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Abstract

In this paper we present four cases of minimal solutions

for two-view relative pose estimation by exploiting the affine

transformation between feature points and we demonstrate

efficient solvers for these cases. It is shown, that under the

planar motion assumption or with knowledge of a vertical

direction, a single affine correspondence is sufficient to re-

cover the relative camera pose. The four cases considered

are two-view planar relative motion for calibrated cameras

as a closed-form and a least-squares solution, a closed-

form solution for unknown focal length and the case of a

known vertical direction. These algorithms can be used ef-

ficiently for outlier detection within a RANSAC loop and for

initial motion estimation. All the methods are evaluated on

both synthetic data and real-world datasets from the KITTI

benchmark. The experimental results demonstrate that our

methods outperform comparable state-of-the-art methods in

accuracy with the benefit of a reduced number of needed

RANSAC iterations.

1. Introduction

Simultaneous localization and mapping (SLAM), vi-

sual odometry (VO) and Structure-from-Motion (SfM)

have been active research topics in computer vision for

decades [34, 36]. These technologies have been used suc-

cessfully in a wide variety of applications and they play an

important role in future technologies like autonomous driv-

ing. Relative pose estimation from two views is regarded

as a fundamental algorithm, which is an essential part of

SLAM and SfM pipelines. Thus, improving the accuracy,

efficiency and robustness of relative pose estimation algo-

rithms is still of relevant interest [1, 2, 37, 41].

Most of the SLAM and SfM pipelines follow the scheme

where 2D-2D putative correspondences between subse-
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Figure 1. An affine correspondence between two cameras. The

local affine transformation A transforms the patches surrounding

of point correspondence (pi, pj).

quent views are established by feature matching. Then a

robust motion estimation framework such as the Random

Sample Consensus (RANSAC) [13] is typically adopted to

identify and remove matching outliers. Finally, only inlier

matches between subsequent views are used to estimate the

final relative pose [34]. This outlier removal step is criti-

cal for the robustness and reliability of the pose estimation

step. Besides, the efficiency of the outlier removal process

affects the real-time performance of SLAM and SfM di-

rectly, in particular, as the computational complexity of the

RANSAC estimator increases exponentially with respect to

the number of data points needed. Thus minimal case so-

lutions for relative pose estimation are still of significant

importance [5, 2, 42, 11].

The idea of minimal solutions for relative pose estima-

tion ranges back to the work of Hartley and Zisserman with

the seven-point method [20]. Other classical works are

the five-point method [30] and the homography estimation

method [20]. By exploiting motion constraints on camera

movements or utilizing an additional sensor like an inertial

measurement unit (IMU), the minimal number of point cor-

respondences needed can be further reduced, which makes

the outlier removal more efficient and numerically more sta-

ble. For instance, two points are sufficient to recover camera

motion under the planar motion assumption since the pose

only has two degrees of freedom (DOF) [31, 8, 9]. Another
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example is to make use of the Ackermann steering princi-

ple which allows us to parameterize the camera motion with

only one point correspondence [35, 21]. These scenarios are

typical for self-driving vehicles and ground robots. For un-

manned aerial vehicles (UAV) and smartphones, a camera

is often used in combination with an IMU [17]. The partial

IMU measurements can be used to provide a known gravity

direction for the camera images. In this case relative pose

estimation is thus possible with only three point correspon-

dences. [14, 29, 40, 33].

It is now possible to replace simple point correspon-

dences with affine-covariant feature detectors, such as

ASIFT [27] and MODS [26]. Such an affine correspon-

dence (AC) consists of a point correspondence and a 2 × 2
affine transformation, see Figure 1. It has been proven that

1 AC yields three constraints on the geometric model es-

timation [7, 32, 3]. In this paper we exploit these addi-

tional affine parameters in the process of relative pose es-

timation which allows to reduce the number of correspon-

dences needed. We propose the following 4 novel minimal

solutions for relative pose estimation using a single affine

correspondence:

• Three solvers under the planar motion constraint are

proposed. We prove that a single affine correspon-

dence is sufficient to recover the planar motion of a

calibrated camera (2DOF) and a partially uncalibrated

camera for which only the focal length is unknown

(3DOF).

• A fourth solver for the case of a known vertical di-

rection is proposed. The egomotion estimation of cali-

brated camera with a common direction has 3DOF, and

we will show that only a single affine correspondence

is required to estimate the relative pose for this case.

The remainder of the paper is organized as follows. First

we review related work in Section 2. We propose three min-

imal solutions for planar motion estimation in Section 3. In

Section 4, we propose a minimal solution for two-view rel-

ative motion estimation with known vertical direction. In

Section 5, we evaluate the performance of proposed meth-

ods using both synthetic and real-world dataset. Finally,

concluding remarks are given in Section 6.

2. Related Work

For non-calibrated cameras, a minimum of 7 point cor-

respondences is sufficient to estimate the fundamental ma-

trix [20]. If the camera is partially uncalibrated such that

only the common focal length is unknown, a minimum of

6 point correspondences is required to estimate the relative

pose [38, 23]. For calibrated cameras, at least 5 point corre-

spondences are needed to estimate the essential matrix [30].

If all the 3D points lie on a plane, the point correspondences

are related by a planar homography and the number of re-

quired point correspondences is reduced to 4 [20]. The rel-

ative pose of two views can be recovered by the decompo-

sition of the essential matrix or the homography.

To further improve the computational efficiency and re-

liability of relative pose estimation, assumptions about the

camera motion or additional information can help to reduce

the number of required point correspondences across views.

For example, if the camera is mounted on ground robots

and follows planar motion, the relative pose of two views

has only 2DOF and can be estimated by using 2 point cor-

respondences [31, 8, 9]. By taking into account the Acker-

mann motion model, only 1 point correspondence is suffi-

cient to recover the camera motion [35].

When additional information can be provided by an ad-

ditional sensor, such as an IMU, the DOF of relative pose

estimation can also be reduced. If the rotation of the cam-

era is fully provided by an IMU, only the translation of two

views is unknown and can easily be solved with 2 point cor-

respondences [22]. It is more often the case that a common

direction of rotation is assumed to be known. This common

direction can be determined from an IMU (which provides

the known pitch and roll angles of the camera), but as well

from vanishing points extracted across the two views. When

the common direction of rotation is known, a variety of al-

gorithms have been proposed to estimate the relative pose

utilizing this information [14, 29, 40, 33, 16, 10].

Recently, a number of methods have been proposed

which reduce the number of required points by exploit-

ing the additional affine parameters between two feature

matches. These additional information can come from the

feature’s rotation and scale estimates when SIFT [25] or

SURF [6] feature detectors are used. From five such point

correspondences extended by the rotational angles of the

features the fundamental matrix can be computed [2]. Sim-

ilarly, the homography can be estimated by using two cor-

respondences when including the corresponding rotational

angles and scales of the features [4]. Of high interest are

methods which use affine correspondences obtained by an

affine-covariant feature detector, such as ASIFT [27] and

MODS [26]. One AC yields three constraints on the geo-

metric model estimation. This allows the estimation of a

fundamental matrix from 3 ACs [7]. The estimation of a

homography and an essential matrix can be accomplished

from 2 ACs [32, 12, 3]. There is an independent work

which also uses a single AC to estimate relative planar mo-

tion [18]. Furthermore, it is shown in [32] that ACs have

benefits as compared to point correspondences for visual

odometry in the presence of many outliers.

3. Relative Pose Estimation Under Planar Mo-

tion

For planar motion shown in Figure 2, we derive three

minimal solvers by exploiting one affine correspondence
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only. (1) We develop two minimal solvers for calibrated

cameras. Since one AC provides three independent equa-

tions and there are two unknowns for the pose, the equation

system is over-determined. We propose two variants for

this scenario including a closed-form solution and a least-

squares solution. (2) For uncalibrated cameras with un-

known focal length only, we propose a minimal solver for

this scenario as well.

Figure 2. Planar motion between two cameras in top-view. There

are two unknowns: yaw angle θ and translation direction φ.

3.1. Solver for Planar Motion with Calibrated Cam­
era

With known intrinsic camera parameters, the epipolar

constraint between views i to j is given as follows [20]:

pT
j Epi = 0, (1)

where pi = [ui, vi, 1]
T and pj = [uj , vj , 1]

T are the nor-

malized homogeneous image coordinates of a feature point

in views i and j, respectively. E = [t]×R is the essential

matrix, where R and t represent relative rotation and trans-

lation respectively.
For planar motion, we assume that the image plane of

the camera is vertical to the ground plane without loss of
generality, see Figure 2. There are only a Y-axis rotation
and 2D translation between two different views, so the ro-
tation R = Ry and the translation t from views i to j can
be written as:

Ry =





cos (θ) 0 − sin (θ)
0 1 0

sin (θ) 0 cos (θ)



 , t = −Ry





ρ sin (φ)
0

ρ cos (φ)



 . (2)

where ρ is the distance between views i and j. Based on

Eq. (2), the essential matrix E = [t]×Ry under planar mo-

tion is reformulated:

E = ρ





0 cos (θ − φ) 0
− cos (φ) 0 sin (φ)

0 sin (θ − φ) 0



 . (3)

By substituting the above equation into Eq. (1), the

epipolar constraint can be written as:

visin(θ − φ)+viujcos(θ − φ)+vjsin(φ)−uivjcos(φ) = 0.
(4)

Moreover, the widely-used affine-covariant feature de-

tectors, e.g. ASIFT [27], provide affine correspondences

between two views directly. Here, we exploit the affine

transformation in the relative pose estimation under planar

motion, to further reduce the number of required point cor-

respondences. Firstly, we introduce the affine correspon-

dence, which is considered as a triplet: (pi,pj ,A). The

local affine transformation A which relates the patches sur-

rounding pi and pj is defined as follows [2]:

A =

[

a11 a12
a21 a22

]

. (5)

The relationship of essential matrix E and local affine

transformation A can be described as follows [3]

(ETpj)(1:2) = −(ÂTEpi)(1:2), (6)

where ni , ETpj and nj , Epi are the epipolar lines in

the views i and j, respectively. Â is a 3× 3 matrix:

Â =

[

A 0

0 0

]

. (7)

By substituting Eq. (3) into Eq. (6), two equations which
relate the affine transformation to the relative pose are ob-
tained

a11vicos(θ − φ) + a21sin(φ)− (a21ui + vj)cos(φ) = 0, (8)

sin(θ − φ) + (a12vi + uj)cos(θ − φ) + a22sin(φ)−

a22uicos(φ) = 0. (9)

3.1.1 Closed-Form Solution

For an affine correspondence, the combination of Eqs. (4),

(8) and (9) can be expressed as Cx = 0, where x =
[sin(θ − φ), cos(θ − φ), sin(φ), cos(φ)]T . To facilitate

the description of the following method, we denote
{

x1 , sin(θ − φ), x2 , cos(θ − φ)

x3 , sin(φ), x4 , cos(φ)
(10)

By ignoring the implicit constraints between the entries

of x, i.e., x2
1 + x2

2 = 1 and x2
3 + x2

4 = 1, x should lie in the

null space of C. Thus the solution of the system x can be

obtained directly based on the eigenvector of CTC corre-

sponding to the least eigenvalue. Once x has been obtained,

the angles φ and θ are
{

φ = arctan2(x3, x4),

θ = arctan2(x1, x2) + φ.
(11)

3.1.2 Least-Squares Solution

Eqs. (4), (8) and (9) together with the implicit constraints of

the trigonometric functions can be reformulated as:










aix1 + bix2 + cix3 + dix4 = 0, i = 1, 2, 3

x2
1 + x2

2 = 1

x2
3 + x2

4 = 1

(12)

The coefficients ai, bi, ci and di denote the problem co-

efficients in Eqs. (4), (8) and (9). This equation system has
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4 unknowns and 5 independent constraints, thus it is over-

constrained. We find the least-squared solution by

min
{xi}4

i=1

3
∑

i=1

(aix1 + bix2 + cix3 + dix4)
2 (13)

s.t. x2
1 + x2

2 = 1, x2
3 + x2

4 = 1.

The Lagrange multiplier method is used to find all sta-

tionary points in problem (13). The Lagrange multiplier is

L(x1, x2, x3, x4, λ1, λ2)

=

3
∑

i=1

(aix1 + bix2 + cix3 + dix4)
2

+ λ1(x
2
1 + x2

2 − 1) + λ2(x
2
3 + x2

4 − 1). (14)

By taking the partial derivatives with {xi}
4
i=1 and

{λi}
2
i=1 and setting them to be zeros, we obtain an equa-

tion system with unknowns {xi}
4
i=1 and {λi}

2
i=1, see the

supplementary material. This equation system contains 6
unknowns {x1, x2, x3, x4, λ1, λ2}, and the order is 2. A

Gröbner basis solver with template size 42× 50 can be ob-

tained by an automatic solver generator [24]. It also shows

that there are at most 8 solutions.

3.2. Solver for Planar Motion and Unknown Focal
Length

In this subsection, we assume that there is a camera with

known intrinsic parameters except for an unknown focal

length. This case is typical to be encounter in practice.

For most cameras, it is often reasonable to assume that the

cameras have square-shaped pixels and the principal point

is well approximated by the image center [19]. By assuming

that the only unknown calibration parameter of the camera

is the focal length f , the intrinsic matrix of the camera is

simplified to K = diag(f, f, 1).
Since the intrinsic matrix is unknown, we can not obtain

the coordinates of point features in the normalized image

plane. Recall that the normalized homogeneous image co-

ordinates of the points in views i and j are pi = [ui, vi, 1]
T

and pj = [uj , vj , 1]
T , respectively. Without loss of gener-

ality, we set the principle point as the centre of image plane.

Denote coordinates of a point in original image plane i and

j as p̄i = [ūi, v̄i, 1]
T and p̄j = [ūj , v̄j , 1]

T , respectively.

We also denote g = f−1 and obtain the following relations
{

ui = f−1ūi = gūi, vi = f−1v̄i = gv̄i,

uj = f−1ūj = gūj , vj = f−1v̄j = gv̄j .
(15)

By substituting Eq. (15) into Eqs. (4), (8) and (9), we also

obtain three equations. To reduce the burden in notation, we

substitute Eq. (10) into the three equations. By combining

them with two trigonometric constraints, we have a polyno-

mial equation system as follows































v̄igx1 + v̄iūjg
2x2 + v̄jgx3 − ūiv̄jg

2x4 = 0

a1v̄igx2 + a3x3 − (a3ūi + v̄j)gx4 = 0

x1 + (a2v̄i + ūj)gx2 + a4x3 − a4ūigx4 = 0

x2
1 + x2

2 = 1

x2
3 + x2

4 = 1

(16)

The above equation system contains 5 unknowns

{x1, x2, x3, x4, g}, and the order is 3. The Gröbner basis

solver with template size 20 × 23 can be obtained by an

automatic solver generator [24]. It also shows that there

are at most 6 solutions. Note that one trivial solution

(g = x1 = x3 = 0, x2 = x4 = 1) can be safely removed

considering g = f−1 must be greater than 0.

4. Relative Pose Estimation with Known Verti-

cal Direction

Figure 3. Camera motion with known vertical direction. The un-

knowns include yaw angle θ and translation [tx, ty, tz]
T .

In this section we present a minimal solution for two-

view relative motion estimation with known vertical direc-

tion, which uses only one affine correspondence, see Fig-

ure 3. In this case, we have an IMU coupled with the cam-

era. Assuming the roll and pitch angles of the camera can

be obtained directly from the IMU, we can align every cam-

era coordinate system with the measured gravity direction.

The Y-axis of the camera is parallel to the gravity direction

and the X-Z-plane of the camera is orthogonal to the gravity

direction. The rotation matrix Rimu for aligning the camera

coordinate system to the aligned camera coordinate system

can be expressed:

Rimu = RxRz

=





1 0 0
0 cos(θx) sin(θx)
0 − sin(θx) cos(θx)









cos(θz) sin(θz) 0
− sin(θz) cos(θz) 0

0 0 1





where θx and θz represent pitch and roll angle, respectively.

Furthermore, denote Ri
imu and R

j

imu as the orientation

information delivered by the IMU for views i and j, respec-

tively. Then the aligned image coordinates in views i and j
can be expressed by

p̃i = Ri
imupi, p̃j = R

j

imupj . (17)

By leveraging IMU measurement, the relative pose be-

tween original views i and j can be written as
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{

R = (Rj

imu)
TRyR

i
imu,

t = (Rj

imu)
T t̃.

(18)

where Ry is the rotation matrix between the aligned views

i and j, and t̃ is the translation between the aligned views i
and j. Then the essential matrix between the original views

i and j can be described as follows

E = [t]×R = [(Rj

imu)
T t̃]×(R

j

imu)
TRyR

i
imu

= (Rj

imu)
T ẼRi

imu.
(19)

Note that Ẽ = [̃t]×Ry denotes the simplified essential

matrix between the aligned views i and j. Now, we substi-

tute Eq. (19) into Eq. (6):

((Ri
imu)

T ẼTR
j

imupj)(1:2) = −(ÂT (Rj

imu)
T ẼRi

imupi)(1:2).
(20)

The above equation can be reformulated based on

Eq. (17):

((Ri
imu)

T ẼT p̃j)(1:2) = −(ÂT (Rj

imu)
T Ẽp̃i)(1:2). (21)

For further derivation, we denote p̃i, p̃j , Ẽ and Ã as
follows

p̃i , [ũi, ṽi, w̃i]
T
, p̃j , [ũj , ṽj , w̃j ]

T

Ẽ = [̃t]×Ry =





0 −t̃z t̃y
t̃z 0 −t̃x
−t̃y t̃x 0









cos (θ) 0 − sin (θ)
0 1 0

sin (θ) 0 cos (θ)





=





t̃y sin (θ) −t̃z t̃ycos (θ)
t̃zcos (θ)− t̃x sin (θ) 0 −t̃x cos (θ)− t̃zsin (θ)

−t̃ycos (θ) t̃x t̃ysin (θ)





,





e1 e2 e3
e4 0 e5
−e3 e6 e1





Ã = Â
T (Rj

imu)
T
,





ã1 ã2 ã3

ã4 ã5 ã6

0 0 0





R
i
imu = R

i
xR

i
z ,





r̃1 r̃2 0
r̃3 r̃4 r̃5
r̃6 r̃7 r̃8





(22)

By substituting Eq. (22) into Eq. (21), we obtain two
equations

(ũiã1 + w̃iã3 + ũj r̃1 + w̃j r̃6)e1 + (ṽiã1 + ũj r̃3)e2+

(w̃iã1 + ũj r̃6 − ũiã3 − w̃j r̃1)e3 + (ũiã2 + ṽj r̃1)e4+

(w̃iã2 + ṽj r̃6)e5 + (ṽiã3 + w̃j r̃3)e6 = 0, (23)

(ũiã4 + w̃iã6 + ũj r̃2 + w̃j r̃7)e1 + (ṽiã4 + ũj r̃4)e2+

(w̃iã4 − ũiã6 + ũj r̃7 − w̃j r̃2)e3 + (ũiã5 + ṽj r̃2)e4+

(w̃iã5 + ṽj r̃7)e5 + (ṽiã6 + w̃j r̃4)e6 = 0. (24)

In addition, the epipolar constraint p̃T
j Ẽp̃i = 0 can be

written as:

(ũiũj + w̃iw̃j)e1 + ũj ṽie2 + (ũjw̃i − ũiw̃j)e3

+ ũiṽje4 + ṽjw̃ie5 + ṽiw̃je6 = 0.
(25)

For an affine correspondence (pi,pj ,A), the combi-

nation of equations Eqs. (23)∼(25) can be expressed as

Mx = 0 , where x = [e1, e2, e3, e4, e5, e6]
T is the

vector of the unknown elements of the essential matrix. The

null space of M is 3-dimensional. The solution of the poly-

nomial equation system x, which is up to a common scale,

can be determined by the linear combination of three null

space basis vectors:

x = βm1 + γm2 +m3, (26)

where the null space basis vectors {mi}i=1,2,3 are com-

puted from the SVD of matrix M, and β and γ are the co-

efficients.

To determine the coefficients of β and γ, note that there

are two internal constraints for the essential matrix, i.e., the

singularity of the essential matrix and the trace constraint:

det(Ẽ) = 0, (27)

2ẼẼT Ẽ− trace(ẼẼT )Ẽ = 0. (28)

By substituting Eq. (26) into Eqs. (27) and (28), a poly-

nomial equation system with unknowns β and γ can be gen-

erated. A straightforward method to solve the equation sys-

tem is using a general automatic solver generator [24]. In-

spired by [14], we use a more simpler method to convert the

equation system to a univariate quartic equation, see supple-

mentary material for details. Once the coefficients β and γ
have been obtained, the simplified essential matrix Ẽ is de-

termined by Eq. (26) and can be decomposed into Ry and

t̃ by exploiting Eq. (22). Finally, the relative pose between

views i and j can be obtained by Eq. (18).

5. Experiments

The performance of the proposed methods is evaluated

using both synthetic and real scene data. To deal with out-

liers, the minimal solvers can be integrated into a robust es-

timator using RANSAC or used for histogram voting. For

the RANSAC, the relative pose which produces the highest

number of inliers is chosen. For the histogram voting, we

estimate the relative pose by selecting the peak of the his-

togram, which is formed by estimating poses from all the

affine correspondences.

For relative pose estimation under planar motion,

the proposed solvers in Section 3.1 are referred to as

1AC-Voting (which uses histogram voting with the

closed-form solution), 1AC-CS (which uses RANSAC

with the closed-form solution), and 1AC-LS (which

uses RANSAC with the least-squares solution). The

solver for planar motion with unknown focal length

in Section 3.2 is referred to as the 1AC-UnknownF,

which also uses RANSAC. The comparative methods

include 6pt-Kukelova1 [23], 5pt-Nister [30],

2AC-Barath [3] and 2pt-Choi [8]. All comparative

methods are integrated into a RANSAC scheme.

1f+E+f relative pose solver.
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For relative pose estimation with known vertical di-

rection, our solver proposed in Section 4 is referred to

as the 1AC method. The proposed solver is compared

against 5pt-Nister [30], 3pt-Sweeney [40],

3pt-Saurer [33], 2pt-Saurer [33] and

2AC-Barath [3]. All of these minimal solvers are

integrated into a RANSAC scheme.

Due to space limit, the efficiency comparison is provided

in supplementary material. To demonstrate the suitability

of our methods in real scenarios, the KITTI dataset [15] is

used to validate the performance.

5.1. Experiments on Synthetic Data

The synthetic scene consists of a ground plane and 50

random planes, which are randomly distributed in the range

of -5 to 5 meters (X-axis direction), -5 to 5 meters (Y-axis

direction), and 10 to 20 meters (Z-axis direction). 50 points

are randomly generated in the ground plane. We choose

a point in each random plane randomly, so there are also

50 points in the random planes. The corresponding affine

transformation related to each point correspondence is cal-

culated from the homography, which is estimated by using

four projected image points from the same plane [4]. The

baseline between two views is set to be 2 meters. The reso-

lution of the camera is 640 × 480 pixels. The focal length is

set to 400 pixels and the principal point is set to (320, 240).

The rotation and translation error are assessed by the root

mean square error (RMSE) of the errors. We report the re-

sults on the data points within the first two intervals of a 5-

quantile partitioning2 (Quintile) of 1000 trials. The relative

rotation and translation between views i and j are compared

separately in the synthetic experiments. The rotation error

compares the angular difference between the ground truth

rotation and the estimated rotation. The translation error

also compares the angular difference between the ground

truth translation and the estimated translation since the esti-

mated translation between views i and j is only known up

to scale. Specifically, we define:

• Rotation error: εR = arccos((trace(RgtR
T )− 1)/2)

• Translation error: εt = arccos((tTgtt)/(‖tgt‖ · ‖t‖))

where Rgt and tgt denote the ground truth rotation and

translation, respectively. R and t denote the corresponding

estimated rotation and translation, respectively.

5.1.1 Planar Motion Estimation

In this scenario the motion of the camera is described by

(θ, φ), see Figure 2. Both angles vary from −10◦ to

10◦. Figure 4(a) and (b) show the performance of the pro-

posed methods with respect to the magnitude of added im-

age noise. All of our proposed methods for planar mo-

2k-quantiles divide an ordered dataset into k regular intervals
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Figure 4. Rotation and translation error with planar motion estima-

tion (unit: degree). (a)(b): vary image noise under perfect planar

motion. (c)(d): vary non-planar motion noise and fix the image

noise as 1.0 pixel standard deviation. The left column reports the

rotation error. The right column reports the translation error.

tion provide better results than comparative methods un-

der perfect planar motion. It is worth to mention that our

1AC-UnknownFmethod performs better than comparative

methods even when the ground truth of the focal length is

not used.

To test the performance of our method under non-planar

motion, we generate the non-planar components of a 6DOF

relative pose randomly and add them to the camera motion,

which include X-axis rotation, Z-axis rotation, and direc-

tion of YZ-plane translation [8]. The magnitude of non-

planar motion noise is set to Gaussian noise with a stan-

dard deviation ranging from 0◦ to 1◦. The image noise

is set to 1.0 pixel standard deviation. Figure 4(c) and (d)

show the performance of the proposed methods with respect

to the magnitude of non-planar motion noise. The meth-

ods 6pt-Kukelova, 5pt-Nister and 2AC-Barath

do not have an obvious trend with non-planar motion noise

levels, because these methods estimate 6DOF relative pose

of two views. The proposed four methods perform bet-

ter than the methods 6pt-Kukelova, 5pt-Nister and

2pt-Choi at the maximum magnitude for the non-planar

motion noise up to 1.0◦. Meanwhile, the accuracy of these

four methods is also better than the 2AC-Barath method

when the non-planar motion noise is less than 0.3◦.

5.1.2 Motion with Known Vertical Direction

In this set of experiments the directions of the camera

motion are set to forward, sideways and random mo-

tions, respectively. The second view is rotated around

every axis, three rotation angles vary from −10◦ to

10◦. The roll angle and pitch angle are known and
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Figure 5. Rotation and translation error under random motion

(unit: degree). (a)(b): vary image noise with perfect IMU data.

(c)∼(f): vary IMU angle noise and fix the image noise as 1.0 pixel

standard deviation. The left column reports the rotation error. The

right column reports the translation error.

used to align the camera coordinate system with the

gravity direction. The proposed 1AC method is com-

pared with 5pt-Nister [30], 3pt-Sweeney [40],

3pt-Saurer [33], 2pt-Saurer [33] and

2AC-Barath [3]. Due to space limitations, we only

show the results under random motion. The results un-

der forward and sideways motions are available in the

supplementary material. Figure 5(a) and (b) show the

performance of the proposed method with respect to the

magnitude of image noise with perfect IMU data. Our

method is robust to the increasing image noise and provides

obviously better results than the previous methods.

Figure 5(c)∼(f) show the performance of the proposed

method for increasing noise on the IMU data, while

the image noise is set to 1.0 pixel standard deviation.

The 1AC method basically outperforms the methods

3pt-Sweeney, 3pt-Saurer and 2pt-Saurer. The

methods 5pt-Nister and 2AC-Barath are not influ-

enced by the pitch error and the roll error, because their

calculation does not utilize the known vertical direction as

prior. It is interesting to see that our method performs bet-

ter than the methods 5pt-Nister and 2AC-Barath in

the random motion case, even though the rotation noise

is around 1.0◦. Under forward and sideways motion, the

accuracy of our method is also better than the methods

5pt-Nister and 2AC-Barath, when the rotation noise

stays below 0.3◦.

5.2. Experiments on Real Data

The performance of our methods on real image data is

evaluated on the KITTI dataset [15]. All the sequences

which provide ground truth data are utilized in this experi-

ments. There are about 23000 images in total and are avail-

able as sequence 0 to 10.

5.2.1 Pose Estimation from Pairwise Image Pairs

Two settings of experiments are performed with the KITTI

dataset, including planar motion estimation and relative

pose estimation with known vertical direction. The ASIFT

feature extraction and matching [27] is performed to obtain

the affine correspondences between consecutive frames.

Both the histogram voting and the RANSAC schemes are

tested in this experiment. An inlier threshold of 2 pixels

and a fixed number of 100 iterations are set in RANSAC.

In the first experiment, we test the relative pose esti-

mation algorithms under planar motion. The motion esti-

mation results between two consecutive images (θ, φ) are

compared to the corresponding ground truth. The median

error for each individual sequence is used to evaluate the

performance. The proposed methods are compared with

2pt-Choi [8]. The results of the rotation and translation

error under planar motion assumption are shown in Table 1.

Table 1 demonstrates that all of our planar motion meth-

ods provide better results than the 2pt-Choi method. The

overall performance of the 1AC-Voting method is best

among all the methods, particularly the rotation accuracy of

the 1AC-Voting method is significantly high than other

methods.

Seq.
2pt-Choi [8] 1AC-CS 1AC-LS 1AC-Voting

εR εt εR εt εR εt εR εt
00 0.203 5.169 0.133 1.335 0.155 1.345 0.016 1.493

01 0.150 3.617 0.117 1.135 0.134 1.149 0.010 1.165

02 0.154 3.364 0.062 1.152 0.082 1.191 0.017 1.029

03 0.177 6.441 0.084 1.157 0.100 1.152 0.013 1.225

04 0.115 2.871 0.029 1.132 0.041 1.155 0.012 1.018

05 0.143 4.407 0.071 1.276 0.085 1.304 0.011 1.614

06 0.152 3.379 0.051 1.302 0.068 1.340 0.008 1.655

07 0.127 4.764 0.059 1.487 0.074 1.462 0.014 1.769

08 0.137 4.312 0.064 1.428 0.081 1.427 0.014 1.591

09 0.141 3.508 0.062 1.215 0.081 1.218 0.021 1.221

10 0.145 3.829 0.067 1.299 0.090 1.299 0.018 1.464

Table 1. Rotation and translation error for KITTI sequences under

planar motion assumption (unit: degree).
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Seq.
5pt-Nister [30] 3pt-Sweeney [40] 3pt-Saurer [33] 2pt-Saurer [33] 2AC-Barath [3] 1AC method

εR εt εR εt εR εt εR εt εR εt εR εt
00 .137 2.254 .065 2.165 .153 2.231 .336 7.675 .196 4.673 .038 2.006

01 .120 1.988 .082 2.342 .091 2.211 .186 9.806 .111 4.198 .050 1.507

02 .134 1.787 .059 1.658 .113 1.723 .293 6.034 .251 4.694 .039 1.861

03 .109 2.507 .067 2.723 .161 2.620 .316 9.249 .175 6.064 .041 2.143

04 .111 1.692 .048 1.558 .043 1.616 .141 4.816 .184 4.036 .033 1.538

05 .116 2.059 .054 1.895 .115 1.961 .253 7.238 .162 4.481 .031 1.725

06 .130 1.783 .068 1.615 .111 1.658 .232 5.750 .176 4.026 .046 1.538

07 .113 2.434 .052 2.183 .159 2.217 .378 8.293 .161 4.649 .033 2.009

08 .122 2.335 .053 2.216 .102 2.266 .241 7.556 .182 5.044 .036 2.201

09 .133 1.843 .059 1.701 .176 1.812 .409 6.606 .224 4.924 .045 1.799

10 .131 1.839 .059 1.750 .145 2.004 .308 7.324 .216 4.520 .037 1.935

Table 2. Rotation and translation error for KITTI sequences with

known vertical direction (unit: degree).

In the second experiment, we test the relative pose esti-

mation algorithm with known vertical direction, i.e., 1AC

method. To simulate IMU measurements which provide a

known gravity vector for the views of the camera, the image

coordinates are pre-rotated by RxRz obtained from the

ground truth data. Table 2 lists the results of the rotation and

translation estimation. The proposed methods are also com-

pared against 5pt-Nister [30], 3pt-Sweeney [40],

3pt-Saurer [33], 2pt-Saurer [33] and

2AC-Barath [3]. Table 2 demonstrates that our method is

significantly more accurate than the other methods, except

for the translation error of sequences 02, 09 and 10.

5.2.2 Visual Odometry

We demonstrate the usage of the 1AC method in a

monocular visual odometry pipeline to evaluate its perfor-

mance in a real application. Our monocular visual odom-

etry is based on ORB-SLAM2 [28]. The affine correspon-

dences extracted by ASIFT feature matching are used to

replace the ORB features. The relative pose between two

consecutive frames is estimated based on the combination

of the 1AC method using RANSAC, and is used to re-

place the original map initialization and the constant veloc-

ity motion model. The estimated trajectories after align-

ment with ground truth are illustrated in Figure 6. The color

along the trajectory encodes the absolute trajectory error

(ATE) [39]. Due to space limit, we show the trajectories

of two sequences only. The results of other sequences can

be found in supplementary materials3. It can be seen that

the proposed 1AC method method has the smallest ATE

among the compared trajectories.

Moreover, we also evaluate the Relative Pose Error

(RPE) between the estimated trajectory and the ground truth

trajectory, which measures the relative accuracy of the tra-

jectory over fixed time intervals [39]. The RMSE for ro-

tation and translation using the RPE metric is illustrated

in Table. 3. Our monocular visual odometry generally has

smaller rotation and translational errors than ORB-SLAM2.

3Both ORB-SLAM2 and our monocular visual odometry fail to produce

a valid result for sequence 01, because it is a highway with few tractable

close objects.
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Figure 6. Estimated visual odometry trajectories. The left column

reports the results of ORB-SLAM2. The right column reports the

results of our monocular visual odometry. Colorful curves are es-

timated trajectories, and black curves with stars are ground truth

trajectories. Best viewed in color.

Seq.
ORB-SLAM2 [28] 1AC-SLAM

Seq.
ORB-SLAM2 [28] 1AC-SLAM

εR εt εR εt εR εt εR εt
00 0.821 0.923 0.803 0.421 06 0.142 1.478 0.126 0.995

02 0.200 1.052 0.156 0.686 07 0.149 0.879 0.137 0.330

03 0.113 0.244 0.118 0.185 08 0.177 1.778 0.159 0.659

04 0.151 0.417 0.097 0.307 09 0.221 0.777 0.172 0.502

05 0.264 0.681 0.254 0.306 10 0.129 0.633 0.238 1.008

Table 3. RMSE for rotation and translation using the RPE metric

for KITTI sequences. Rotation error unit: degree. Translation

error unit: meter.

6. Conclusion

In this paper, we showed that by exploiting the affine

parameters it is possible to estimate the relative pose of

a camera with only one affine correspondence under the

planar motion assumption. Three minimal case solutions

have been proposed to recover the planar motion of camera,

amongst which is a solver which can even deal with

an unknown focal length. In addition, a minimal case

solution has been proposed to estimate the relative pose

of a camera for the case of a known vertical direction.

The assumptions in these methods are common to scenes

in which self-driving cars and ground robots operate. By

evaluating our algorithms on synthetic data and real-world

image data sets, we demonstrate that our method can be

used efficiently for outlier removal and for initial motion

estimation in visual odometry.
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