAS, we first briefly revisit the optimiza-

tion function in the classification literature. The searching

process is formulated as a bilevel optimization problem:

min
α

Lval(w
∗(α), α)

s.t. w∗(α) = argmin
w

Ltrain(w,α),
(3)

where Lval and Ltrain denote the loss function on the vali-

dation and training set respectively. The goal of the search
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Figure 2. The search space of Up-cell and Down-Cell. The ar-

chitectures of both Up-Cell and Down-Cell will continuously pro-

mote each other in an adversarial manner.

algorithm is to discover an optimal architecture α∗ by cal-

culating and minimizing the validation loss Lval(w
∗, α),

where w∗ is the optimal weights of the current architecture

α and is obtained by calculating and minimizing the train-

ing loss Ltrain(w,α). Both the weight and architecture are

optimized by ascending its gradient descent.

However, in the task of unconditional image generation,

there are no labels to supervise the searching procedure.

AutoGAN [9] and AGAN [38] apply IS to evaluate the ar-

chitecture performance and optimize the architecture by RL

strategy. Computing IS requires generating hundreds of im-

ages and adopts Inception model to infer the result offline

after a prolonged training trajectory of each discrete archi-

tecture, which is extremely time consuming. Therefore, we

propose to make the architectures of generator and discrim-

inator compete with each other to improve both of their per-

formance, i.e., utilizing discriminator to guide the generator

search and vice versa. AdversarialNAS leverages an adver-

sarial optimization strategy that is inspired by the formula-

tion of original GANs [10] for optimizing the architecture

in a differentiable way. Thus the optimization process is de-

fined as a two-player min-max game with value function

V (α, β) where the weight of each network must be cur-

rent optimal. The formulation of the introduced algorithm

is given in Eqn.( 4):

min
α

max
β

V (α, β) = Ex∼pdata(x)[logD(x | β,W ∗

D(β))]

+ Ez∼pz(z)[log(1−D(G(z | α,W ∗

G(α)) | β,W
∗

D(β)))]

s.t.

W ∗

D(β) = argmax
WD(β)

Ex∼pdata(x)[logD(x | β,WD(β))]

+ Ez∼pz(z)[log(1−D(G∗

Dβ
(z) | β,WD(β)))]

W ∗

G(α) = argmin
WG(α)

Ez∼pz(z)[log(1−D∗

Gα
(G(α | WG(α)))],

(4)

where pdata means true data distribution and pz is a prior

distribution. In the up-level stage the W ∗

D(β) denotes the
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optimal weights of discriminator under the specific archi-

tecture β and W ∗

G(α) represents the optimal weights of gen-

erator under the architecture α. In the low-level stage, the

two optimal weights {W ∗

G(α),W
∗

D(β)} for any particular

pair of architectures {α, β} can be obtained through another

min-max game between WG and WD:

min
WG(α)

max
WD(β)

V (WG(α),WD(β)) =

Ex∼pdata(x)[logD(x | β,WD(β))]

+ Ez∼pz(z)[log(1−D(G(z | α,WG(α)) | β,WD(β)))].
(5)

However, this inner optimization (Eq. 5) is time-

consuming. For NAS in the classification task [26, 7, 4],

the inner optimization (Eq. 3) is normally approximated by

one step training as ∇αLval(w
∗(α), α) ≈ ∇αLval(w −

ξ∇wLtrain(w,α), α). Inspired by this technique, for a

given pair of architectures {α, β}, the corresponding op-

timal weights {W ∗

G(α),W
∗

D(β)} can be obtained by single

step of adversarial training (Eq. 5) as vanilla GANs.

Algorithm 1 Minibatch stochastic gradient descent training

of Adversarial Neural Architecture Search.

1: for number of training iterations do

2: for k step do

3: Sample minibatch of 2m noise samples
{

z(1), ..., z(2m)
}

from noise prior.

4: Sample minibatch of 2m examples
{

x(1), ..., x(2m)
}

from real data distribution.

5: Update the architecture of discriminator by as-

cending its stochastic gradient:

∇β
1
m

∑m

i=1

[

log(xi) + log(1−D(G(zi)))
]

6: Update the weights of discriminator by ascending

its stochastic gradient:

∇WD

1
m

∑2m
i=m+1

[

log(xi) + log(1−D(G(zi)))
]

7: end for

8: Sample minibatch of 2m noise samples
{

z(1), ..., z(2m)
}

from noise prior.

9: Update the architecture of generator by descending

its stochastic gradient:

∇α
1
m

∑m

i=1

[

log(1−D(G(zi)))
]

10: Update the weights of generator by descending its

stochastic gradient:

∇WG

1
m

∑2m
i=m+1

[

log(1−D(G(zi)))
]

11: end for

Moreover, the min-max game between two architectures

can also be searched in an alternative way. Specifically,

the currently optimal architecture of generator for the given

discriminator can be achieved through single step of ad-

versarial training, which has been proven by Goodfellow

in [10]. The proposed AdversarialNAS algorithm is shown

in Alg. 1, and optimal architectures or weights in each itera-

tion can be achieved by ascending or descending the corre-

sponding stochastic gradient. Note that, the order of the up-

dating strategy is architecture first in each training iteration,

which guarantees the weights for updating the correspond-

ing architecture to be currently optimal. For example, the

discriminator used in ninth line of Alg. 1 is D∗ with optimal

architecture and weights for the current generator.

The proposed AdversarialNAS method can be plug-and-

play to the original training procedure of GANs to search

the architecture more naturally, which is specifically tai-

lored for GANs.

4. Experiments

4.1. Experimental Setup

Datasets. Following [9, 38], we adopt CIFAR-10 [22] and

STL-10 to evaluate the effectiveness of our approach. The

CIFAR-10 contains 60,000 natural images including 10 dif-

ferent classes in 32 × 32 spatial resolution. Concretely, we

use its training set that consists of 50,000 images without

any data augmentation technique to search for the optimal

architecture of the generator. We also apply this training

set to train the discovered architecture. To further evalu-

ate the transferability of the architecture, we also adopt to-

tally 105,000 images in STL-10 dataset to directly train the

searched architecture without any data augmentation for a

fair comparison with previous works.

Implementation. We use Adam optimizer [21] and hinge

loss to train the shared weights of Super-GAN and pro-

vide the supervision signal for updating the architectures.

Specifically, the hyper-parameters of optimizers for train-

ing the weights of both generator and discriminator are set

to β1 = 0.0, β2 = 0.9 and learning rate is set to 0.0002.

The hyper-parameters of optimizers for optimizing both ar-

chitectures are set to β1 = 0.5, β2 = 0.9 and the learn-

ing rate is 0.0003 with the weight decay of 0.0001. When

searching, the batch size is set to 100 for both generator

and discriminator, and we search for about 2,500 iterations.

When training the derived generator, we directly adopt the

discriminator used in AutoGAN [9] for a fair comparison,

which is similar to the one in SNGAN [28]. The batch size

is set to 40 for generator and 20 for discriminator, respec-

tively. We train the network for about 500 epochs, and the

hyper-parameters of the optimizer are the same as the ones

in searching. Besides, the same as all other methods, we

randomly generate 50,000 images for calculating the Incep-

tion Score and FID to evaluate the network performance.

Computational Costs. The proposed AdversarialNAS

takes about 12 hours to converge for searching for an op-

timal architecture on two NVIDIA RTX 2080Ti GPUs. It

requires only 1 GPU day to achieve the final architecture in

a large search space (about 1038), while AutoGAN [9] re-

quires 2 GPU days in a quite small search space (about 105)
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and AGAN [38] needs even 1200 GPU days for searching in

a comparable space. Note that we directly use the released

code of AutoGAN to search on the same hardware 2080Ti

GPU and the searching time of AGAN is from their original

paper (running on NVIDIA Titan X GPU).

4.2. Compared with State­of­the­Art Approaches

In this section, we discuss the searched architecture and

compare its performance with state-of-the-art approaches

including hand-crafted and auto-discovered ones. To ex-

plore the transferability of the discovered architecture, we

directly apply it to another dataset and retrain its weights for

comparing with other methods. Besides, we further study

the scalability of the searched architecture and prove its su-

periority to other methods.

4.2.1 Results on CIFAR-10

At the end of the searching program, we directly sample

the architecture from the search space by picking the oper-

ations with maximum weights α. The optimal architecture

searched on CIFAR-10 is shown in Tab. 1 and some valu-

able observations can be received from this table.

• The searched generator prefer ‘Bilinear’ operation

for upsampling features although it has no learn-

able parameters. Besides, the ‘Bilinear Interpolation’

provides more accurate expanded features than sim-

ple ‘Nearest ’ operation, which is discovered by the

searching algorithm.

• Surprisingly, there is no dilated convolution in this ar-

chitecture. It seems that, for low-resolution images

(32 × 32), simply stacking normal convolutions may

already satisfy and achieve the optimal Effective Re-

ceptive Field (ERF) of the generator.

• We can also observe that the deeper cell tends to be

more shallow since more ‘None’ operations are pre-

ferred. The shallow cell has more multi-scale feature

fusion operation, which is represented by the discov-

ered parallel ‘Identity’ connection of convolution.

The quantitative comparisons with previous state-of-the-

art methods are given in Tab. 2. From the table, we can

see that the proposed AdversarialNAS is the first gradient-

based approach that can search in a large search space

with affordable cost. The designed search space has 1038

different architectures of GANs, which is several orders

of magnitude larger than the search space (105) of Auto-

GAN [9]. Moreover, the proposed method only takes about

1 GPU day for searching for an optimal architecture while

the AGAN [38] spends 1200 GPU days under a compara-

ble search space. In the CIFAR-10 dataset, our discovered

‘AdversarialNAS-GAN’ achieves new state-of-the-art FID

score (10.87), which is quite encouraging. It also obtains

Up-Cell Edge Operation Num Resolution

Cell-1

0 → 1 Bilinear 1 4 → 8
0 → 2 Bilinear 1 4 → 8
1 → 3 Identity 1 8 → 8
1 → 4 Conv 3× 3 256 8 → 8
2 → 3 None − −
2 → 4 Conv 3× 3 256 8 → 8
3 → 4 Identity 1 8 → 8
3 → c2 Bilinear 1 8 → 16
3 → c3 Nearest 1 8 → 32

Cell-2

0 → 1 Bilinear 1 8 → 16
0 → 2 Bilinear 1 8 → 16
1 → 3 None − −
1 → 4 Conv 3× 3 256 16 → 16
2 → 3 Identity 1 16 → 16
2 → 4 Conv 3× 3 256 16 → 16
3 → 4 Conv 3× 3 256 16 → 16
3 → c3 Nearest 1 16 → 32

Cell-3

0 → 1 Nearest 1 16 → 32
0 → 2 Bilinear 1 16 → 32
1 → 3 None − −
1 → 4 Conv 3× 3 256 32 → 32
2 → 3 Conv 3× 3 256 32 → 32
2 → 4 None − −
3 → 4 Conv 3× 3 256 32 → 32

Table 1. The searched optimal architecture of generator by the pro-

posed AdversarialNAS on CIFAR-10 with no category labels used.

The ‘Num’ indicates the number of operations.

an Inception Score (8.74± 0.07) that is highly competitive

with state-of-the-art Progressive GAN [20] (8.80 ± 0.05)

and superior to AutoGAN [9] (8.55±0.10). It is worth not-

ing that the Progressive GAN applies a well-designed pro-

gressive training strategy that is time-consuming, while we

directly train the discovered generator as vanilla GANs.

Besides, we randomly generate 50 images without

cherry-picking, which are given in the Fig. 3. These qual-

itative results demonstrate that our searched generator can

create diverse images that contain realistic appearance and

natural texture without any clue of model collapse.

Figure 3. The CIFAR-10 images generated by discovered genera-

tor in random without cherry-picking.
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Method
Search

Method

Search

Space

Search

Cost

Size

(MB)

IS↑ on

C-10

FID↓ on

C-10

IS↑ on

S-10

FID↓ on

S-10

DCGANs [32] 6.64± 0.14 − − −
Improved GAN [33] 6.86± 0.06 − − −
LRGAN [44] 7.17± 0.17 − − −
DFM [40] 7.72± 0.13 − 8.51± 0.13 −
ProbGAN [13] 7.75 24.6 8.87± 0.09 46.74
WGAN-GP, ResNet [12] Manual − − − 7.86± 0.07 − − −
Splitting GAN [11] 7.90± 0.09 − − −
MGAN [16] 8.33± 0.10 26.7 − −
Dist-GAN [37] 17.61 − 36.19
Progressive GAN [20] 8.80± 0.05 − − −
Improving MMD-GAN [39] 8.29 16.21 9.23± 0.08 37.64
SN-GAN [28] 4.3 8.22± 0.05 21.7 9.16± 0.12 40.1

AGAN [38] RL − 1200 20.1 8.29± 0.09 30.5 9.23± 0.08 52.7
Random Search [23]† Random 105 2 − 8.09 17.34 − −
AutoGAN [9] RL 105 2 4.4 8.55± 0.10 12.42 9.16± 0.12 31.01
Random Search [23]†† Random 1038 1 12.5 6.74± 0.07 38.32 7.66± 0.08 53.45
AdversarialNAS-GAN Gradient 1038 1 8.8 8.74± 0.07 10.87 9.63± 0.19 26.98

Table 2. The quantitative comparisons with state-of-the-art approaches. † indicates the results are achieved in the search space of AutoGAN

and †† denotes the results in our search space.

4.2.2 Transferability of the Architectures

Following the setting of AutoGAN [9] and AGAN [38], we

directly apply the generator searched on CIFAR-10 to STL-

10 dataset for evaluating the transferability of the architec-

ture. Specifically, we adopt totally 105,000 images with no

labels used to train this network. The number of training

epochs is the same as the one on CIFAR-10 and we also

randomly generate 50,000 images for calculating the Incep-

tion Score and FID. We alter the resolution of input noise to

6 × 6 for generating the image with the size of 48 × 48, as

the AutoGAN and AGAN do.

The quantitative results are shown in Tab. 2. We can ob-

serve that our network suffers no overfitting on the CIFAR-

10 dataset and has a superior ability of generalization.

Specifically, it achieves the state-of-the-art Inception Score

(9.63) and FID (26.98) on STL-10, which are far better than

all hand-crafted and auto-discovered methods. The qualita-

tive results are also given in Fig. 4 to prove its ability to

generate diverse and realistic images.

4.2.3 Scalability of the Architectures

In this section, we further explore the scalability of the dis-

covered architecture on the CIFAR-10 dataset.

We compare our searched generator with two repre-

sentative works, manual-designed SNGAN [28] and auto-

discovered AutoGAN [9]. We scale the parameter size of

these generators from 1 MB to 25 MB through channel di-

mension, which is a large scope. Note that, for a fair com-

parison, we use the same discriminator with a fixed size in

Figure 4. The STL-10 images randomly generated without cherry-

picking by the generator discovered on CIFAR-10.

all experiments to observe the impact of generator capac-

ity changes. The qualitative comparisons are illustrated in

Fig. 5 and Fig. 6. The x-axis in both figures denotes the

parameter size (MB) of the specific generator. The y-axis is

IS in Fig. 5 and is FID in Fig. 6. These experiments demon-

strate that our searched architecture is more stable and al-

most unaffected when scaling the model size. When the size

is extremely compressed to only 1 MB, the SNGAN and

AutoGAN all suffer from the disaster of performance degra-

dation, while the performance of ‘AdversarialNAS-GAN’ is

almost unchanged. Notably, the performance will continu-

ally drop when expanding the generator size because the

enlarged generator will not be balanced with the fixed-size

discriminator any more. However, both Fig. 5 and Fig. 6

demonstrate that our discovered architecture will not suffer

from performance drop, which means it is more robust and

has superior inclusiveness for discriminators.
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Methods
Discriminator CIFAR-10 STL-10

Architecture Type IS↑ FID↓ IS↑ FID↓

Random Search Fixed AutoGAN-D 6.74± 0.13 38.32 7.66± 0.11 53.45

SingalNAS Fixed SNGAN-D 7.72± 0.03 27.79 6.56± 0.12 84.19
SingalNAS Fixed AutoGAN-D 7.86± 0.08 24.04 8.52± 0.05 38.85
SingalNAS Fixed Super-D 7.77± 0.05 23.01 8.62± 0.03 41.57

AdversarialNAS Dynamic Searched-D 8.74± 0.07 10.87 9.63± 0.19 26.98

Table 3. We search the generative model on CIFAR-10 with different methods and retain the weight of these searched architectures to

evaluate their performance on both CIFAR-10 and STL-10.

4.3. Ablation Studies

To further evaluate the effectiveness of the proposed Ad-

versarialNAS, we conduct a series of ablation studies.

First, we conduct a random search strategy [23] to search

for the generator where we adopt the fixed-architecture dis-

criminator of AutoGAN for a fair comparison. The perfor-

mance of the searched generative model is shown in Tab. 3.

Second, we propose ‘SingalNAS’ to search the optimal gen-

erator with different types of fixed architecture of discrimi-

nator, while the weights of discriminator can still be trained.

Accordingly, the supervision signal for updating the gener-

ator architecture comes from the fixed architecture of dis-

criminator, and the discriminator architecture does not dy-

namically change according to generator during searching.

We adopt the discriminator architecture of SNGAN and Au-

toGAN, respectively. In addition, to verify the influences of

our search space, we also conduct ‘SingalNAS’ with the

fixed Super-D. Third, we use the proposed ‘Adversarial-

NAS’ to search the generator and discriminator simultane-

ously. Note that, the time consuming of both searching and

training in all experiments is constrained to be consistent.

The effectiveness of our adversarial searching strategy

can be observed from the comparisons in Tab. 3.

Figure 5. Inception Score curves of different methods.

Figure 6. FID curves of different methods.

5. Conclusion

In this work, we propose a large search space for GANs

and a novel AdversarialNAS method to search for a superior

generative model automatically. The proposed searching al-

gorithm can directly be inserted to the original procedure

of GAN training and search the architecture of generator

in a differentiable manner through an adversarial mecha-

nism, which extremely reduces the search cost. The discov-

ered network achieves state-of-the-art performance on both

CIFAR-10 and STL-10 datasets, and it also has advanced

transferability and scalability.

Furthermore, we believe the idea behind our Adversar-

ialNAS is not only specific to NAS-GAN and may benefit

other potential field where there are multiple network archi-

tectures requiring mutual influence, such as network archi-

tecture distillation, pruning and mutual learning.
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