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Abstract

Self-supervised representation learning targets to learn

convnet-based image representations from unlabeled data.

Inspired by the success of NLP methods in this area, in this

work we propose a self-supervised approach based on spa-

tially dense image descriptions that encode discrete visual

concepts, here called visual words. To build such discrete

representations, we quantize the feature maps of a first pre-

trained self-supervised convnet, over a k-means based vo-

cabulary. Then, as a self-supervised task, we train another

convnet to predict the histogram of visual words of an image

(i.e., its Bag-of-Words representation) given as input a per-

turbed version of that image. The proposed task forces the

convnet to learn perturbation-invariant and context-aware

image features, useful for downstream image understand-

ing tasks. We extensively evaluate our method and demon-

strate very strong empirical results, e.g., our pre-trained

self-supervised representations transfer better on detection

task and similarly on classification over classes “unseen”

during pre-training, when compared to the supervised case.

This also shows that the process of image discretization

into visual words can provide the basis for very powerful self-

supervised approaches in the image domain, thus allowing

further connections to be made to related methods from the

NLP domain that have been extremely successful so far.1

1. Introduction

The goal of our work is to learn convolutional neural

network [37] (convnet) based representations without hu-

man supervision. One promising approach towards this

goal is the so-called self-supervised representation learning

[14, 20, 35, 45, 49, 72], which advocates to train the convnet

with an annotation-free pretext task defined using only the

information available within an image, e.g., predicting the

relative location of two image patches [14]. Pre-training on

such a pretext task enables the convnet to learn representa-

1We will provide the implementation code and pre-trained models at:

https://github.com/valeoai/bownet

tions that are useful for other vision tasks of actual interest,

such as image classification or object detection. Moreover,

recent work has shown that self-supervision can be benefi-

cial to many other learning problems [10, 18, 28, 29, 58, 71],

such as few-shot [18, 58] and semi-supervised [28, 71] learn-

ing, or training generative adversarial networks [10].

A question that still remains open is what type of self-

supervision we should use. Among the variety of the pro-

posed learning tasks, many follow the general paradigm of

first perturbing an image or removing some part/aspect of

the image and then training the convnet to reconstruct the

original image or the dropped part (e.g., color channel, image

region). Popular examples are Denoising AutoEncoders [62],

Image Colorization [35, 72], Split-Brain architectures [73],

and Image In-painting [49]. However, predicting such low-

level image information can be a difficult task to solve, and

does not necessarily force the convnet to acquire image un-

derstanding “skills”, which is what we ultimately want to

achieve. As a result, such reconstruction-based methods have

not been very successful so far. In contrast, in Natural Lan-

guage Processing (NLP), similar self-supervised methods,

such as predicting the missing words of a sentence (e.g.,

BERT [12] and ROBERTA [39]), have proven much more

successful at learning strong language representations. The

difference of those NLP methods with their computer vi-

sion counterparts is that (1) words undoubtedly represent

more high-level semantic concepts than raw image pixels.

Also, (2) words are defined in a discrete space while images

in a continuous one where, without changing the depicted

content, small pixel perturbations can significantly alter the

target of a reconstruction task.

Spatially dense image quantization into visual words.

Inspired by the above NLP methods, in this work we pro-

pose for self-supervised learning in the image domain to use

tasks that aim at predicting/reconstructing targets that en-

code discrete visual concepts as opposed, e.g., to (low-level)

pixel information. To build such discrete targets, we first

take an existing self-supervised method (e.g., rotation pre-

diction [20]) and use it to train an initial convnet, which can

learn feature representations that capture mid-to-higher-level
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Figure 1: Learning representations through prediction of Bags of Visual Words. We first train a feature extractor Φ̂(·) for a self-

supervised task, e.g. rotation prediction. Then we compute a visual vocabulary from feature vectors computed from Φ̂ feature maps and

compute the corresponding image level BoW vectors. These BoW vectors will serve as ground truth for the next stage. In the second stage

we perturb images with g(·) and send them as input to a second network Φ(·). The BoW prediction module Ω(·) processes Φ(·) feature

maps to predict BoW vectors corresponding to the original non-perturbed images. Both Φ(·) and Ω(·) are trained jointly with cross-entropy

loss. The feature extractor Φ(·) is further used for downstream tasks.

image features. Then, for each image, we densely quantize

its convnet-based feature map using a k-means-based vocab-

ulary.2 This results in a spatially dense image description

based on discrete codes (i.e., k-means cluster assignments),

called visual words hereafter. Such a discrete image repre-

sentation opens the door to easily adapting self-supervised

methods from the NLP community to the image domain. For

instance, in this case, one could very well train a BERT-like

architecture that, given as input a subset of the patches in

an image, predicts the visual words of the missing patches.

Although self-supervised methods of this type are definitely

something that we plan to explore as future work, in this

paper we aim to go one step further and develop (based on

the above discrete visual representations) self-supervised

tasks that furthermore allow using standard convolutional

architectures that are commonly used (and optimized) for

the image domain we are interested in. But how should we

go about defining such a self-supervised task?

Learning by “reconstructing” bags of visual words. To

this end, we take inspiration from the so-called Bag-of-

Words [67] (BoW) model in computer vision and propose

using as self-supervised task one where we wish (to train

a convnet) to predict the histogram of visual words of an

image (also known as its BoW representation) when given

as input a perturbed version of that image. This type of BoW

representations have been very powerful image models, and

as such have been extensively used in the past in several

computer vision problems (including, e.g., image retrieval,

object recognition, and object detection). Interestingly, there

is recent empirical evidence that even modern state-of-the-art

convnets for image classification exhibit similar behavior to

2Here, by dense quantization, we refer to the fact that each spatial

location of the feature map is quantized separately.

BoW models [7]. By using the above BoW prediction task in

the context of self-supervised learning, one important benefit

is that it is no longer required to enhance a typical convnet

architecture for images (e.g., ResNet-50) with extra network

components, such as multiple stacks of attention modules

as in [61] or PixelCNN-like autoregressors as in [46], that

can make the overall architecture computationally intensive.

Furthermore, due to its simplicity, it can be easily incorpo-

rated into other types of learning problems (e.g., few-shot

learning, semi-supervised learning, or unsupervised domain

adaptation), thus allowing to further improve performance

for these problems which is an additional advantage.

Concerning the perturbed image (that is used as input to

the BoW prediction task), it is generated by applying a set

of (commonly used) augmentation techniques such as ran-

dom cropping, color jittering, or geometric transformations.

Therefore, to solve the task of “reconstructing” the BoW

histogram of the original image, the convnet must learn to

detect visual cues that remain constant (i.e., invariant) to

the applied perturbations. Moreover, since the perturbed

image can often be only a small part of the original one

(due to the cropping transformation), the convnet is also

forced to infer the context of the missing input, i.e., the vi-

sual words of the missing image regions. This encourages

learning of perturbation-invariant and context-aware image

features, which, as such, are more likely to encode higher-

level semantic visual concepts. Overall, as we show in the

experimental results, this has as a result that the proposed

self-supervised method learns representations that transfer

significantly better to downstream vision tasks than the repre-

sentations of the initial convnet. As a last point, we note that

the above process of defining a convnet-based BoW model

and then training another convnet to predict it, can be applied

iteratively, which can lead to even better representations.
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Contributions. To summarize, the contributions of our

work are: (1) We propose the use of discrete visual word

representations for self-supervised learning in the image

domain. (2) In this context, we propose a novel method

for self-supervised representation learning (Fig. 1). Rather

than predicting/reconstructing image-pixel-level informa-

tion, it uses a first self-supervised pre-trained convnet to

densely discretize an image to a set of visual words and

then trains a second convnet to predict a reduced Bag-

of-Words representation of the image given as input per-

turbed versions of it. (3) We extensively evaluate our method

and we demonstrate that it manages to learn high-quality

convnet-based image representations, which are significantly

superior to those of the first convnet. Furthermore, our

ImageNet-trained self-supervised ResNet-50 representations,

when compared to the ImageNet-trained supervised ones,

achieve better VOC07+12 detection performance and com-

parable Places205 classification accuracy, i.e., better gen-

eralization on the detection task and similar generalization

on the Places205 classes which are “unseen” during self-

supervised training. (4) The simple design of our method

allows someone to easily use it on many other learning

problems where self-supervision has been shown to be bene-

ficial.

2. Approach

Our goal is to learn in an unsupervised way a feature

extractor or convnet model Φ(·) parameterized by θ that,

given an image x, produces a “good” image representation

Φ(x). By “good” we mean a representation that would be

useful for other vision tasks of interest, e.g. image classifica-

tion, object detection. To this end, we assume that we have

available a large set of unlabeled images X on which we

will train our model. We also assume that we have available

an initial self-supervised pre-trained convnet Φ̂(·). We can

easily learn such a model by employing one of the available

self-supervised tasks. Here, except otherwise stated, we use

RotNet [20] (which is based on the self-supervised task of

image rotation prediction) as it is easy to implement and, at

the same time, has been shown to achieve strong results in

self-supervised representation learning [34].

To achieve our goal, we leverage the initial model Φ̂(·)
to create spatially dense descriptions based on visual words.

Then, we aggregate those descriptions into BoW represen-

tations and train the model Φ(·) to “reconstruct” the BoW

of an image x given as input a perturbed version of it. Note

that the model Φ̂(·) remains frozen during the training of

the new model Φ(·). Also, after training Φ(·), we can set

Φ̂(·)← Φ(·) and repeat the training process.

2.1. Building spatially dense discrete descriptions

Given a training image x, the first step for our method

is to create a spatially dense visual words-based descrip-

tion q(x) using the pre-trained convnet Φ̂(·). Specifically,

let Φ̂(x) be a feature map (with ĉ channels and ĥ× ŵ spa-

tial size) produced by Φ̂(·) for input x, and Φ̂u(x) the ĉ-
dimensional feature vector at the location u ∈ {1, · · · , U}

of this feature map, where U = ĥ · ŵ. To generate the de-

scription q(x) = [q1(x), . . . , qU (x)], we densely quantize

Φ̂(x) using a predefined vocabulary V = [v1, ...,vK ] of

ĉ-dimensional visual word embeddings, where K is the vo-

cabulary size. In detail, for each position u, we assign the

corresponding feature vector Φ̂u(x) to its closest (in terms of

squared Euclidean distance) visual word embedding qu(x):

qu(x) = argmin
k=1...K

‖Φ̂u(x)− vk‖
2
2. (1)

The vocabulary V is learned by applying the k-means algo-

rithm with K clusters to a set of feature maps extracted from

the dataset X , i.e., by optimizing the following objective:

min
V

∑

x∈X

∑

u

[

min
k=1,...,K

‖Φ̂u
p(x)− vk‖

2
2

]

, (2)

where the visual word embedding vk is the centroid of the

k-th cluster.

2.2. Generating Bag­of­Words representations

Having generated the discrete description q(x) of image

x, the next step is to create its BoW representation, denoted

by y(x). This is a K-dimensional vector whose k-th element

yk(x) either encodes the number of times the k-th visual

word appears in image x,

yk(x) =
∑

u=1,...,U

1[qu(x) = k], (3)

or indicates if the k-th visual word appears in image x,

yk(x) = max
u=1,...,U

1[qu(x) = k], (4)

where 1[·] is the indicator operator.3 Furthermore, to convert

y(x) into a probability distribution over visual words, we L1-

normalize it, i.e., we set yk(x) = yk(x)∑
m

ym(x) . The resulting

y(x) can thus be perceived as a soft categorical label of x

for the K visual words. Note that, although K might be very

large, the BoW representation y(x) is actually quite sparse

as it has at most U non-zero elements.

2.3. Learning to “reconstruct” BoW

Based on the above BoW representation, we propose

the following self-supervised task: given an image x, we

first apply to it a perturbation operator g(·), to get the per-

turbed image x̃ = g(x), and then train the model to pre-

dict/“reconstruct” the BoW representation y(x) of the origi-

nal unperturbed image x from x̃. This, in turn, means that we

3In our experiments we use the binary version (4) [31, 56] for ImageNet

and the histogram version (3) for CIFAR-100 and MiniImageNet.
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want to predict the BoW representation y(x) from the feature

vector Φ(x̃) (where hereafter we assume that Φ(x̃) ∈ R
c,

i.e., the feature representation produced by model Φ(·) is

c-dimensional).4 To this end, we define a prediction layer

Ω(·) that gets Φ(x̃) as input and outputs a K-dimensional

softmax distribution over the K visual words of the BoW

representation. More precisely, the prediction layer is imple-

mented with a linear-plus-softmax layer:

Ωk(Φ(x̃)) = softmaxk
[

γΦ(x̃)T w̄m

]

m∈[1,··· ,K]
, (5)

where Ωk(Φ(x̃)) is the softmax probability for the k-th vi-

sual word, and W = [w1, · · · ,wK ] are the K c-dimensional

weight vectors (one per visual word) of the linear layer. No-

tice that, instead of directly applying the weights vectors

W to the feature vector Φ(x̃), we use their L2-normalized

versions w̄k = wk/‖wk‖2, and apply a unique learnable

magnitude γ for all the weight vectors (γ is a scalar value).

The reason for this reparametrization of the linear layer is be-

cause the distribution of visual words in the dataset (i.e., how

often, or in how many dataset-images, a visual word appears)

tends to be unbalanced and, so, without such a reparametriza-

tion the network would attempt to make the magnitude of

each weight vector proportional to the frequency of its cor-

responding visual word (thus basically always favoring the

most frequently occurring words). In our experiments, the

above reparametrization has led to significant improvements

in the quality of the learned representations.

Self-supervised training objective. The training loss that

we minimize for learning the convnet model Φ(·) is the

expected cross-entropy loss between the predicted softmax

distribution Ω(Φ(x̃)) and the BoW distribution y(x):

L(θ,W, γ;X) = E
x∼X

[

loss(Ω(Φ
(

x̃)), y(x)
)

]

, (6)

where loss(α, β) = −
∑K

k=1 β
k logαk is the cross-entropy

loss for the discrete distributions α = (αk) and β = (βk), θ
are the learnable parameters of Φ(·), (W,γ) are the learnable

parameters of Ω(·), and x̃ = g(x).

Image perturbations. The perturbation operator g(·) that

we use consists of (a) color jittering (i.e., random changes

of the brightness, contrast, saturation, and hue of an image)

(b) converting the image to grayscale with probability p, (c)

random image cropping, (d) scale or aspect ratio distortions,

and (e) horizontal flips. The role served by such an operator

is two-fold: to solve the BoW “reconstruction” task after

such aggressive perturbations, the convnet must learn image

features that (1) are robust w.r.t. the applied perturbations

4For instance, in the case of ResNet50, Φ(x) corresponds to the 2048-

dimensional feature vector (i.e., c = 2048) produced from the global

average pooling layer that follows the last block of residual layers.

and at the same time (2) allow predicting the visual words of

the original image, even for image regions that are not visible

to the convnet due to cropping. To further push towards this

direction, we also incorporate the CutMix [69] augmentation

technique into our self-supervised method. According to

CutMix, given two images x̃A = g(xA) and x̃B = g(xB),
we generate a new synthetic one x̃S by replacing a patch of

the first image x̃A with one from the second image x̃B . The

position and size of the patch is randomly sampled from a

uniform distribution. The BoW representation that is used

as a reconstruction target for this synthetic image is the

convex combination of the BoW targets of the two images,

λy(xA)+(1−λ)y(xB), where 1−λ is the patch-over-image

area ratio. Hence, with CutMix we force the convnet to infer

both (a) the visual words that belong on the patch that was

removed from the first image x̃A, and (b) the visual words

that belong on the image area that surrounds the patch that

was copied from second image x̃B .

Model initialization and iterated training. We note that

the model Φ̂(·) is used only for building BoW represen-

tations and not for initializing the parameters of the Φ(·)
model, i.e., Φ(·) is randomly initialized before training. Also,

as already mentioned, we can apply our self-supervised

method iteratively, using each time the previously trained

model Φ̂(·) for creating the BoW representation. We also

note, however, that this is not necessary for learning “good”

representations; the model learned from the first iteration

already achieves very strong results. As a result, only a few

more iterations (e.g., one or two) might be applied after that.

3. Related Work

Bag-of-Words. BoW is a popular method for text doc-

ument representation, which has been adopted and heav-

ily used in computer vision [11, 56]. For visual content,

BoW conveniently encapsulates image statistics from hun-

dreds of local features [40] into vector representations. BoW

have been studied extensively and leveraged in numerous

tasks, while multiple extensions [32, 50] and theoretical

interpretations [60] have been proposed. Due to its versatil-

ity, BoW has been applied to pre-trained convnets as well

to compute image representations from intermediate fea-

ture maps [22, 44, 68], however few works have dealt with

the integration of BoW in the training pipeline of a con-

vnet. Among them, NetVLAD [2] mimics the BoW-derived

VLAD descriptor by learning a visual vocabulary along with

the other layers and soft quantizing activations over this vo-

cabulary. Our method differs from previous approaches in

training with self-supervision and in predicting directly the

BoW vector bypassing quantization and aggregation.

Self-supervision. Self-supervised learning is a recent

paradigm aiming to learn representations from data by lever-

6931



aging supervision from various intrinsic data signals without

any explicit manual annotations and human supervision. The

representations learned with self-supervision are then fur-

ther fine-tuned on a downstream task with limited human

annotations available. Numerous creative mechanisms for

squeezing out information from data in this manner have

been proposed in the past few years: predicting the colors

of image [35, 72], the relative position of shuffled image

patches [14, 45], the correct order of a set of shuffled video

frames [43], the correct association between an image and a

sound [3], and many other methods [38, 64, 65, 75].

Learning to reconstruct. Multiple self-supervised meth-

ods are formulated as reconstruction problems [1, 21, 33,

41, 49, 51, 62, 72, 73, 75]. The information to be recon-

structed can be provided by a different view [21, 51, 75] or

sensor [16]. When no such complementary information is

available, the current data can be perturbed and the task of

the model is now to reconstruct the original input. Denoising

an input image back to its original state [62], inpainting an

image patch that has been removed from a scene [49] , recon-

structing images that have been overlayed [1] are some of the

many methods of reconstruction from perturbation. While

such approaches display impressive results for the task hand,

it remains unclear how much structure they can encapsulate

beyond the reconstruction of visual patterns [13]. Similar

ideas have been initially proposed in NLP where missing

words [41] or sentences [33] must be reconstructed. Another

line of research employs perturbations for guiding the model

towards assigning the same label to both perturbed and orig-

inal content [5, 15]. Our method also deals with perturbed

inputs, however instead of reconstructing the input, we train

it to reconstruct the BoW vector of the clean input. This en-

ables learning non-trivial correlations between local visual

patterns in the image.

VQ-VAE. These works [47, 53] explore the learning of

spatially-dense discrete representations with unsupervised

generative models with goal of image generation. Instead,

we focus on exploiting discrete image representations in the

context of self-supervised image representation learning.

3.1. Discussion

Relation to clustering-based representation learning

methods [4, 8, 9]. Our work presents similarities to the

Deep(er) Clustering approach [8, 9]. The latter alternates be-

tween k-means clustering the images based on their convnet

features and using the cluster assignments as image labels

for training the convnet. In our case however, we use the

k-means clustering for creating BoW representations instead

of global image labels. The former leads to richer (more com-

plete) image descriptions compared to the latter as it encodes

multiple local visual concepts extracted in a spatially dense

way. For example, a cluster id is not sufficient to describe

an image with multiple objects, like the one in Figure 1,

while a BoW is better suited for that. This fundamental dif-

ference leads to a profoundly different self-supervised task.

Specifically, in our case the convnet is forced to: (1) focus on

more localized visual patterns and (2) learn better contextual

reasoning (since it must predict the visual words of missing

image regions).

Relation to contrastive self-supervised learning meth-

ods [5, 15, 25, 42]. Our method bears similarities to recent

works exploiting contrastive losses for learning representa-

tions that are invariant under strong data augmentation or

perturbations [5, 15, 25, 42]. These methods deal with im-

age recognition and the same arguments mentioned above

w.r.t. [8, 9] hold. Our contribution departs from this line of

approaches allowing our method to be applied to a wider set

of visual tasks. For instance, in autonomous driving, most

urban images are similar and differ only by few details, e.g.

a pedestrian or a car, making image recognition under strong

perturbation less feasible. In such cases, leveraging local

statistics as done in our method appears as a more appropri-

ate self-supervised task for learning representations.

4. Experiments and results

We evaluate our method (BoWNet) on CIFAR-100, Mini-

ImageNet [63], ImageNet [55], Places205 [74], VOC07 [17]

classification, and V0C07+12 detection datasets.

4.1. Analysis on CIFAR­100 and MiniImageNet

4.1.1 Implementation details

CIFAR-100. CIFAR-100 consists of 50k training images

with 32× 32 resolution. We train self-supervised WRN-28-

10 [70] convnets using those training images. Specifically,

we first train a WRN-28-10 based RotNet [20] and build

based on that BoW using the feature maps of its last/3rd

residual block. Then, we train the BoWNet using those BoW

representations. We use a K = 2048 vocabulary size. The

prediction head of RotNet consists of an extra residual block

(instead of just a linear layer); in our experiments this led the

feature extractor to learn better representations (we followed

this design choice of RotNet for all the experiments in our

paper; we provide more implementation details in §C.1).

We train the convnets using stochastic gradient descent

(SGD) for 30 epochs of 2000 batch iterations and batch size

128. The learning rate is initialized with 0.1 and multiplied

by 0.1 after 12 and 24 epochs. The weight decay is 5e− 4.

MiniImageNet. Since MiniImageNet is used for evaluat-

ing few-shot methods, it has three different splits of classes,

train, validation, and test with 64, 16, and 20 classes respec-

tively. Each class has 600 images with 84 × 84 resolution.

We train WRN-28-4 convnets on the 64× 600 images that

correspond to the training classes following the same training

protocol as for CIFAR-100.
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4.1.2 Evaluation protocols.

CIFAR-100. To evaluate the learned representations we use

two protocols. (1) The first is to freeze the learned represen-

tations (which in case of WRN-28-10 is a 640-dimensional

vector) and train on top of them a 100-way linear classifier

for the CIFAR-100 classification task. We use the linear clas-

sifier accuracy as an evaluation metric. The linear classifier

is trained with SGD for 60 epochs using a learning rate of

0.1 that is multiplied by 0.3 every 10 epochs. The weight

decay is 0.001. (2) For the second protocol we use a few-

shot episodic setting [63] similar to what is proposed on [18].

Specifically, we choose 20 classes from CIFAR-100 and run

with them multiple (2000) episodes of 5-way few-shot clas-

sification tasks. Essentially, at each episode we randomly

sample 5 classes from the 20 ones and then n training ex-

amples and m = 15 test examples per class (both randomly

sampled from the test images of CIFAR-100). For n we use

1, 5, 10, and 50 examples (1-shot, 5-shot, 10-shot, and 50-

shot settings respectively). To classify the m examples we

use a cosine distance Prototypical-Networks [57] classifier

that is applied on top of the frozen representations. We report

the mean accuracy over the 2000 episodes. The purpose of

this metric is to analyze the ability of the representations

to be used for learning with few training examples. More

details about this protocol are provided in §C.3.

MiniImageNet. We use the same two protocols as in

CIFAR-100. (1) The first is to train 64-way linear classifiers

on the task of recognizing the 64 training classes of Mini-

ImageNet. Here, we use the same hyper-parameters as for

CIFAR-100. (2) The second protocol is to use the frozen

representations for episodic few-shot classification [63]. The

main difference with CIFAR-100 is that here we evaluate

using the test classes of MiniImageNet, which were not part

of the training set of the self-supervised models. Therefore,

with this evaluation we analyze the ability of the representa-

tions to be used for learning with few training examples and

for “unseen" classes during training. For comparison with

this protocol we provide results of the supervised Cosine

Classifier (CC) few-shot model [19, 52].

4.1.3 Results

In Tables 1 and 2 we report results for our self-supervised

method on the CIFAR-100 and MiniImageNet datasets re-

spectively. By comparing BoWNet with RotNet (that we

used for building BoW), we observe that BoWNet improves

all the evaluation metrics by at least 10 percentage points,

which is a very large performance improvement. Applying

BoWNet iteratively (entries BoWNet ×2 and BoWNet ×3)

further improves the results (except the 1-shot accuracy).

Also, BoWNet outperforms by a large margin the CIFAR-

100 linear classification accuracy of the recently proposed

AMDIM [5] method (see Table 1), which has been shown to

Method n =1 5 10 50 Linear

Supervised [70] - - - - 79.5

RotNet 58.3 74.8 78.3 81.9 60.3

Deeper Clustering 65.9 84.6 87.9 90.8 65.4

AMDIM [5] - - - - 70.2

BoWNet 69.1 86.3 89.2 92.4 71.5

BoWNet ×2 68.5 87.1 90.4 93.8 74.1

BoWNet ×3 68.4 87.2 90.4 93.9 74.5

BoWNet w/o cutmix 68.5 85.8 88.8 92.2 69.7

Sp-BoWNet 67.7 85.8 89.2 92.3 71.3

Table 1: CIFAR-100 linear classifier and few-shot results with

WRN-28-10. For few-shot we use n=1, 5, 10, or 50 examples per

class. AMDIM uses a higher-capacity custom made architecture.

Method

Classes Novel Base

n =1 5 10 50 Linear

Supervised CC [19] 56.8 74.1 78.1 82.7 73.7

RotNet 40.8 56.9 61.8 68.1 52.3

RelLoc [14] 40.2 57.1 62.6 68.8 50.4

Deeper Clustering 47.8 66.6 72.1 78.4 60.3

BoWNet 48.7 67.9 74.0 79.9 65.0

BoWNet ×2 49.1 67.6 73.6 79.9 65.6

BoWNet ×3 48.6 68.9 75.3 82.5 66.0

Table 2: MiniImageNet linear classifier and few-shot results

with WRN-28-4.

Method

Classes Novel Base

n =1 5 10 50 Linear

RotNet 40.8 56.9 61.8 68.1 52.3

RelLoc 40.2 57.1 62.6 68.8 50.4

RotNet → BoWNet 48.7 67.9 74.0 79.9 65.0

RelLoc → BoWNet 51.8 70.7 75.9 81.3 65.2

Random → BoWNet 42.4 62.0 68.9 78.1 61.5

Table 3: MiniImageNet linear classifier and few-shot results

with WRN-28-4. Impact of base convnet.

achieve very strong results. Finally, the performance of the

BoWNet representations on the MiniImageNet novel classes

for the 10-shot and especially the 50-shot setting are very

close to the that of the supervised CC model (see Table 2).

Impact of CutMix augmentation. In Table 1 we report

CIFAR-100 results without CutMix, which confirms that

employing CutMix does indeed provide some further im-

provement on the quality of the learned representations.

Spatial-Pyramid BoW [36]. By reducing the visual

words descriptions to BoW histograms, we remove spatial

information from the visual word representations. To avoid

this, one could divide the image into several spatial grids of
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different resolutions, and then extract a BoW representation

from each resulting image patch. In Table 1 we provide re-

sults for such a case (entry Sp-BoWNet). Specifically, we

used 2 levels for the spatial pyramid, one with 2 × 2 and

one with 1× 1 resolution, giving in total 5 BoW. Although

one would expect otherwise, we observe that adding more

spatial information to the BoW via Spatial-Pyramids-BoW,

does not improve the quality of the learned representations.

Comparison with Deeper Clustering (DC) [9]. To com-

pare our method against DC we implemented it using the

same convnet backbone and the same pre-trained RotNet as

for BoWNet. To be sure that we do not disadvantage DC

in any way, we optimized the number of clusters (512), the

training routine5, and applied the same image augmenta-

tions (including cutmix) as in BoWNet. We also boosted

DC by combining it with rotation prediction and applied

our re-parametrization of the linear prediction layer (see

Equation 5), which however did not make any difference in

the DC case. We observe in Tables 1 and 2 that, although

improving upon RotNet, DC has finally a significantly lower

performance compared to BoWNet, e.g., several absolute

percentage points lower linear classification accuracy, which

illustrates the advantage of using BoW as targets for self-

supervision instead of the single cluster id of an image.

Impact of base convnet. In Table 3 we provide MiniIm-

ageNet results using RelLoc [14] as the initial convnet with

which we build BoW (base convnet). RelLoc→ BoWNet

achieves equally strong or better results than in the RotNet→
BoWNet case. We also conducted (preliminary) experiments

with a randomly initialized base convnet (entry Random→
BoWNet). In this case, to learn good representations, (a) we

used in total 4 training rounds, (b) for the 1st round we built

BoW from the 1st residual block of the randomly initialized

WRN-28-4 and applied PCA analysis before k-means, (c) for

the 2nd round we built BoW from 2nd residual block, and

(d) for the remaining 2 rounds we built BoW from 3rd/last

residual block. We observe that with a random base convnet

the performance of BoWNet drops. However, BoWNet still

is significantly better than RotNet and RelLoc.

We provide additional experimental results in §B.1.

4.2. Self­supervised training on ImageNet

Here we evaluate BoWNet by training it on the ImageNet

dataset that consists of more than 1M images coming from

1000 different classes. We use the ResNet-50 (v1) [27] ar-

chitecture with 224 × 224 input images for implementing

the RotNet and BoWNet models. The BoWNet models are

trained with 2 training rounds. For each round we use SGD,

140 training epochs, and a learning rate 0.03 that is multi-

5Specifically, we use 30 training epoch (the clusters are updated every 3
epochs), and a constant learning rate of 0.1 (same as in [9]). Each epoch

consists of 2000 batch iterations with batch size 512. For simplicity we

used one clustering level instead of the two hierarchical levels in [9].

Method conv4 conv5

ImageNet Supervised [24] 80.4 88.0

RotNet∗ 64.6 62.8

Jigsaw [24] 64.5 57.2

Colorization [24] 55.6 52.3

BoWNet conv4 73.6 79.3

BoWNet conv5 74.3 78.4

Table 4: VOC07 image classification results for ResNet-50 Lin-

ear SVMs. ∗: our implementation.

ImageNet Places205

Method conv* pool5 conv* pool5

Random [24] 13.7 - 16.6 -

Supervised methods

ImageNet [24] 75.5 - 51.5 -

ImageNet∗ 76.0 76.2 52.8 52.0

Places205 [24] 58.2 - 62.3 -

Prior self-supervised methods

RotNet∗ 52.5 40.6 45.0 39.4

Jigsaw [24] 45.7 - 41.2 -

Colorization [24] 39.6 - 31.3 -

LA† [76] 60.2 - 50.1 -

Concurrent work

MoCo [25] - 60.6 - -

PIRL [42] 63.6 - 49.8 -

CMC‡ [59] - 64.1 - -

BowNet conv4 62.5 62.1 50.9 51.1

BowNet conv5 60.5 60.2 50.1 49.5

Table 5: ResNet-50 top-1 center-crop linear classification accu-

racy on ImageNet and Places205. pool5 indicates the accuracy

for the 2048-dimensional features produced by the global average

pooling layer after conv5. conv* indicates the accuracy of the

best (w.r.t. accuracy) conv. layer of ResNet-50 (for the full results

see §B.3) Before applying classifiers on those conv. layers, we

resize their feature maps to around 9k dimensions (in the same

way as in [24]). Entries in gray are advantaged by either using 10-

crops evaluation (method with †) or using two ResNet-50 feature

extractor networks (method with ‡). ∗: our implementation.

plied by 0.1 after 60, 100, and 130 epochs. The batch size

is 256 and the weight decay is 1e − 4. To build BoW we

use a vocabulary of K = 20000 visual words created from

the 3rd or 4th residual blocks (aka conv4 and conv5 lay-

ers respectively) of RotNet (for an experimental analysis of

those choices see §B.2. We named those two models BowNet

conv4 and BowNet conv5 respectively.

We evaluate the quality of the learned representations on

ImageNet classification, Places205 classification, VOC07

classification, and VOC07+12 detection tasks.
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Pre-training AP50 AP75 APall

Supervised∗ 80.8 58.5 53.2

Jigsaw† [24] 75.1 52.9 48.9

PIRL† [42] 80.7 59.7 54.0

MoCo [25] 81.4 61.2 55.2

BoWNet conv4 80.3 60.4 55.0

BoWNet conv5 81.3 61.1 55.8

Table 6: Object detection with Faster R-CNN fine-tuned on

VOC trainval07+12. The detection AP scores (AP50, AP75,

APall) are computed on test07. All models use ResNet-50 back-

bone (R50-C4) pre-trained with self-supervision on ImageNet.

BowNet scores are averaged over 3 trials. ∗: our implementation

fine-tuned in the same conditions as BoWNet. †: BatchNorm layers

are frozen and used as affine transformation layers.

VOC07 classification results. For this evaluation we use

the publicly available code for benchmarking self-supervised

methods provided in [24]. Goyal et al. [24] implement the

guidelines of [48] and trains linear SVMs [6] on top of the

frozen learned representations using the VOC07 train+val

splits for training and the VOC07 test split for testing. We

consider the features of the 3rd (layer conv4) and 4th

(layer conv5) residual blocks and provide results in Table 4.

Again, BoWNet improves the performance of the already

strong RotNet by several points. Furthermore, BoWNet

outperforms all prior methods. Interestingly, conv4-based

BoW leads to better classification results for the conv5

layer of BoWNet, and conv5-based BoW leads to better

classification results for the conv4 layer of BoWNet.

ImageNet and Places205 classification results. Here we

evaluate on the 1000-way ImageNet and 205-way Places205

classification tasks using linear classifiers on frozen feature

representations. To that end, we follow the guidelines of [24]:

for the ImageNet (Places205) dataset we train linear classi-

fiers using Nesterov SGD for 28 (14) training epochs and a

learning rate of 0.01 that is multiplied by 0.1 after 10 (5) and

20 (10) epochs. The batch size is 256 and the weight decay is

1e−4. We report results in Table 5. We observe that BoWNet

outperforms all prior self-supervised methods by significant

margin. Furthermore, the accuracy gap on Places205 be-

tween our ImageNet-trained BoWNet representations and

the ImageNet-trained supervised representations is only 0.9
points in pool5. This demonstrates that our self-supervised

representations have almost the same generalization ability

to the “unseen” (during training) Places205 classes as the

supervised ones. We also compare against the MoCo [25]

and PIRL [42] methods that were recently uploaded on arXiv

and essentially are concurrent work. BoWNet outperforms

MoCo on ImageNet. When compared to PIRL, BoWNet has

around 1 point higher Places205 accuracy but 1 point lower

ImageNet accuracy.

VOC detection results. Here we evaluate the utility of our

self-supervised method on a more complex downstream task:

object detection. We follow the setup considered in prior

works [24, 25, 42]: Faster R-CNN [54] with a ResNet50

backbone [26] (R50-C4 in Detectron2 [66]). We fine-tune

the pre-trained BoWNet on trainval07+12 and evaluate

on test07. We use the same training schedule as [24, 42]

adapted for 8 GPUs and freeze the first two convolutional

blocks. In detail, we use mini-batches of 2 images per GPU

and fine-tune for 25K steps with the learning rate dropped by

0.1 after 17K steps. We set the base learning to 0.02 with a

linear warmup [23] of 1, 000 steps. We fine-tune BatchNorm

layers [30] (synchronizing across GPUs) and use BatchNorm

on newly added layers specific to this task.6

We compare BoWNet conv4 and BoWNet conv5

against both classic and recent self-supervised methods and

report results in Table 6. Both BoWNet variants exhibit

strong performance. Differently from previous benchmarks,

the conv5 is clearly better than conv4 on all metrics. This

might be due to the fact that here we fine-tune multiple

layers and depth plays a more significant role. Interest-

ingly, BoWNet outperforms the supervised ImageNet pre-

trained model, which is fine-tuned in the same conditions as

BoWNet. So, our self-supervised representations generalize

better to the VOC detection task than the supervised ones.

This result is in line with concurrent works [25, 42] and un-

derpins the utility of such methods in efficiently squeezing

out information from data without using labels.

5. Conclusion

In this work we propose BoWNet, a novel method for

representation learning that employs spatial dense descrip-

tions based on visual words as targets for self-supervised

training. The labels for training BoWNet are provided by a

standard self-supervised model. The reconstruction of the

BoW vectors from perturbed images along with the dis-

cretization of the output space into visual words, enable a

more discriminative learning of the local visual patterns in an

image. Interestingly, although BoWNet is trained over fea-

tures learned without label supervision, not only it achieves

strong performances, but it also manages to outperform the

initial model. This finding along with the discretization of

the feature space (into visual words) open additional per-

spectives and bridges to NLP self-supervised methods that

have greatly benefited from this type of approaches in the

past few years.

Acknowledgements. We would like to thank Gabriel de
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6He et al. [25] point out that features produced by self-supervised train-

ing can display different distributions compared to supervised ones and

suggest using feature normalization to alleviate this problem.
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