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Abstract

In the face of the video data deluge, today’s expen-

sive clip-level classifiers are increasingly impractical. We

propose a framework for efficient action recognition in

untrimmed video that uses audio as a preview mechanism

to eliminate both short-term and long-term visual redun-

dancies. First, we devise an IMGAUD2VID framework

that hallucinates clip-level features by distilling from lighter

modalities—a single frame and its accompanying audio—

reducing short-term temporal redundancy for efficient clip-

level recognition. Second, building on IMGAUD2VID, we

further propose IMGAUD-SKIMMING, an attention-based

long short-term memory network that iteratively selects

useful moments in untrimmed videos, reducing long-term

temporal redundancy for efficient video-level recognition.

Extensive experiments on four action recognition datasets

demonstrate that our method achieves the state-of-the-art

in terms of both recognition accuracy and speed.

1. Introduction

With the growing popularity of portable image recording

devices as well as online social platforms, internet users are

generating and sharing an ever-increasing number of videos

every day. According to a recent study, it would take a per-

son over 5 million years to watch the amount of video that

will be crossing global networks each month in 2021 [1].

Therefore, it is imperative to devise systems that can recog-

nize actions and events in these videos both accurately and

efficiently. Potential benefits extend to many video appli-

cations, including video recommendation, summarization,

editing, and browsing.

Recent advances in action recognition have mostly fo-

cused on building powerful clip-level models operating on

short time windows of a few seconds [55, 61, 17, 10, 71,

16]. To recognize the action in a test video, most methods

densely apply the clip classifier and aggregate the prediction

scores of all the clips across the video. Despite encouraging
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Figure 1: Our approach learns to use audio as an efficient

preview of the accompanying visual content, at two levels.

First we replace the costly analysis of video clips with a

more efficient processing of image-audio pairs. A single

image captures most of the appearance information within

the clip, while the audio provides important dynamic infor-

mation. Then our video skimming module selects the key

moments (a subset of image-audio pairs) to perform effi-

cient video-level action recognition.

progress, this approach becomes computationally impracti-

cal in real-world scenarios where the videos are untrimmed

and span several minutes or even hours.

We contend that processing all frames or clips in a long

untrimmed video may be unnecessary and even counter-

productive. Our key insight is that there are two types of

redundancy in video, manifested in both short-term clips as

well as long-term periods. First, there is typically high tem-

poral redundancy across the entire video (Fig. 1). Many

clips capture the same event repetitively, suggesting it is

unnecessary to process all the clips. Second, there is re-

dundancy even within a clip: the visual composition within

a short time span does not change abruptly; temporally ad-

jacent frames are usually very similar, though there are tem-

poral dynamics (motion) across frames. Therefore, it can be

wasteful to process all clips and frames, especially when the

video is very long. Moreover, for many activities, the actual

actions taking place in the video can be very sparse. It is of-

ten a few important moments that are useful for recognition,

while the rest actually distract the classifier. For example,

in a typical video of surfing, a person might talk for a long
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time and prepare the equipment before he/she begins to surf.

Our idea is to use audio as an efficient video preview to

reduce both the clip-level and the video-level redundancy

in long untrimmed videos. First, instead of processing a

whole video clip, we propose an IMGAUD2VID teacher-

student distillation framework to hallucinate a video de-

scriptor (e.g., an expensive 3D CNN feature vector) from

a single video frame and its accompanying audio. Based on

our lightweight image-audio network, we further propose

a novel attention-based long short-term memory (LSTM)

network, called IMGAUD-SKIMMING, which scans through

the entire video and selects the key moments for the final

video-level recognition. Both ideas leverage audio as a fast

preview of the full video content. Our distilled image-audio

model efficiently captures information over short extents,

while the skimming module performs fast long-term mod-

eling by skipping over irrelevant and/or uninformative seg-

ments across the entire video.

Audio has ideal properties to aid efficient recognition

in long untrimmed videos: audio contains dynamics and

rich contextual temporal information [23] and, most impor-

tantly, it is much more computationally efficient to process

compared to video frames. For example, as shown in Fig. 1,

within a short clip of the action chopping wood, a single

frame includes most of the appearance information con-

tained in the clip, i.e., {person, axe, tree}, while the accom-

panying audio (the sound of the axe hitting the tree in this

case) contains useful cues of temporal dynamics. Across

the entire video, audio can also be beneficial to select the

key moments that are useful for recognition. For example,

the sound of the person talking initially can suggest that the

actual action has not started, while the sound of the elec-

tric saw may indicate that the action is taking place. Our

approach automatically learns such audio signals.

We experiment on four datasets (Kinetics-Sounds, Mini-

Sports1M, ActivityNet, UCF-101) and demonstrate the ad-

vantages of our framework. Our main contributions are

threefold. Firstly, we are the first to propose to replace

the expensive extraction of clip descriptors with an effi-

cient proxy distilled from audio. Secondly, we propose

a novel video-skimming mechanism that leverages image-

audio indexing features for efficient long-term modeling in

untrimmed videos. Thirdly, our approach pushes the enve-

lope of the trade-off between accuracy and speed favorably;

we achieve state-of-the-art results on action recognition in

untrimmed videos with few selected frames or clips.

2. Related Work

Action Recognition. Action recognition in video has

been extensively studied in the past decades. Research has

transitioned from initial methods using hand-crafted local

spatiotemporal features [37, 72, 66] to mid-level descrip-

tors [50, 30, 67], and more recently to deep video repre-

sentations learned end-to-end [55, 32, 17]. Various deep

networks have been proposed to model spatiotemporal in-

formation in videos [61, 10, 49, 71, 16]. Recent work

includes capturing long-term temporal structure via recur-

rent networks [81, 12] or ranking functions [18], pooling

across space and/or time [69, 24], modeling hierarchical

or spatiotemporal information in videos [48, 63], building

long-term temporal relations [73, 85], or boosting accu-

racy by treating audio as another (late-fused) input modal-

ity [76, 41, 70, 34].

The above work focuses on building powerful models

to improve recognition without taking the computation cost

into account, whereas our work aims to perform efficient

action recognition in long untrimmed videos. Some work

balances the accuracy-efficiency trade-off by using com-

pressed video representations [74, 54] or designing efficient

network architectures [78, 89, 11, 62, 39]. In contrast, we

propose to leverage audio to enable efficient clip-level and

video-level action recognition in long untrimmed videos.

Action Proposal and Localization. The goal of action

localization [31, 79, 53, 84] is to find the temporal start

and end of each action within a given untrimmed video

and simultaneously recognize the action class. Many ap-

proaches [8, 79, 40, 68] first use action proposals to identify

candidate action segments. While reminiscent of our au-

dio preview mechanism, the computational cost of most ac-

tion proposal methods is several orders of magnitude larger.

They generate a large number of clip proposals from the

video, and then use flow [40] or deep features [8, 79]) for

proposal selection. The selection stage is typically even

more expensive than the final classification. Instead, our

method addresses video classification, and high efficiency

is a requirement in our design.

Audio-Visual Analysis. Recent work uses audio for an ar-

ray of video understanding tasks outside of action recogni-

tion, including self-supervised representation learning [47,

5, 7, 45, 35, 59], audio-visual source separation [45, 2, 14,

20, 83, 22], localizing sounds in video frames [6, 52, 60],

and generating sounds from video [46, 87, 21, 44, 86]. Dif-

ferent from all the work above, we focus on leveraging au-

dio for efficient action recognition.

Cross-modal Distillation. Knowledge distillation [29] ad-

dresses the problem of training smaller models from larger

ones. We propose to distill the knowledge from an expen-

sive clip-based model to a lightweight image-audio based

model. Other forms of cross-modal distillation consider

transferring supervision from RGB to flow or depth [28]

or from a visual network to an audio network, or vice

versa [7, 47, 3, 19]. In the opposite direction of ours, Dis-

tInit [25] performs uni-modal distillation from a pre-trained

image model to a video model for representation learning

from unlabeled video. Instead, we perform multi-modal

distillation from a video model to an image-audio model
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for efficient clip-based action recognition.

Selection of Frames or Clips for Action Recognition.

Our approach is most related to the limited prior work

on selecting salient frames or clips for action recognition

in untrimmed videos. Whereas we use only weakly la-

beled video to train, some methods assume strong human

annotations, i.e., ground truth temporal boundaries [80]

or sequential annotation traces [4]. Several recent meth-

ods [57, 15, 77, 75] propose reinforcement learning (RL)

approaches for video frame selection. Without using guid-

ance from strong human supervision, they ease the learning

process by restricting the agent to a rigid action space [15],

guiding the selection process of the agent with a global

memory module [77], or using multiple agents to collab-

oratively perform frame selection [75].

Unlike any of the above, we introduce a video skimming

mechanism to select the key moments in videos aided by

audio. We use audio as an efficient way to preview dynamic

events for fast video-level recognition. Furthermore, our ap-

proach requires neither strong supervision nor complex RL

policy gradients, which are often unwieldy to train. SCSam-

pler [36] also leverages audio to accelerate action recog-

nition in untrimmed videos. However, they only consider

video-level redundancy by sampling acoustically or visu-

ally salient clips. In contrast, we address both clip-level and

video-level redundancy, and we jointly learn the selection

and recognition mechanisms. We include a comprehensive

experimental comparison to methods in this genre.

Video Summarization. Video summarization work also

aims to select keyframes or clips [38, 26, 42, 82], but with

the purpose of conveying the gist of the video to a human

viewer. Instead, our work aims to select features useful for

activity recognition. Beyond the difference in goal, our iter-

ative attention-based mechanism is entirely novel as a frame

selection technique.

3. Approach

Our goal is to perform accurate and efficient action

recognition in long untrimmed videos. We first formally de-

fine our problem (Sec. 3.1); then we introduce how we use

audio as a clip-level preview to hallucinate video descriptors

based on only a single static frame and its accompanying

audio segment (Sec. 3.2); finally we present how we lever-

age image-audio indexing features to obtain a video-level

preview, and learn to skip over irrelevant or uninformative

segments in untrimmed videos (Sec. 3.3).

3.1. Problem Formulation

Given a long untrimmed video V , the goal of video

classification is to classify V into a predefined set of C

classes. Because V can be very long, it is often intractable

to process all the video frames together through a single

deep network due to memory constraints. Most current

approaches [55, 32, 61, 10, 49, 62, 71, 16] first train a

clip-classifier Ω(·) to operate on a short fixed-length video

clip V ∈ R
F×3×H×W of F frames with spatial resolution

H × W , typically spanning several seconds. Then, given

a test video of arbitrary length, these methods densely ap-

ply the clip-classifier to N clips {V1,V2, . . . ,VN} which

are taken at a fixed hop size across the entire video. The

final video-level prediction is obtained by aggregating the

clip-level predictions of all N clips.

As discussed in Sec. 1, such paradigms for video recog-

nition are highly inefficient at two levels: (1) clip-level—

within each short clip V, temporally close frames are vi-

sually similar, and (2) video-level—across all the clips in

V , often only a few clips contain the key moments for rec-

ognizing the action. Our approach addresses both levels of

redundancy via novel uses of audio.

Each video clip V is accompanied by an audio segment

A. The starting frame I among the F frames within the

short clip V usually contains most of the appearance cues

already, while the audio segment A contains rich contextual

temporal information (recall the wood cutting example in

Fig. 1). Our idea is to replace the powerful but expensive

clip-level classifier Ω(·) that takes F frames as input with

an efficient image-audio classifier Φ(·) that only takes the

starting frame I and its accompanying audio segment A as

input, while preserving the clip-level information as much

as possible. Namely, we seek to learn Φ(·) such that

Ω(Vj) ≈ Φ(Ij ,Aj), j ∈ {1, 2, . . . , N}, (1)

for a given pre-trained clip-classifier Ω(·). In Sec. 3.2, we

design an IMGAUD2VID distillation framework to achieve

this goal. Through this step, we replace the processing

of high-dimensional video clips {V1,V2, . . . ,VN} with

a lightweight model analyzing compact image-audio pairs

{(I1,A1), (I2,A2), . . . , (IN ,AN )}.

Next, building on our efficient image-audio classi-

fier Φ(·), to address video-level redundancy we de-

sign an attention-based LSTM network called IMGAUD-

SKIMMING. Instead of classifying every image-audio pair

using Φ(·) and aggregating all their prediction results,

our IMGAUD-SKIMMING framework iteratively selects the

most useful image-audio pairs. Namely, our method effi-

ciently selects a small subset of T image-audio pairs from

the entire set of N pairs in the video (with T ≪ N ) and

only aggregates the predictions from these selected pairs.

We present our video skimming mechanism in Sec. 3.3.

3.2. Clip­Level Preview

We present our approach to perform efficient clip-level

recognition and our IMGAUD2VID distillation network ar-

chitecture. As shown in Fig. 2, the clip-based model takes a

video clip V of F frames as input and based on that video

volume generates a clip descriptor zV of dimensionality D.
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Figure 2: IMGAUD2VID distillation framework: The

teacher model is a video-clip classifier, and the student

model consists of a visual stream that takes the starting

frame of the clip as input and an audio stream that takes

the audio spectrogram as input. By processing only a single

frame and the clip’s audio, we get an estimate of what the

expensive video descriptor would be for the full clip.

A fully-connected layer is used to make predictions among

the C classes in Kinetics. For the student model, we use a

two-stream network: the image stream takes the first frame

I of the clip as input and extracts an image descriptor zI;

the audio stream takes the audio spectrogram A as input

and extracts an audio feature vector zA. We concatenate

zI and zA to generate an image-audio feature vector of di-

mensionality D using a fusion network Ψ(·) that consists of

two fully-connected layers. A final fully-connected layer is

used to produce a C-class prediction like the teacher model.

The teacher model Ω(·) returns a softmax distribution

over C classification labels. These predictions are used as

soft targets for training weights associated with the student

network Φ(·) using the following objective:

LKL = −
∑

{(V,I,A)}

∑

c
Ωc(V) log Φc(I,A), (2)

where Ωc(V) and Φc(I,A) are the softmax scores of class

c for the teacher model and the student model, respectively.

We further impose an L1 loss on the clip descriptor zV and

the image-audio feature to regularize the learning process:

L1 =
∑

{(zV,zI,zA)}
‖zV −Ψ(zI, zA)‖1. (3)

The final learning objective for IMGAUD2VID distillation

is a combination of these two losses:

LDist. = L1 + λLKL, (4)

where λ is the weight for the KL divergence loss. The train-

ing is done over the image and audio student networks (pro-

ducing representations zI and zA, respectively) and the fu-

sion model Ψ(·) with respect to a fixed teacher video-clip

model. The teacher model we use is a R(2+1)D-18 [62]

video-clip classifier, which is pre-trained on Kinetics [33].

Critically, processing the audio for a clip is substantially

faster than processing all its frames, making audio an effi-

cient preview. See Sec. 4.1 for cost comparisons. After dis-

tillation, we fine-tune the student model on the target dataset

to perform efficient clip-level action recognition.

3.3. Video­Level Preview

IMGAUD2VID distills knowledge from a powerful clip-

based model to an efficient image-audio based model. Next,

we introduce how we leverage the distilled image-audio net-

work to perform efficient video-level recognition. Recall

that for long untrimmed video, processing only a subset of

clips is desirable both for speed and accuracy, i.e., to ignore

irrelevant content.

We design IMGAUD-SKIMMING, an attention-based

LSTM network (Fig. 3), which interacts with the sequence

of image-audio pairs {(I1,A1), (I2,A2), . . . , (IN ,AN )},

whose features are denoted as {zI1, zI2, . . . , zIN} and

{zA1 , zA2 , . . . , zAN}, respectively. At the t-th time step, the

LSTM cell takes the indexed image feature z̃It and the in-

dexed audio feature z̃At , as well as the previous hidden state

ht−1 and the previous cell output ct−1 as input, and pro-

duces the current hidden state ht and the cell output ct:

ht, ct = LSTM
(

Ψ(z̃It , z̃
A
t ), ht−1, ct−1

)

, (5)

where Ψ(·) is the same fusion network used in IM-

GAUD2VID with the same parameters. To fetch the indexed

features z̃It and z̃At from the feature sequences, an index-

ing operation is required. This operation is typically non-

differentiable. Instead of relying on approximating policy

gradients as in prior work [15, 77, 75], we propose to deploy

a differentiable soft indexing mechanism, detailed below.

We predict an image query vector qI
t and an audio query

vector qA
t from the hidden state ht at each time step through

two prediction networks QueryI(·) and QueryA(·). The

query vectors, qI
t and qA

t , are used to query the respective

sequences of image indexing features {zI1, zI2, . . . , zIN} and

audio indexing features {zA1 , zA2 , . . . , zAN}. The querying

operation is intended to predict which part of the untrimmed

video is more useful for recognition of the action in place

and decide where to “look at” and “listen to” next. It is

motivated by attention mechanisms [27, 58, 65, 64], but we

adapt this scheme to the problem of selecting useful mo-

ments for action recognition in untrimmed video.

Figure 4 illustrates our querying mechanism. First, we

use one fully-connected layer Key(·) to transform indexing

features z to indexing keys k. Then, we get an attention

score k⊤q√
d

for each indexing key in the sequence, where d

is the dimensionality of the key vector. A Softmax layer

normalizes the attention scores and generates an attention

weight vector w by:

w = Softmax

( [k1k2 . . .kN ]⊤ · q√
d

)

, (6)
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feature for the current time step as well as the previous hidden state and cell output as input, and produces the current hidden

state and cell output. The hidden state for the current time step is used to make predictions about the next moment to focus

on in the untrimmed video through the querying operation illustrated in Fig. 4. The average-pooled IMGAUD2VID features

of all selected time steps is used to make the final prediction of the action in the video.
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Figure 4: Attention-based frame selection mechanism.

where kj = Key(zj), j ∈ {1, 2, . . . , N}.

At each time step t (we omit t for simplicity if de-

ducible), one could obtain the frame index for the next time

step by argmax(w). However, this operation is not dif-

ferentiable. Instead of directly using the image and audio

features of the selected frame index, we use the weighted

average of the sequence of indexing features to generate an

aggregated feature vector z̃It+1 = IndexI(wt) and z̃At+1 =
IndexA(wt) as input to the fusion network Ψ(·), where

IndexI(w) :=
∑N

j=1 wjz
I
j ,

IndexA(w) :=
∑N

j=1 wjz
A
j , wj∈{1,··· ,N} ∈ R+.

(7)

The querying operations are performed independently

on the visual and audio modalities, and produce distinct

weight vectors wI
t and wA

t to find the visually-useful

and acoustically-useful moments, respectively. These two

weight vectors may give importance to different moments

in the sequence. We fuse this information by dynamically

adjusting how much to rely on each modality at each step.

To this end, we predict two modality scores sIt and sAt , from

the hidden state ht through a two-way classification layer.

sIt and sAt (sIt , s
A
t ∈ [0, 1], sIt +sAt = 1) indicate how much

the system decides to rely on the visual modality versus the

audio modality, respectively, at time step t. Then, the image

and audio feature vectors for the next time step are finally

obtained by aggregating the feature vectors predicted both

visually and acoustically, as follows:

z̃It+1 = sIt · IndexI(wI
t) + sAt · IndexI(wA

t ),

z̃At+1 = sIt · IndexA(wI
t) + sAt · IndexA(wA

t ).
(8)

Motivated by iterative attention [43], we repeat the above

procedure for T steps, and average the image-audio features

obtained. Namely,

m = 1
T

∑T

j=1Ψ(z̃Ij , z̃
A
j ). (9)

m is a feature summary of the useful moments selected by

IMGAUD-SKIMMING. A final fully-connected layer fol-

lowed by Softmax(·) takes m as input and makes predic-

tions of action categories. The network is then trained with

cross-entropy loss and video-level action label annotations.

While we optimize the IMGAUD-SKIMMING network

for a fixed number of T steps during training, at inference

time we can stop early at any step depending on the com-

putation budget. Moreover, instead of using all indexing

features, we can also use a subset of indexing features to ac-

celerate inference with the help of feature interpolation. See

Sec. 4.2 for details about the efficiency and accuracy trade-

off when using sparse indexing features and early stopping.

4. Experiments

Using a total of 4 datasets, we evaluate our approach for

accurate and efficient clip-level action recognition (Sec. 4.1)

and video-level action recognition (Sec. 4.2).
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Datasets: Our distillation network is trained on Kinet-

ics [33], and we evaluate on four other datasets: Kinetics-

Sounds [5], UCF-101 [56], ActivityNet [9], and Mini-

Sports1M [32]. Kinetics-Sounds and UCF-101 contain only

short trimmed videos, so we only test on them for clip-level

recognition; ActivityNet contains videos of various lengths,

so it is used as our main testbed for both clip-level and

video-level recognition; Mini-Sports1M contains only long

untrimmed videos, and we use it for evaluation of video-

level recognition. See Supp. for details of these datasets.

Implementation Details: We implement in PyTorch. For

IMGAUD2VID, the R(2+1)D-18 [62] teacher model takes

16 frames of size 112×112 as input. The student model uses

a ResNet-18 network for both the visual and audio streams,

which take the starting RGB frame of size 112× 112 and a

1-channel audio-spectrogram of size 101× 40 (1 sec. audio

segment) as input, respectively. We use λ = 100 for the

distillation loss in Equation 4. For IMGAUD-SKIMMING,

we use a one-layer LSTM with 1,024 hidden units and a

dimension of 512 for the indexing key vector. We use T =
10 time steps during training. See Supp. for details.

4.1. Clip­level Action Recognition

First, we directly evaluate the performance of the image-

audio network distilled from the video model. We fine-tune

on each of the three datasets for clip-level recognition and

compare against the following baselines:

• Clip-based Model: The R(2+1)D-18 teacher model.

• Image-based Model (distilled/undistilled): A ResNet-

18 frame-based model. The undistilled model is pre-

trained on ImageNet, and the distilled model is similar

to our method except that the distillation is performed

using only the visual stream.

• Audio-based Model (distilled/undistilled): The same

as the image-based model except here we only use the

audio stream for recognition and distillation. The model

is pre-trained on ImageNet to accelerate convergence.

• Image-Audio Model (undistilled): The same image-

audio network as our method but without distillation.

For each baseline, we use the corresponding model as

initialization and fine-tune on the same target dataset for

clip-based action recognition. Note that our purpose here is

not to compete on recognition accuracy using R(2+1)D-18

(or any other expensive video features), but rather to demon-

strate our distilled image-audio features can approximate its

recognition accuracy much more efficiently.

Figure 5 compares the accuracy vs. efficiency for our ap-

proach and the baselines. Our distilled image-audio net-

work achieves accuracy comparable to that of the clip-based

teacher model, but at a much reduced computational cost.

Moreover, the models based on image-only or audio-only

distillation produce lower accuracy. This shows that the

image or audio alone is not sufficient to hallucinate the
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Figure 5: Clip-level action recognition on Kinetics-Sounds,

UCF-101, and ActivityNet. We compare the recognition

accuracy and the computational cost of our model against a

series of baselines. Our IMGAUD2VID approach strikes a

favorable balance between accuracy and efficiency.

video descriptor, but when combined they provide suffi-

ciently complementary information to reduce the accuracy

gap with the true (expensive) video-clip descriptor.

To understand when audio helps the most, we compute

the L1 distance of the hallucinated video descriptor to the

ground-truth video descriptor by our IMGAUD2VID distil-

lation and the image-based distillation. The top clips for

which we best match the ground-truth tend to be dynamic

scenes that have informative audio information, e.g., grind-

ing meat, jumpstyle dancing, playing cymbals, playing bag-

pipes, wrestling, and welding. See Supp. for examples.

4.2. Untrimmed Video Action Recognition

Having demonstrated the clip-level performance of our

distilled image-audio network, we now examine the im-

pact of the IMGAUD-SKIMMING module on video-level

recognition. We evaluate on ActivityNet [9] and Mini-

Sports1M [32], which contain long untrimmed videos.

Efficiency & accuracy trade-off. Before showing the re-

sults, we introduce how we use feature interpolation to fur-

ther enhance the efficiency of our system. Apart from using

features from all N time stamps as described in Sec. 3.3, we

experiment with using sparse indexing features extracted

from a subset of image-audio pairs, i.e., subsampling along

the time axis. Motivated by the locally-smooth action fea-

ture space [13] and based on our empirical observation that

neighboring video features can be linearly approximated

well, we synthesize the missing image and audio features

by computationally cheap linear interpolation to generate

the full feature sequences of length N . Figure 6a shows the

recognition results when using different subsampling fac-

tors. We can see that recognition remains robust to even

aggressive subsampling of the indexing features.

Next we investigate early stopping as an additional

means to reduce the computational cost. Instead of repeat-

ing the skimming procedure for 10 times as in the train-

ing stage, we can choose to stop early after a few recurrent
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RANDOM UNIFORM FRONT CENTER END SCSAMPLER [36] DENSE LSTM NON-RECURRENT Ours (sparse / dense)

ActivityNet 63.7 64.8 39.0 59.0 38.1 69.1 66.3 63.5 67.5 70.3 / 71.1

Mini-Sports1M 35.4 35.6 17.1 29.7 17.4 38.4 37.3 34.1 38.0 39.2 / 39.9

Table 1: Video-level action recognition accuracy (in %) on ActivityNet (# classes: 200) and Mini-Sports1M (# classes: 487).

Kinetics-Sounds and UCF-101 consist of only short trimmed videos, so they are not applicable here. Our method consistently

outperforms all baseline methods. Ours (sparse) uses only about 1/5 the computation cost of the last four baselines, while

achieving large accuracy gains. See Table 2 for more computation cost comparisons.
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Figure 6: Trade-off between efficiency and accuracy when

using sparse indexing features or early stopping on Activi-

tyNet. Uniform denotes the UNIFORM baseline in Table 1.

steps. Figure 6b shows the results when stopping at differ-

ent time steps. We can see that the first three steps yield

sufficient cues for recognition. This suggests that we can

stop around the third step with negligible accuracy loss. See

Supp. for a similar observation on Mini-Sports1M.

Results. We compare our approach to the following base-

lines and several existing methods [80, 15, 77, 75, 36]:

• RANDOM: We randomly sample 10 out of the N time

stamps, and average the predictions of the image-audio

pairs from these selected time stamps using the distilled

image-audio network.

• UNIFORM: The same as the previous baseline except that

we perform uniform sampling.

• FRONT / CENTER / END: The same as before except that

the first / center / last 10 time stamps are used.

• DENSE: We average the prediction scores from all N

image-audio pairs as the video-level prediction.

• SCSAMPLER [36]: We use the idea of [36] and select

the 10 image-audio pairs that yield the largest confidence

scores from the image-audio classifier. We average their

predictions to produce the video-level prediction.

• LSTM: This is a one-layer LSTM as in our model but

it is trained and tested using all N image-audio features

as input sequentially to predict the action label from the

hidden state of the last time step.

• NON-RECURRENT: The same as our method except that

we only use a single query operation without the recur-

rent iterations. We directly obtain the 10 time stamps

from the indexes of the 10 largest attention weights.

Table 1 shows the results. Our method outperforms all

the baselines. The low accuracy of RANDOM / UNIFORM

/ FRONT / CENTER / END indicates the importance of the
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FastForward, Fan et al.

Figure 7: Comparisons with other frame selection meth-

ods on ActivityNet. We directly quote the numbers re-

ported in AdaFrame [77] and MultiAgent [75] for all the

baseline methods and compare the mAP against the aver-

age GFLOPs per test video. See text for details.

context-aware selection of useful moments for action recog-

nition. Using sparse indexing features (with a subsampling

factor of 5), our method outperforms DENSE (the status

quo of how most current methods obtain video-level predic-

tions) by a large margin using only about 1/5 of its computa-

tion cost. Our method is also better and faster than SCSAM-

PLER [36], despite their advantage of densely evaluating

prediction results on all clips. LSTM performs comparably

to RANDOM. We suspect that it fails to aggregate the in-

formation of all time stamps when the video gets very long.

NON-RECURRENT is an ablated version of our method, and

it shows that the design of recursive prediction of the “next”

interesting moment in our method is essential. Both LSTM

and NON-RECURRENT support our contribution as a whole

framework, i.e., iterative attention based selection.

Comparison to state of the art frame selection methods.

Fig. 7 compares our approach to state-of-the-art frame se-

lection methods given the same computational budget. The

results of the baselines are quoted from AdaFrame [77] and

MultiAgent [75], where they both evaluate on ActivityNet.

For fair comparison, we test a variant of our method with

only the visual modality, and we use the same ResNet-101

features for recognition. Our framework also has the flex-

ibility of using cheaper features for indexing (frame selec-

tion). See Supp. for details about the single-modality ar-

chitecture of our IMGAUD-SKIMMING network and how

we use different features for indexing and recognition. We
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Figure 8: Qualitative examples of 5 uniformly selected mo-

ments and the first 5 visually useful moments selected by

our method for two videos of the actions throwing discus

and rafting in ActivityNet. The frames selected by our

method are more indicative of the corresponding action.

use three different combinations denoted as Ours (“index-

ing features” | “recognition features”) in Fig. 7, includ-

ing using MobileNetv2 [51] features for efficient indexing

similar to [77]. Moreover, to gauge the impact of our IM-

GAUD2VID step, we also report the results obtained by us-

ing image-audio features for recognition.

Our method consistently outperforms all existing meth-

ods and achieves the best balance between speed and accu-

racy when using the same recognition features, suggesting

the accuracy boost can be attributed to our novel differen-

tiable indexing mechanism. Furthermore, with the aid of

IMGAUD2VID distillation, we achieve much higher accu-

racy with much less computation cost; this scheme com-

bines the efficiency of our image-audio clip-level recog-

nition with the speedup and accuracy enabled by our

IMGAUD-SKIMMING network for video-level recognition.

Comparison to the state of the art on ActivityNet. Hav-

ing compared our skimming approach to existing methods

for frame selection, now we compare to state-of-the-art ac-

tivity recognition models that forgo frame selection. For

fair comparison, we use the ResNet-152 model provided

by [75]. This model is pre-trained on ImageNet and fine-

tuned on ActivityNet with TSN-style [69] training. As

shown in Table 2a, our method consistently outperforms all

the previous state-of-the-art methods. To show that the ben-

efits of our method extend even to more powerful but expen-

sive features, we use R(2+1)D-152 features for recognition

in Table 2b. When using R(2+1)D-152 features for both in-

dexing and recognition, we outperform the dense approach

while being 10× faster. We can still achieve comparable

performance to the dense approach if using our image-audio

features for indexing, while being 20× faster.

4.3. Qualitative Analysis

Figure 8 shows frames selected by our method using the

visual modality versus those obtained by uniform sampling.

Backbone Pre-trained Accuracy mAP

IDT [66] – ImageNet 64.7 68.7

C3D [61] – Sports1M 65.8 67.7

P3D [49] ResNet-152 ImageNet 75.1 78.9

RRA [88] ResNet-152 ImageNet 78.8 83.4

MARL [75] ResNet-152 ImageNet 79.8 83.8

Ours ResNet-152 ImageNet 80.3 84.2

(a) Comparison to prior work with ResNet-152 features.

Indexing Recognition mAP TFLOPs

Dense – R(2+1)D-152 88.9 25.9

Uniform – R(2+1)D-152 87.2 1.26

Ours Image-Audio R(2+1)D-152 88.5 1.31

Ours R(2+1)D-152 R(2+1)D-152 89.9 2.64

(b) Accuracy vs. Efficiency with R(2+1)D-152 features.

Table 2: ActivityNet comparison to SOTA methods.

The frames chosen by our method are much more informa-

tive of the action in the video compared to those uniformly

sampled. See Supp. video1 for examples of acoustically

useful moments selected by our method.

We can inspect per-class performance to understand

what are the classes that benefit the most from our skim-

ming mechanism compared to uniform sampling. The top

classes in descending order of accuracy gain are: cleaning

sink, beer pong, gargling mouthwash, painting furniture,

archery, laying tile, and triple jump—classes where the ac-

tion is sporadic and is often exhibited over a short segment

of the video. See Supp. for more analysis.

5. Conclusion

We presented an approach to achieve both accurate and

efficient action recognition in long untrimmed videos by

leveraging audio as a previewing tool. Our IMGAUD2VID

distillation framework replaces the expensive clip-based

model by a lightweight image-audio based model, enabling

efficient clip-level action recognition. Moreover, we pro-

pose an IMGAUD-SKIMMING network that iteratively se-

lects useful image-audio pairs, enabling efficient video-

level action recognition. Our work strikes a favorable bal-

ance between speed and accuracy, and we achieve state-of-

the-art results for video action recognition using few se-

lected frames or clips. In future work, we plan to investi-

gate salient spatial region selection along with our temporal

frame selection, which can potentially lead to finer granu-

larity of action understanding with improved efficiency, as

well as extensions to allow the multi-label setting.

Acknowledgements: Thanks to Bruno Korbar, Zuxuan
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