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Abstract

Self-supervised representation learning targets to learn
convnet-based image representations from unlabeled data.
Inspired by the success of NLP methods in this area, in this
work we propose a self-supervised approach based on spa-
tially dense image descriptions that encode discrete visual
concepts, here called visual words. To build such discrete
representations, we quantize the feature maps of a first pre-
trained self-supervised convnet, over a k-means based vo-
cabulary. Then, as a self-supervised task, we train another
convnet to predict the histogram of visual words of an image
(i.e., its Bag-of-Words representation) given as input a per-
turbed version of that image. The proposed task forces the
convnet to learn perturbation-invariant and context-aware
image features, useful for downstream image understand-
ing tasks. We extensively evaluate our method and demon-
strate very strong empirical results, e.g., our pre-trained
self-supervised representations transfer better on detection
task and similarly on classification over classes “unseen’
during pre-training, when compared to the supervised case.

This also shows that the process of image discretization
into visual words can provide the basis for very powerful self-
supervised approaches in the image domain, thus allowing
further connections to be made to related methods from the
NLP domain that have been extremely successful so far.'

>

1. Introduction

The goal of our work is to learn convolutional neural
network [37] (convnet) based representations without hu-
man supervision. One promising approach towards this
goal is the so-called self-supervised representation learning
[14, 20, 35, 45,49, 72], which advocates to train the convnet
with an annotation-free pretext task defined using only the
information available within an image, e.g., predicting the
relative location of two image patches [ 14]. Pre-training on
such a pretext task enables the convnet to learn representa-

'We will provide the implementation code and pre-trained models at:
https://github.com/valeoai/bownet

tions that are useful for other vision tasks of actual interest,
such as image classification or object detection. Moreover,
recent work has shown that self-supervision can be benefi-
cial to many other learning problems [10, 18, 28, 29, 58, 71],
such as few-shot [ 18, 58] and semi-supervised [28, 71] learn-
ing, or training generative adversarial networks [10].

A question that still remains open is what type of self-
supervision we should use. Among the variety of the pro-
posed learning tasks, many follow the general paradigm of
first perturbing an image or removing some part/aspect of
the image and then training the convnet to reconstruct the
original image or the dropped part (e.g., color channel, image
region). Popular examples are Denoising AutoEncoders [62],
Image Colorization [35, 72], Split-Brain architectures [73],
and Image In-painting [49]. However, predicting such low-
level image information can be a difficult task to solve, and
does not necessarily force the convnet to acquire image un-
derstanding “skills”, which is what we ultimately want to
achieve. As a result, such reconstruction-based methods have
not been very successful so far. In contrast, in Natural Lan-
guage Processing (NLP), similar self-supervised methods,
such as predicting the missing words of a sentence (e.g.,
BERT [12] and ROBERTA [39]), have proven much more
successful at learning strong language representations. The
difference of those NLP methods with their computer vi-
sion counterparts is that (1) words undoubtedly represent
more high-level semantic concepts than raw image pixels.
Also, (2) words are defined in a discrete space while images
in a continuous one where, without changing the depicted
content, small pixel perturbations can significantly alter the
target of a reconstruction task.

Spatially dense image quantization into visual words.
Inspired by the above NLP methods, in this work we pro-
pose for self-supervised learning in the image domain to use
tasks that aim at predicting/reconstructing targets that en-
code discrete visual concepts as opposed, e.g., to (low-level)
pixel information. To build such discrete targets, we first
take an existing self-supervised method (e.g., rotation pre-
diction [20]) and use it to train an initial convnet, which can
learn feature representations that capture mid-to-higher-level
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Figure 1: Learning representations through prediction of Bags of Visual Words. We first train a feature extractor <f>() for a self-
supervised task, e.g. rotation prediction. Then we compute a visual vocabulary from feature vectors computed from $ feature maps and
compute the corresponding image level BoW vectors. These BoW vectors will serve as ground truth for the next stage. In the second stage
we perturb images with g(+) and send them as input to a second network ®(-). The BoW prediction module €2(-) processes ®(-) feature
maps to predict BoW vectors corresponding to the original non-perturbed images. Both ®(-) and 2(-) are trained jointly with cross-entropy

loss. The feature extractor ®(-) is further used for downstream tasks.

image features. Then, for each image, we densely quantize
its convnet-based feature map using a k-means-based vocab-
ulary.” This results in a spatially dense image description
based on discrete codes (i.e., k-means cluster assignments),
called visual words hereafter. Such a discrete image repre-
sentation opens the door to easily adapting self-supervised
methods from the NLP community to the image domain. For
instance, in this case, one could very well train a BERT-like
architecture that, given as input a subset of the patches in
an image, predicts the visual words of the missing patches.
Although self-supervised methods of this type are definitely
something that we plan to explore as future work, in this
paper we aim to go one step further and develop (based on
the above discrete visual representations) self-supervised
tasks that furthermore allow using standard convolutional
architectures that are commonly used (and optimized) for
the image domain we are interested in. But how should we
go about defining such a self-supervised task?

Learning by “reconstructing’ bags of visual words. To
this end, we take inspiration from the so-called Bag-of-
Words [67] (BoW) model in computer vision and propose
using as self-supervised task one where we wish (to train
a convnet) to predict the histogram of visual words of an
image (also known as its BoW representation) when given
as input a perturbed version of that image. This type of BoW
representations have been very powerful image models, and
as such have been extensively used in the past in several
computer vision problems (including, e.g., image retrieval,
object recognition, and object detection). Interestingly, there
is recent empirical evidence that even modern state-of-the-art
convnets for image classification exhibit similar behavior to

2Here, by dense quantization, we refer to the fact that each spatial
location of the feature map is quantized separately.

BoW models [7]. By using the above BoW prediction task in
the context of self-supervised learning, one important benefit
is that it is no longer required to enhance a typical convnet
architecture for images (e.g., ResNet-50) with extra network
components, such as multiple stacks of attention modules
as in [01] or PixelCNN-like autoregressors as in [46], that
can make the overall architecture computationally intensive.
Furthermore, due to its simplicity, it can be easily incorpo-
rated into other types of learning problems (e.g., few-shot
learning, semi-supervised learning, or unsupervised domain
adaptation), thus allowing to further improve performance
for these problems which is an additional advantage.

Concerning the perturbed image (that is used as input to
the BoW prediction task), it is generated by applying a set
of (commonly used) augmentation techniques such as ran-
dom cropping, color jittering, or geometric transformations.
Therefore, to solve the task of “reconstructing” the BoW
histogram of the original image, the convnet must learn to
detect visual cues that remain constant (i.e., invariant) to
the applied perturbations. Moreover, since the perturbed
image can often be only a small part of the original one
(due to the cropping transformation), the convnet is also
forced to infer the context of the missing input, i.e., the vi-
sual words of the missing image regions. This encourages
learning of perturbation-invariant and context-aware image
features, which, as such, are more likely to encode higher-
level semantic visual concepts. Overall, as we show in the
experimental results, this has as a result that the proposed
self-supervised method learns representations that transfer
significantly better to downstream vision tasks than the repre-
sentations of the initial convnet. As a last point, we note that
the above process of defining a convnet-based BoW model
and then training another convnet to predict it, can be applied
iteratively, which can lead to even better representations.
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Contributions. To summarize, the contributions of our
work are: (1) We propose the use of discrete visual word
representations for self-supervised learning in the image
domain. (2) In this context, we propose a novel method
for self-supervised representation learning (Fig. 1). Rather
than predicting/reconstructing image-pixel-level informa-
tion, it uses a first self-supervised pre-trained convnet to
densely discretize an image to a set of visual words and
then trains a second convnet to predict a reduced Bag-
of-Words representation of the image given as input per-
turbed versions of it. (3) We extensively evaluate our method
and we demonstrate that it manages to learn high-quality
convnet-based image representations, which are significantly
superior to those of the first convnet. Furthermore, our
ImageNet-trained self-supervised ResNet-50 representations,
when compared to the ImageNet-trained supervised ones,
achieve better VOCO7+ 12 detection performance and com-
parable Places205 classification accuracy, i.e., better gen-
eralization on the detection task and similar generalization
on the Places205 classes which are “unseen” during self-
supervised training. (4) The simple design of our method
allows someone to easily use it on many other learning
problems where self-supervision has been shown to be bene-
ficial.

2. Approach

Our goal is to learn in an unsupervised way a feature
extractor or convnet model ®(-) parameterized by 6 that,
given an image x, produces a “good” image representation
®(x). By “good” we mean a representation that would be
useful for other vision tasks of interest, e.g. image classifica-
tion, object detection. To this end, we assume that we have
available a large set of unlabeled images X on which we
will train our model. We also assume that we have available
an initial self-supervised pre-trained convnet é() We can
easily learn such a model by employing one of the available
self-supervised tasks. Here, except otherwise stated, we use
RotNet [20] (which is based on the self-supervised task of
image rotation prediction) as it is easy to implement and, at
the same time, has been shown to achieve strong results in
self-supervised representation learning [34].

To achieve our goal, we leverage the initial model ®(-)
to create spatially dense descriptions based on visual words.
Then, we aggregate those descriptions into BoW represen-
tations and train the model ®(-) to “reconstruct” the BoW
of an image x given as input a perturbed version of it. Note
that the model <i>() remains frozen during the training of
the new model ®(-). Also, after training ®(-), we can set

®(-) + ®(-) and repeat the training process.
2.1. Building spatially dense discrete descriptions

Given a training image x, the first step for our method
is to create a spatially dense visual words-based descrip-

tion ¢(x) using the pre-trained convnet ®(-). Specifically,
let &(x) be a feature map (with ¢ channels and i x 4 spa-
tial size) produced by ®(-) for input x, and ®*(x) the ¢é-
dimensional feature vector at the location v € {1,--- ,U}
of this feature map, where U = h - . To generate the de-
scription ¢(x) = [¢!(x),...,qY(x)], we densely quantize
®(x) using a predefined vocabulary V = [vy,..., vg] of
¢-dimensional visual word embeddings, where K is the vo-
cabulary size. In detail, for each position u, we assign the
corresponding feature vector é“(x) to its closest (in terms of
squared Euclidean distance) visual word embedding ¢*(x):

q%x%:mgmgH¢%x)fvm§ @)
The vocabulary V is learned by applying the k-means algo-
rithm with K clusters to a set of feature maps extracted from
the dataset X, i.e., by optimizing the following objective:

| o )
min 7 [ min 9500 - vel3]. @

where the visual word embedding vy, is the centroid of the
k-th cluster.

2.2. Generating Bag-of-Words representations

Having generated the discrete description ¢(x) of image
x, the next step is to create its BoW representation, denoted
by y(x). This is a K-dimensional vector whose k-th element
y*(x) either encodes the number of times the k-th visual
word appears in image X,

v = ) 1fg(x) =k, 3)

u=1,...,U
or indicates if the k-th visual word appears in image X,

y*(x) = max 1[g%(x) = k], 4)
u=1,...,.U
where 1[-] is the indicator operator.” Furthermore, to convert
y(x) into a probability distribution over visual words, we L1 -

k
normalize it, i.e., we set y’“(x) = % The resulting

y(x) can thus be perceived as a soft categorical label of x
for the K visual words. Note that, although K might be very
large, the BoW representation y(x) is actually quite sparse
as it has at most U non-zero elements.

2.3. Learning to “reconstruct” BowW

Based on the above BoW representation, we propose
the following self-supervised task: given an image x, we
first apply to it a perturbation operator g(-), to get the per-
turbed image X = ¢(x), and then train the model to pre-
dict/“reconstruct” the BoW representation y(x) of the origi-
nal unperturbed image x from x. This, in turn, means that we

3In our experiments we use the binary version (4) [ ] for ImageNet
and the histogram version (3) for CIFAR-100 and MinilmageNet.
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want to predict the BoW representation y(x) from the feature
vector ®(X) (where hereafter we assume that ®(x) € R,
i.e., the feature representation produced by model ®(-) is
c-dimensional).* To this end, we define a prediction layer
Q(-) that gets ®(X) as input and outputs a K -dimensional
softmax distribution over the K visual words of the BoW
representation. More precisely, the prediction layer is imple-
mented with a linear-plus-softmax layer:

QF (®(x)) = softmaxy, [’V(I’(?E)TV_Vm]mE[L...,K]» (5)
where QF(®(x)) is the softmax probability for the k-th vi-
sual word, and W = [wy, - - - , W] are the K c-dimensional
weight vectors (one per visual word) of the linear layer. No-
tice that, instead of directly applying the weights vectors
W to the feature vector ®(x), we use their Ly-normalized
versions Wi, = wy,/||wg||2, and apply a unique learnable
magnitude +y for all the weight vectors (7 is a scalar value).
The reason for this reparametrization of the linear layer is be-
cause the distribution of visual words in the dataset (i.e., how
often, or in how many dataset-images, a visual word appears)
tends to be unbalanced and, so, without such a reparametriza-
tion the network would attempt to make the magnitude of
each weight vector proportional to the frequency of its cor-
responding visual word (thus basically always favoring the
most frequently occurring words). In our experiments, the
above reparametrization has led to significant improvements
in the quality of the learned representations.

Self-supervised training objective. The training loss that
we minimize for learning the convnet model ®(-) is the
expected cross-entropy loss between the predicted softmax
distribution Q(®(x)) and the BoW distribution y(x):

LW, X) = B_|loss(Q®(%)).()|. (6

where loss(a, 8) = — S, 8% log a¥ is the cross-entropy
loss for the discrete distributions a = (a*) and 8 = (3*), 6
are the learnable parameters of ®(-), (W, 7) are the learnable
parameters of €1(-), and X = g(x).

Image perturbations. The perturbation operator g(-) that
we use consists of (a) color jittering (i.e., random changes
of the brightness, contrast, saturation, and hue of an image)
(b) converting the image to grayscale with probability p, (c)
random image cropping, (d) scale or aspect ratio distortions,
and (e) horizontal flips. The role served by such an operator
is two-fold: to solve the BoW “reconstruction” task after
such aggressive perturbations, the convnet must learn image
features that (1) are robust w.r.t. the applied perturbations

4For instance, in the case of ResNet50, ®(x) corresponds to the 2048-
dimensional feature vector (i.e., ¢ = 2048) produced from the global
average pooling layer that follows the last block of residual layers.

and at the same time (2) allow predicting the visual words of
the original image, even for image regions that are not visible
to the convnet due to cropping. To further push towards this
direction, we also incorporate the CutMix [69] augmentation
technique into our self-supervised method. According to
CutMix, given two images X4 = g(x4) and X5 = g(xp),
we generate a new synthetic one xg by replacing a patch of
the first image x4 with one from the second image x . The
position and size of the patch is randomly sampled from a
uniform distribution. The BoW representation that is used
as a reconstruction target for this synthetic image is the
convex combination of the BoW targets of the two images,
Ay(xa)+(1=N)y(xp), where 1— X is the patch-over-image
area ratio. Hence, with CutMix we force the convnet to infer
both (a) the visual words that belong on the patch that was
removed from the first image x 4, and (b) the visual words
that belong on the image area that surrounds the patch that
was copied from second image X .

Model initialization and iterated training. We note that
the model ®(-) is used only for building BoW represen-
tations and not for initializing the parameters of the ®(-)
model, i.e., ®(-) is randomly initialized before training. Also,
as already mentioned, we can apply our self-supervised
method iteratively, using each time the previously trained
model é() for creating the BoW representation. We also
note, however, that this is not necessary for learning “good”
representations; the model learned from the first iteration
already achieves very strong results. As a result, only a few
more iterations (e.g., one or two) might be applied after that.

3. Related Work

Bag-of-Words. BoW is a popular method for text doc-
ument representation, which has been adopted and heav-
ily used in computer vision [11, 56]. For visual content,
BoW conveniently encapsulates image statistics from hun-
dreds of local features [40] into vector representations. Bow
have been studied extensively and leveraged in numerous
tasks, while multiple extensions [32, 50] and theoretical
interpretations [60] have been proposed. Due to its versatil-
ity, BoW has been applied to pre-trained convnets as well
to compute image representations from intermediate fea-
ture maps [22, 44, 68], however few works have dealt with
the integration of BoW in the training pipeline of a con-
vnet. Among them, NetVLAD [2] mimics the BoW-derived
VLAD descriptor by learning a visual vocabulary along with
the other layers and soft quantizing activations over this vo-
cabulary. Our method differs from previous approaches in
training with self-supervision and in predicting directly the
BoW vector bypassing quantization and aggregation.

Self-supervision. Self-supervised learning is a recent
paradigm aiming to learn representations from data by lever-
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aging supervision from various intrinsic data signals without
any explicit manual annotations and human supervision. The
representations learned with self-supervision are then fur-
ther fine-tuned on a downstream task with limited human
annotations available. Numerous creative mechanisms for
squeezing out information from data in this manner have
been proposed in the past few years: predicting the colors

of image [35, 72], the relative position of shuffled image
patches [14, 45], the correct order of a set of shuffled video
frames [43], the correct association between an image and a

sound [3], and many other methods [38, 64, 65, 75].

Learning to reconstruct. Multiple self-supervised meth-
ods are formulated as reconstruction problems [1, 21, 33,

, 49, 51, 62, 72, 73, 75]. The information to be recon-
structed can be provided by a different view [21, 51, 75] or
sensor [16]. When no such complementary information is
available, the current data can be perturbed and the task of
the model is now to reconstruct the original input. Denoising
an input image back to its original state [62], inpainting an
image patch that has been removed from a scene [49] , recon-
structing images that have been overlayed [ 1] are some of the
many methods of reconstruction from perturbation. While
such approaches display impressive results for the task hand,
it remains unclear how much structure they can encapsulate
beyond the reconstruction of visual patterns [13]. Similar
ideas have been initially proposed in NLP where missing
words [41] or sentences [33] must be reconstructed. Another
line of research employs perturbations for guiding the model
towards assigning the same label to both perturbed and orig-
inal content [5, 15]. Our method also deals with perturbed
inputs, however instead of reconstructing the input, we train
it to reconstruct the BoW vector of the clean input. This en-
ables learning non-trivial correlations between local visual
patterns in the image.

VQ-VAE. These works [47, 53] explore the learning of
spatially-dense discrete representations with unsupervised
generative models with goal of image generation. Instead,
we focus on exploiting discrete image representations in the
context of self-supervised image representation learning.

3.1. Discussion

Relation to clustering-based representation learning
methods [4, 8, 9]. Our work presents similarities to the
Deep(er) Clustering approach [8, 9]. The latter alternates be-
tween k-means clustering the images based on their convnet
features and using the cluster assignments as image labels
for training the convnet. In our case however, we use the
k-means clustering for creating BoW representations instead
of global image labels. The former leads to richer (more com-
plete) image descriptions compared to the latter as it encodes
multiple local visual concepts extracted in a spatially dense
way. For example, a cluster id is not sufficient to describe

an image with multiple objects, like the one in Figure 1,
while a BoW is better suited for that. This fundamental dif-
ference leads to a profoundly different self-supervised task.
Specifically, in our case the convnet is forced to: (1) focus on
more localized visual patterns and (2) learn better contextual
reasoning (since it must predict the visual words of missing
image regions).

Relation to contrastive self-supervised learning meth-
ods [5, 15, 25, 42]. Our method bears similarities to recent
works exploiting contrastive losses for learning representa-
tions that are invariant under strong data augmentation or
perturbations [5, 15, 25, 42]. These methods deal with im-
age recognition and the same arguments mentioned above
w.r.t. [8, 9] hold. Our contribution departs from this line of
approaches allowing our method to be applied to a wider set
of visual tasks. For instance, in autonomous driving, most
urban images are similar and differ only by few details, e.g.
a pedestrian or a car, making image recognition under strong
perturbation less feasible. In such cases, leveraging local
statistics as done in our method appears as a more appropri-
ate self-supervised task for learning representations.

4. Experiments and results

We evaluate our method (BoWNet) on CIFAR-100, Mini-
ImageNet [63], ImageNet [55], Places205 [74], VOCO7 [17]
classification, and VOC07+12 detection datasets.

4.1. Analysis on CIFAR-100 and MinilmageNet
4.1.1 Implementation details

CIFAR-100. CIFAR-100 consists of 50k training images
with 32 x 32 resolution. We train self-supervised WRN-28-
10 [70] convnets using those training images. Specifically,
we first train a WRN-28-10 based RotNet [20] and build
based on that BoW using the feature maps of its last/3rd
residual block. Then, we train the BoWNet using those BoW
representations. We use a K = 2048 vocabulary size. The
prediction head of RotNet consists of an extra residual block
(instead of just a linear layer); in our experiments this led the
feature extractor to learn better representations (we followed
this design choice of RotNet for all the experiments in our
paper; we provide more implementation details in §C.1).

We train the convnets using stochastic gradient descent
(SGD) for 30 epochs of 2000 batch iterations and batch size
128. The learning rate is initialized with 0.1 and multiplied
by 0.1 after 12 and 24 epochs. The weight decay is 5e — 4.

MinilmageNet. Since MinilmageNet is used for evaluat-
ing few-shot methods, it has three different splits of classes,
train, validation, and test with 64, 16, and 20 classes respec-
tively. Each class has 600 images with 84 x 84 resolution.
We train WRN-28-4 convnets on the 64 x 600 images that
correspond to the training classes following the same training
protocol as for CIFAR-100.
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4.1.2 Evaluation protocols.

CIFAR-100. To evaluate the learned representations we use
two protocols. (1) The first is to freeze the learned represen-
tations (which in case of WRN-28-10 is a 640-dimensional
vector) and train on top of them a 100-way linear classifier
for the CIFAR-100 classification task. We use the linear clas-
sifier accuracy as an evaluation metric. The linear classifier
is trained with SGD for 60 epochs using a learning rate of
0.1 that is multiplied by 0.3 every 10 epochs. The weight
decay is 0.001. (2) For the second protocol we use a few-
shot episodic setting [63] similar to what is proposed on [18].
Specifically, we choose 20 classes from CIFAR-100 and run
with them multiple (2000) episodes of 5-way few-shot clas-
sification tasks. Essentially, at each episode we randomly
sample 5 classes from the 20 ones and then n training ex-
amples and m = 15 test examples per class (both randomly
sampled from the test images of CIFAR-100). For n we use
1, 5, 10, and 50 examples (1-shot, 5-shot, 10-shot, and 50-
shot settings respectively). To classify the m examples we
use a cosine distance Prototypical-Networks [57] classifier
that is applied on top of the frozen representations. We report
the mean accuracy over the 2000 episodes. The purpose of
this metric is to analyze the ability of the representations
to be used for learning with few training examples. More
details about this protocol are provided in §C.3.

MiniIlmageNet. We use the same two protocols as in
CIFAR-100. (1) The first is to train 64-way linear classifiers
on the task of recognizing the 64 training classes of Mini-
ImageNet. Here, we use the same hyper-parameters as for
CIFAR-100. (2) The second protocol is to use the frozen
representations for episodic few-shot classification [63]. The
main difference with CIFAR-100 is that here we evaluate
using the test classes of MinilmageNet, which were not part
of the training set of the self-supervised models. Therefore,
with this evaluation we analyze the ability of the representa-
tions to be used for learning with few training examples and
for “unseen" classes during training. For comparison with
this protocol we provide results of the supervised Cosine
Classifier (CC) few-shot model [19, 52].

4.1.3 Results

In Tables | and 2 we report results for our self-supervised
method on the CIFAR-100 and MinilmageNet datasets re-
spectively. By comparing BoWNet with RotNet (that we
used for building BoW), we observe that BoWNet improves
all the evaluation metrics by at least 10 percentage points,
which is a very large performance improvement. Applying
BoWNet iteratively (entries BoWNet x2 and BoWNet x3)
further improves the results (except the 1-shot accuracy).
Also, BoWNet outperforms by a large margin the CIFAR-
100 linear classification accuracy of the recently proposed
AMDIM [5] method (see Table 1), which has been shown to

Method |n=1 5 10 50 | Lincar
Supervised [70] |- - - -] 795
RotNet 583 748 783 819 60.3
Deeper Clustering 659 846 879 908 65.4
AMDIM [5] . . . . 70.2
BoWNet 69.1 863 892 924 71.5
BoWNet x2 68.5 87.1 904 93.8 74.1
BoWNet x3 684 872 904 939 74.5
BoWNet w/o cutmix | 68.5 85.8 88.8 922 69.7
Sp-BoWNet 67.7 858 89.2 923 71.3

Table 1: CIFAR-100 linear classifier and few-shot results with
WRN-28-10. For few-shot we use n=1, 5, 10, or 50 examples per
class. AMDIM uses a higher-capacity custom made architecture.

Classes Novel Base
Method n =1 5 10 50 Linear

Supervised CC[19] | 568 741 781 827 | 737

RotNet 40.8 569 61.8 68.1 523
RelLoc [14] 402 571 62.6 688 | 504
Deeper Clustering 478 66.6 72.1 784 60.3
BoWNet 487 679 740 799 | 65.0
BoWNet x2 49.1 676 73,6 799 | 656
BoWNet x3 48,6 689 753 825 | 66.0

Table 2: MinilmageNet linear classifier and few-shot results
with WRN-28-4.

Classes Novel Base
Method n =1 5 10 50 Linear
RotNet 40.8 569 61.8 68.1 52.3
RellLoc 402 57.1 62.6 68.8 50.4

RotNet — BoWNet 487 679 740 799 65.0
RelLoc — BoWNet 51.8 70.7 759 81.3 65.2
Random — BoWNet | 424 62.0 689 78.1 61.5

Table 3: MinilmageNet linear classifier and few-shot results
with WRN-28-4. Impact of base convnet.

achieve very strong results. Finally, the performance of the
BoWNet representations on the MinilmageNet novel classes
for the 10-shot and especially the 50-shot setting are very
close to the that of the supervised CC model (see Table 2).
Impact of CutMix augmentation. In Table 1 we report
CIFAR-100 results without CutMix, which confirms that
employing CutMix does indeed provide some further im-
provement on the quality of the learned representations.
Spatial-Pyramid BoW [36]. By reducing the visual
words descriptions to BoW histograms, we remove spatial
information from the visual word representations. To avoid
this, one could divide the image into several spatial grids of
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different resolutions, and then extract a BoW representation
from each resulting image patch. In Table 1 we provide re-
sults for such a case (entry Sp-BoWNet). Specifically, we
used 2 levels for the spatial pyramid, one with 2 x 2 and
one with 1 x 1 resolution, giving in total 5 BoW. Although
one would expect otherwise, we observe that adding more
spatial information to the BoW via Spatial-Pyramids-BoW,
does not improve the quality of the learned representations.

Comparison with Deeper Clustering (DC) [9]. To com-
pare our method against DC we implemented it using the
same convnet backbone and the same pre-trained RotNet as
for BoWNet. To be sure that we do not disadvantage DC
in any way, we optimized the number of clusters (512), the
training routine’, and applied the same image augmenta-
tions (including cutmix) as in BoWNet. We also boosted
DC by combining it with rotation prediction and applied
our re-parametrization of the linear prediction layer (see
Equation 5), which however did not make any difference in
the DC case. We observe in Tables 1 and 2 that, although
improving upon RotNet, DC has finally a significantly lower
performance compared to BoWNet, e.g., several absolute
percentage points lower linear classification accuracy, which
illustrates the advantage of using BoW as targets for self-
supervision instead of the single cluster id of an image.

Impact of base convnet. In Table 3 we provide Minilm-
ageNet results using RellLoc [14] as the initial convnet with
which we build BoW (base convnet). RelLoc — BoWNet
achieves equally strong or better results than in the RotNet —
BoWNet case. We also conducted (preliminary) experiments
with a randomly initialized base convnet (entry Random —
BoWNet). In this case, to learn good representations, (a) we
used in total 4 training rounds, (b) for the 1st round we built
BoW from the 1st residual block of the randomly initialized
WRN-28-4 and applied PCA analysis before k-means, (c) for
the 2nd round we built BoW from 2nd residual block, and
(d) for the remaining 2 rounds we built BoW from 3rd/last
residual block. We observe that with a random base convnet
the performance of BoWNet drops. However, BoWNet still
is significantly better than RotNet and RelLoc.

We provide additional experimental results in §B.1.

4.2. Self-supervised training on ImageNet

Here we evaluate BoWNet by training it on the ImageNet
dataset that consists of more than 1M/ images coming from
1000 different classes. We use the ResNet-50 (v1) [27] ar-
chitecture with 224 x 224 input images for implementing
the RotNet and BoWNet models. The BoWNet models are
trained with 2 training rounds. For each round we use SGD,
140 training epochs, and a learning rate 0.03 that is multi-

SSpecifically, we use 30 training epoch (the clusters are updated every 3
epochs), and a constant learning rate of 0.1 (same as in [9]). Each epoch
consists of 2000 batch iterations with batch size 512. For simplicity we
used one clustering level instead of the two hierarchical levels in [9].

Method ‘ conv4d convb
ImageNet Supervised [24] ‘ 80.4 88.0
RotNet™ 64.6 62.8
Jigsaw [24] 64.5 57.2
Colorization [24] 55.6 52.3
BoWNet conv4 73.6 79.3
BoWNet conv5 74.3 78.4

Table 4: VOCO07 image classification results for ResNet-50 Lin-
ear SVMs. *: our implementation.

ImageNet Places205
Method conv* pool5 | convx poolb
Random [24] | 137 - | 166 -
Supervised methods
ImageNet [24] 75.5 - 51.5 -
ImageNet” 76.0 76.2 52.8 52.0
Places205 [24] 58.2 - 62.3 -
Prior self-supervised methods
RotNet* 52.5 40.6 45.0 39.4
Jigsaw [24] 45.7 - 41.2 -
Colorization [24] 39.6 - 31.3 -
Concurrent work
MoCo [25] - 60.6 - -
PIRL [42] 63.6 - 49.8 -
BowNet conv4 62.5 62.1 50.9 51.1
BowNet conv5 60.5 60.2 50.1 49.5

Table 5: ResNet-50 top-1 center-crop linear classification accu-
racy on ImageNet and Places205. pool5 indicates the accuracy
for the 2048-dimensional features produced by the global average
pooling layer after conv5. conv indicates the accuracy of the
best (w.r.t. accuracy) conv. layer of ResNet-50 (for the full results
see §B.3) Before applying classifiers on those conv. layers, we
resize their feature maps to around 9% dimensions (in the same
way as in [24]). Entries in gray are advantaged by either using 10-
crops evaluation (method with 7) or using two ResNet-50 feature
extractor networks (method with ¥). *: our implementation.

plied by 0.1 after 60, 100, and 130 epochs. The batch size
is 256 and the weight decay is 1le — 4. To build BoW we
use a vocabulary of K = 20000 visual words created from
the 3rd or 4th residual blocks (aka conv4 and conv5 lay-
ers respectively) of RotNet (for an experimental analysis of
those choices see §B.2. We named those two models BowNet
conv4 and BowNet conv5 respectively.

We evaluate the quality of the learned representations on
ImageNet classification, Places205 classification, VOCO7
classification, and VOCO07+12 detection tasks.
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Pre-training AP?  APT®  ApY

Supervised™ ‘ 80.8 585 532
Jigsaw' [24] 751 529 489
PIRL [42] 80.7 59.7 54.0
MoCo [25] 814 612 552

BoWNet conv4 | 803 604 550
BoWNet conv5 | 81.3  61.1 558

Table 6: Object detection with Faster R-CNN fine-tuned on
VOC trainval07+12. The detection AP scores (AP, AP7,
AP are computed on test 07. All models use ResNet-50 back-
bone (R50-C4) pre-trained with self-supervision on ImageNet.
BowNet scores are averaged over 3 trials. *: our implementation
fine-tuned in the same conditions as BoWNet. T: BatchNorm layers
are frozen and used as affine transformation layers.

VOCO07 classification results. For this evaluation we use
the publicly available code for benchmarking self-supervised
methods provided in [24]. Goyal et al. [24] implement the
guidelines of [48] and trains linear SVMs [6] on top of the
frozen learned representations using the VOCO7 train+val
splits for training and the VOCO7 test split for testing. We
consider the features of the 3rd (layer conv4) and 4th
(layer conv5) residual blocks and provide results in Table 4.
Again, BoWNet improves the performance of the already
strong RotNet by several points. Furthermore, BoWNet
outperforms all prior methods. Interestingly, conv4-based
BoW leads to better classification results for the conv5
layer of BoWNet, and conv5-based BoW leads to better
classification results for the conv4 layer of BoWNet.

ImageNet and Places205 classification results. Here we
evaluate on the 1000-way ImageNet and 205-way Places205
classification tasks using linear classifiers on frozen feature
representations. To that end, we follow the guidelines of [24]:
for the ImageNet (Places205) dataset we train linear classi-
fiers using Nesterov SGD for 28 (14) training epochs and a
learning rate of 0.01 that is multiplied by 0.1 after 10 (5) and
20 (10) epochs. The batch size is 256 and the weight decay is
le—4. We report results in Table 5. We observe that BoWNet
outperforms all prior self-supervised methods by significant
margin. Furthermore, the accuracy gap on Places205 be-
tween our ImageNet-trained BoWNet representations and
the ImageNet-trained supervised representations is only 0.9
points in poo15. This demonstrates that our self-supervised
representations have almost the same generalization ability
to the “unseen” (during training) Places205 classes as the
supervised ones. We also compare against the MoCo [25]
and PIRL [42] methods that were recently uploaded on arXiv
and essentially are concurrent work. BoWNet outperforms
MoCo on ImageNet. When compared to PIRL, BoWNet has
around 1 point higher Places205 accuracy but 1 point lower
ImageNet accuracy.

VOC detection results. Here we evaluate the utility of our
self-supervised method on a more complex downstream task:
object detection. We follow the setup considered in prior
works [24, 25, 42]: Faster R-CNN [54] with a ResNet50
backbone [26] (R50-C4 in Detectron2 [66]). We fine-tune
the pre-trained BoWNet on t rainval07+12 and evaluate
on test07. We use the same training schedule as [24, 42]
adapted for 8 GPUs and freeze the first two convolutional
blocks. In detail, we use mini-batches of 2 images per GPU
and fine-tune for 25K steps with the learning rate dropped by
0.1 after 17K steps. We set the base learning to 0.02 with a
linear warmup [23] of 1, 000 steps. We fine-tune BatchNorm
layers [30] (synchronizing across GPUs) and use BatchNorm
on newly added layers specific to this task.°

We compare BoWNet conv4 and BoWNet conv5
against both classic and recent self-supervised methods and
report results in Table 6. Both BoWNet variants exhibit
strong performance. Differently from previous benchmarks,
the conv5 is clearly better than conv4 on all metrics. This
might be due to the fact that here we fine-tune multiple
layers and depth plays a more significant role. Interest-
ingly, BoWNet outperforms the supervised ImageNet pre-
trained model, which is fine-tuned in the same conditions as
BoWNet. So, our self-supervised representations generalize
better to the VOC detection task than the supervised ones.
This result is in line with concurrent works [25, 42] and un-
derpins the utility of such methods in efficiently squeezing
out information from data without using labels.

5. Conclusion

In this work we propose BoWNet, a novel method for
representation learning that employs spatial dense descrip-
tions based on visual words as targets for self-supervised
training. The labels for training BoWNet are provided by a
standard self-supervised model. The reconstruction of the
BoW vectors from perturbed images along with the dis-
cretization of the output space into visual words, enable a
more discriminative learning of the local visual patterns in an
image. Interestingly, although BoWNet is trained over fea-
tures learned without label supervision, not only it achieves
strong performances, but it also manages to outperform the
initial model. This finding along with the discretization of
the feature space (into visual words) open additional per-
spectives and bridges to NLP self-supervised methods that
have greatly benefited from this type of approaches in the
past few years.

Acknowledgements. We would like to thank Gabriel de
Marmiesse for his invaluable support during the experimental im-
plementation and analysis of this work.

%He et al. [25] point out that features produced by self-supervised train-
ing can display different distributions compared to supervised ones and
suggest using feature normalization to alleviate this problem.
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