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Abstract

Although cameras are ubiquitous, robotic platforms typ-

ically rely on active sensors like LiDAR for direct 3D per-

ception. In this work, we propose a novel self-supervised

monocular depth estimation method combining geometry

with a new deep network, PackNet, learned only from unla-

beled monocular videos. Our architecture leverages novel

symmetrical packing and unpacking blocks to jointly learn

to compress and decompress detail-preserving representa-

tions using 3D convolutions. Although self-supervised, our

method outperforms other self, semi, and fully supervised

methods on the KITTI benchmark. The 3D inductive bias in

PackNet enables it to scale with input resolution and num-

ber of parameters without overfitting, generalizing better on

out-of-domain data such as the NuScenes dataset. Further-

more, it does not require large-scale supervised pretraining

on ImageNet and can run in real-time. Finally, we release

DDAD (Dense Depth for Automated Driving), a new urban

driving dataset with more challenging and accurate depth

evaluation, thanks to longer-range and denser ground-truth

depth generated from high-density LiDARs mounted on a

fleet of self-driving cars operating world-wide.†

1. Introduction

Accurate depth estimation is a key prerequisite in many

robotics tasks, including perception, navigation, and plan-

ning. Depth from monocular camera configurations can

provide useful cues for a wide array of tasks [23, 30, 34,

36], producing dense depth maps that could complement

or eventually replace expensive range sensors. However,

learning monocular depth via direct supervision requires

ground-truth information from additional sensors and pre-

cise cross-calibration. Self-supervised methods do not suf-

fer from these limitations, as they use geometrical con-

straints on image sequences as the sole source of supervi-

sion. In this work, we address the problem of jointly esti-

mating scene structure and camera motion across RGB im-

age sequences using a self-supervised deep network.

While recent works in self-supervised monocular depth

†Video: https://www.youtube.com/watch?v=b62iDkLgGSI
†Dataset: https://github.com/TRI-ML/DDAD
†Code: https://github.com/TRI-ML/packnet-sfm

Figure 1: Example metrically accurate PackNet predic-

tion (map and textured point cloud) on our DDAD dataset.

estimation have mostly focused on engineering the loss

function [5, 33, 47, 53], we show that performance criti-

cally depends on the model architecture, in line with the

observations of [27] for other self-supervised tasks. Going

beyond image classification models like ResNet [20], our

main contribution is a new convolutional network archi-

tecture, called PackNet, for high-resolution self-supervised

monocular depth estimation. We propose new packing and

unpacking blocks that jointly leverage 3D convolutions to

learn representations that maximally propagate dense ap-

pearance and geometric information while still being able

to run in real time. Our second contribution is a novel

loss that can optionally leverage the camera’s velocity when

available (e.g., from cars, robots, mobile phones) to solve

the inherent scale ambiguity in monocular vision. Our

third contribution is a new dataset: Dense Depth for Au-

tomated Driving (DDAD). It leverages diverse logs from a

fleet of well-calibrated self-driving cars equipped with cam-

eras and high-accuracy long-range LiDARs. Compared to

existing benchmarks, DDAD enables much more accurate

depth evaluation at range, which is key for high resolution

monocular depth estimation methods (cf. Figure 1).
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Our experiments on the standard KITTI benchmark [16],

the recent NuScenes dataset [4], and our new proposed

DDAD benchmark show that our self-supervised monocu-

lar approach i) improves on the state of the art, especially at

longer ranges; ii) is competitive with fully supervised meth-

ods; iii) generalizes better on unseen data; iv) scales better

with number of parameters, input resolution, and more unla-

beled training data; v) can run in real time at high resolution;

and vi) does not require supervised pretraining on ImageNet

to achieve state-of-the-art results; or test-time ground-truth

scaling if velocity information is available at training time.

2. Related Work

Depth estimation from a single image poses several chal-

lenges due to its ill-posed and ambiguous nature. However,

modern convolutional networks have shown that it is pos-

sible to successfully leverage appearance-based patterns in

large scale datasets in order to make accurate predictions.

Depth Network Architectures Eigen et al. [13] proposed

one of the earliest works in convolutional-based depth esti-

mation using a multi-scale deep network trained on RGB-

D sensor data to regress the depth directly from single im-

ages. Subsequent works extended these network architec-

tures to perform two-view stereo disparity estimation [35]

using techniques developed in the flow estimation litera-

ture [12]. Following [12, 35], Umenhofer et al. [42] applied

these concepts to simultaneously train a depth and pose net-

work to predict depth and camera ego-motion between suc-

cessive unconstrained image pairs.

Independently, dense pixel-prediction networks [2, 31,

48] have made significant progress towards improving the

flow of information between encoding and decoding lay-

ers. Fractional pooling [19] was introduced to amortize the

rapid spatial reduction during downsampling. Lee et al. [29]

generalized the pooling function to allow the learning of

more complex patterns, including linear combinations and

learnable pooling operations. Shi et al. [39] used sub-pixel

convolutions to perform Single-Image-Super-Resolution,

synthesizing and super-resolving images beyond their in-

put resolutions, while still operating at lower resolutions.

Recent works [38, 51] in self-supervised monocular depth

estimation use this concept to super-resolve estimates and

further improve performance. Here, we go one step further

and introduce new operations relying on 3D convolutions

for learning to preserve and process spatial information in

the features of encoding and decoding layers.

Self-Supervised Monocular Depth and Pose As super-

vised techniques for depth estimation advanced rapidly, the

availability of target depth labels became challenging, es-

pecially for outdoor applications. To this end, [15, 17] pro-

vided an alternative strategy involving training a monocu-

lar depth network with stereo cameras, without requiring

ground-truth depth labels. By leveraging Spatial Trans-

former Networks [22], Godard et al [17] use stereo imagery

to geometrically transform the right image plus a predicted

depth of the left image into a synthesized left image. The

loss between the resulting synthesized and original left im-

ages is then defined in a fully-differentiable manner, using

a Structural Similarity [44] term and additional depth regu-

larization terms, thus allowing the depth network to be self-

supervised in an end-to-end fashion.

Following [17] and [42], Zhou et al. [52] generalize

this to self-supervised training in the purely monocular set-

ting, where a depth and pose network are simultaneously

learned from unlabeled monocular videos. Several meth-

ods [5, 26, 33, 43, 46, 47, 51, 53] have advanced this line

terms,of work by incorporatingthese methods, ad,ditional

loss and constraints. All, however, take advantage of con-

straints in monocular Structure-from-Motion (SfM) training

that only allow the estimation of depth and pose up to an

unknown scale factor, and rely on the ground-truth LiDAR

measu,rements to scale their depth estimates appropriately

for evaluation purposes [52]. Instead, in this work we show

that, by simply using the instantaneous velocity of the cam-

era during training, we are able to learn a scale-aware depth

and pose model, alleviating the impractical need to use Li-

DAR ground-truth depth measurements at test-time.

3. Self-Supervised Scale-Aware SfM

In self-supervised monocular SfM training (Fig. 2), we

aim to learn: (i) a monocular depth model fD : I → D,

that predicts the scale-ambiguous depth D̂ = fD(I(p)) for

every pixel p in the target image I; and (ii) a monocular

ego-motion estimator fx : (It, IS) → xt→S , that predicts

the set of 6-DoF rigid transformations for all s ∈ S given

by xt→s = (R t
0 1

) ∈ SE(3), between the target image It
and the set of source images Is ∈ IS considered as part of

the temporal context. In practice, we use the frames It−1

and It+1 as source images, although using a larger context

is possible. Note that in the case of monocular SfM both

depth and pose are estimated up to an unknown scale factor,

due to the inherent ambiguity of the photometric loss.

3.1. Self­Supervised Objective

Following the work of Zhou et al. [52], we train the depth

and pose network simultaneously in a self-supervised man-

ner. In this work, however, we learn to recover the inverse-

depth fd : I → f−1
D (I) instead, along with the ego-motion

estimator fx. Similar to [52], the overall self-supervised

objective consists of an appearance matching loss term Lp

that is imposed between the synthesized target image Ît and

the target image It, and a depth regularization term Ls that
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ensures edge-aware smoothing in the depth estimates D̂t.

The objective takes the following form:

L(It, Ît) = Lp(It, IS)⊙Mp ⊙Mt + λ1 Ls(D̂t) (1)

where Mt is a binary mask that avoids computing the pho-

tometric loss on the pixels that do not have a valid map-

ping, and ⊙ denotes element-wise multiplication. Addi-

tionally, λ1 enforces a weighted depth regularization on the

objective. The overall loss in Equation 1 is averaged per-

pixel, pyramid-scale and image batch during training. Fig. 2

shows a high-level overview of our training pipeline.

Appearance Matching Loss. Following [17, 52] the

pixel-level similarity between the target image It and the

synthesized target image Ît is estimated using the Structural

Similarity (SSIM) [44] term combined with an L1 pixel-

wise loss term, inducing an overall photometric loss given

by Equation 2 below.

Lp(It, Ît) = α 1−SSIM(It,Ît)
2 + (1− α) ‖It − Ît‖ (2)

While multi-view projective geometry provides strong cues

for self-supervision, errors due to parallax in the scene have

an undesirable effect incurred on the photometric loss. We

mitigate these undesirable effects by calculating the mini-

mum photometric loss per pixel for each source image in

the context IS , as shown in [18], so that:

Lp(It, IS) = min
IS

Lp(It, Ît) (3)

The intuition is that the same pixel will not be occluded or

out-of-bounds in all context images, and that the associa-

tion with minimal photometric loss should be the correct

one. Furthermore, we also mask out static pixels by remov-

ing those which have a warped photometric loss Lp(It, Ît)
higher than their corresponding unwarped photometric loss

Lp(It, Is), calculated using the original source image with-

out view synthesis. Introduced in [18], this auto-mask re-

moves pixels whose appearance does not change between

frames, which includes static scenes and dynamic objects

with no relative motion, since these will have a smaller pho-

tometric loss when assuming no ego-motion.

Mp = min
IS

Lp(It, Is) > min
IS

Lp(It, Ît) (4)

Depth Smoothness Loss. In order to regularize the

depth in texture-less low-image gradient regions, we incor-

porate an edge-aware term (Equation 5), similar to [17].

The loss is weighted for each of the pyramid-levels, and

is decayed by a factor of 2 on down-sampling, starting with

a weight of 1 for the 0th pyramid level.

Ls(D̂t) = |δxD̂t|e
−|δxIt| + |δyD̂t|e

−|δyIt| (5)

View 
Synthesis

Photometric Loss

Velocity Supervision Loss

Pose
ConvNet

PackNet

Figure 2: PackNet-SfM: Our proposed scale-aware self-

supervised monocular structure-from-motion architecture.

We introduce PackNet as a novel depth network, and op-

tionally include weak velocity supervision at training time

to produce scale-aware depth and pose models.

3.2. Scale­Aware SfM

As previously mentioned, both the monocular depth and

ego-motion estimators fd and fx predict scale-ambiguous

values, due to the limitations of the monocular SfM training

objective. In other words, the scene depth and the camera

ego-motion can only be estimated up to an unknown and

ambiguous scale factor. This is also reflected in the overall

learning objective, where the photometric loss is agnostic to

the metric depth of the scene. Furthermore, we note that all

previous approaches which operate in the self-supervised

monocular regime [5, 15, 17, 33] suffer from this limita-

tion, and resort to artificially incorporating this scale factor

at test-time, using LiDAR measurements.

Velocity Supervision Loss. Since instantaneous veloc-

ity measurements are ubiquitous in most mobile systems to-

day, we show that they can be directly incorporated in our

self-supervised objective to learn a metrically accurate and

scale-aware monocular depth estimator. During training,

we impose an additional loss Lv between the magnitude

of the pose-translation component of the pose network pre-

diction t̂ and the measured instantaneous velocity scalar v
multiplied by the time difference between target and source

frames ∆Tt→s, as shown below:

Lv(t̂t→s, v) =
∣

∣

∣
‖t̂t→s‖ − |v|∆Tt→s

∣

∣

∣
(6)

Our final scale-aware self-supervised objective loss Lscale

from Equation 1 becomes:

Lscale(It, Ît, v) = L(It, Ît) + λ2 Lv(t̂t→s, v) (7)

where λ2 is a weight used to balance the different loss

terms. This additional velocity loss allows the pose net-

work to make metrically accurate predictions, subsequently

resulting in the depth network also learning metrically ac-

curate estimates to maintain consistency (cf. Section 5.4).
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(a) Packing (b) Unpacking

Figure 3: Proposed 3D packing and unpacking blocks.

Packing replaces striding and pooling, while unpacking is

its symmetrical feature upsampling mechanism.

4. PackNet: 3D Packing for Depth Estimation

Standard convolutional architectures use aggressive

striding and pooling to increase their receptive field size.

However, this potentially decreases model performance for

tasks requiring fine-grained representations [19, 49]. Simi-

larly, traditional upsampling strategies [6, 11] fail to prop-

agate and preserve sufficient details at the decoder layers

to recover accurate depth predictions. In contrast, we pro-

pose a novel encoder-decoder architecture, called PackNet,

that introduces new 3D packing and unpacking blocks to

learn to jointly preserve and recover important spatial in-

formation for depth estimation. This is in alignment with

recent observations that information loss is not a necessary

condition to learn representations capable of generalizing to

different scenarios [21]. In fact, progressive expansion and

contraction in a fully invertible manner, without discard-

ing “uninformative” input variability, has been shown to in-

crease performance in a wide variety of tasks [3, 10, 25].

We first describe the different blocks of our proposed archi-

tecture, and then proceed to show how they are integrated

together in a single model for monocular depth estimation.

4.1. Packing Block

The packing block (Fig. 3a) starts by folding the spatial

dimensions of convolutional feature maps into extra feature

channels via a Space2Depth operation [39]. The result-

ing tensor is at a reduced resolution, but in contrast to strid-

ing or pooling, this transformation is invertible and comes

at no loss. Next, we learn to compress this concatenated

feature space in order to reduce its dimensionality to a de-

sired number of output channels. As we show in our exper-

iments (cf. Section 5.6), 2D convolutions are not designed

to directly leverage the tiled structure of this feature space.

Instead, we propose to first learn to expand this structured

Layer Description K Output Tensor Dim.

#0 Input RGB image 3×H×W

Encoding Layers

#1 Conv2d 5 64×H×W

#2 Conv2d → Packing 7 64×H/2×W/2

#3 ResidualBlock (x2) → Packing 3 64×H/4×W/4

#4 ResidualBlock (x2) → Packing 3 128×H/8×W/8

#5 ResidualBlock (x3) → Packing 3 256×H/16×W/16

#6 ResidualBlock (x3) → Packing 3 512×H/32×W/32

Decoding Layers

#7 Unpacking (#6) → Conv2d (⊕ #5) 3 512×H/16×W/16

#8 Unpacking (#7) → Conv2d (⊕ #4) 3 256×H/8×W/8

#9 InvDepth (#8) 3 1×H/8×W/8

#10 Unpacking (#8) → Conv2d (⊕ #3 ⊕ Upsample(#9)) 3 128×H/4×W/4

#11 InvDepth (#10) 3 1×H/4×W/4

#12 Unpacking (#10) → Conv2d (⊕ #2 ⊕ Upsample(#11)) 3 64×H/2×W/2

#13 InvDepth (#12) 3 1×H/2×W/2

#14 Unpacking (#12) → Conv2d (⊕ #1 ⊕ Upsample(#13)) 3 64×H×W

#15 InvDepth (#14) 3 1×H×W

Table 1: Summary of our PackNet architecture for self-

supervised monocular depth estimation. The Packing and

Unpacking blocks are described in Fig. 3, with kernel size

K = 3 and D = 8. Conv2d blocks include Group-

Norm [45] with G = 16 and ELU non-linearities [7]. In-

vDepth blocks include a 2D convolutional layer with K = 3
and sigmoid non-linearities. Each ResidualBlock is a se-

quence of 3 2D convolutional layers with K = 3/3/1 and

ELU non-linearities, followed by GroupNorm with G = 16
and Dropout [40] of 0.5 in the final layer. Upsample is a

nearest-neighbor resizing operation. Numbers in parenthe-

ses indicate input layers, with ⊕ as channel concatenation.

Bold numbers indicate the four inverse depth output scales.

representation via a 3D convolutional layer. The result-

ing higher dimensional feature space is then flattened (by

simple reshaping) before a final 2D convolutional contrac-

tion layer. This structured feature expansion-contraction,

inspired by invertible networks [3, 21] although we do not

ensure invertibility, allows our architecture to dedicate more

parameters to learn how to compress key spatial details that

need to be preserved for high resolution depth decoding.

4.2. Unpacking Block

Symmetrically, the unpacking block (Fig. 3b) learns to

decompress and unfold packed convolutional feature chan-

nels back into higher resolution spatial dimensions dur-

ing the decoding process. The unpacking block replaces

convolutional feature upsampling, typically performed via

nearest-neighbor or with learnable transposed convolutional

weights. It is inspired by sub-pixel convolutions [39], but

adapted to reverse the 3D packing process that the features

went through in the encoder. First, we use a 2D convolu-

tional layer to produce the required number of feature chan-

nels for a following 3D convolutional layer. Second, this

3D convolution learns to expand back the compressed spa-

tial features. Third, these unpacked features are converted

back to spatial details via a reshape and Depth2Space

operation [39] to obtain a tensor with the desired number of

output channels and target higher resolution.
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(a) Input Image (b) Max Pooling +

Bilinear Upsample

(c) Pack + Unpack

Figure 4: Image reconstruction using different encoder-

decoders: (b) standard max pooling and bilinear upsam-

pling, each followed by 2D convolutions; (c) one packing-

unpacking combination (cf. Fig. 3) with D = 2. All kernel

sizes are K = 3 and C = 4 for intermediate channels.

4.3. Detail­Preserving Properties

In Fig. 4, we illustrate the detail-preserving properties of

our packing / unpacking combination, showing we can get a

near-lossless encoder-decoder for single image reconstruc-

tion by minimizing the L1 loss. We train a simple network

composed of one packing layer followed by a symmetrical

unpacking one and show it is able to almost exactly recon-

struct the input image (final loss of 0.0079), including sharp

edges and finer details. In contrast, a comparable baseline

replacing packing / unpacking with max pooling / bilinear

upsampling (and keeping the 2D convolutions) is only able

to learn a blurry reconstruction (final loss of 0.063). This

highlights how PackNet is able to learn more complex fea-

tures by preserving spatial and appearance information end-

to-end throughout the network.

4.4. Model Architecture

Our PackNet architecture for self-supervised monocular

depth estimation is detailed in Table 1. Our symmetrical

encoder-decoder architecture incorporates several packing

and unpacking blocks, and is supplemented with skip con-

nections [35] to facilitate the flow of information and gra-

dients throughout the network. The decoder produces inter-

mediate inverse depth maps that are upsampled before being

concatenated with their corresponding skip connections and

unpacked feature maps. These intermediate inverse depth

maps are also used at training time in the loss calculation,

after being upsampled to to the full output resolution using

nearest neighbors interpolation.

5. Experiments

5.1. Datasets

KITTI [16]. The KITTI benchmark is the de facto stan-

dard for depth evaluation. More specifically, we adopt the

training protocol used in Eigen et al. [13], with Zhou et

al.’s [52] pre-processing to remove static frames. This re-

sults in 39810 images for training, 4424 for validation and

697 for evaluation. We also consider the improved ground-

truth depth maps from [41] for evaluation, which uses 5

consecutive frames to accumulate LiDAR points and stereo

information to handle moving objects, resulting in 652 high-

quality depth maps.

DDAD (Dense Depth for Automated Driving). As one

of our contributions, we release a diverse dataset of urban,

highway, and residential scenes curated from a global fleet

of self-driving cars. It contains 17,050 training and 4,150

evaluation frames with ground-truth depth maps generated

from dense LiDAR measurements using the Luminar-H2

sensor. This new dataset is a more realistic and challenging

benchmark for depth estimation, as it is diverse and cap-

tures precise structure across images (30k points per frame)

at longer ranges (up to 200m vs 80m for previous datasets).

See supplementary material for more details.

NuScenes [4]. To assess the generalization capability of

our approach w.r.t. previous ones, we evaluate KITTI mod-

els (without fine-tuning) on the official NuScenes validation

dataset of 6019 front-facing images with ground-truth depth

maps generated by LiDAR reprojection.

CityScapes [8]. We also experiment with pretraining our

monocular networks on the CityScapes dataset, before fine-

tuning on the KITTI dataset. This also allows us to explore

the scalability and generalization performance of different

models, as they are trained with increasing amounts of un-

labeled data. A total of 88250 images were considered as

the training split for the CityScapes dataset, using the same

training parameters as KITTI for 20 epochs.

5.2. Implementation Details

We use PyTorch [37] with all models trained across 8

Titan V100 GPUs. We use the Adam optimizer [24], with

β1 = 0.9 and β2 = 0.999. The monocular depth and pose

networks are trained for 100 epochs, with a batch size of 4

and initial depth and pose learning rates of 2 · 10−4 and 5 ·
10−4 respectively. Training sequences are generated using

a stride of 1, meaning that the previous t − 1, current t,
and posterior t + 1 images are used in the loss calculation.

As training proceeds, the learning rate is decayed every 40

epochs by a factor of 2. We set the SSIM weight to α =
0.85, the depth regularization weight to λ1 = 0.001 and,

where applicable, the velocity-scaling weight to λ2 = 0.05.

Depth Network. Unless noted otherwise, we use our

PackNet architecture as specified in Table 1. During train-

ing, all four inverse depth output scales are used in the loss

calculation, and at test-time only the final output scale is

used, after being resized to the full ground-truth depth map

resolution using nearest neighbor interpolation.

Pose Network. We use the architecture proposed by [52]

without the explainability mask, which we found not to im-

prove results. The pose network consists of 7 convolutional

layers followed by a final 1 × 1 convolutional layer. The

input to the network consists of the target view It and the

context views IS , and the output is the set of 6 DOF trans-

formations between It and Is, for s ∈ S.

2489



5.3. Depth Estimation Performance

First, we report the performance of our proposed monoc-

ular depth estimation method when considering longer dis-

tances, which is now possible due to the introduction of

our new DDAD dataset. Depth estimation results using this

dataset for training and evaluation, considering cumulative

distances up to 200m, can be found in Fig. 5 and Table 2.

Additionally, in Fig. 6 we present results for different depth

intervals calculated independently. From these results we

can see that our PackNet-SfM approach significantly out-

performs the state-of-the-art [18], based on the ResNet fam-

ily, the performance gap consistently increasing when larger

distances are considered.

Second, we evaluate depth predictions on KITTI using

the metrics described in Eigen et al. [13]. We summarize

our results in Table 3, for the original depth maps from [13]

and the accumulated depth maps from [41], and illustrate

their performance qualitatively in Fig. 7. In contrast to pre-

vious methods [5, 18] that predominantly focus on modify-

ing the training objective, we show that our proposed Pack-

Net architecture can by itself bolster performance and es-

tablish a new state of the art for the task of monocular depth

estimation, trained in the self-supervised monocular setting.

Furthermore, we show that by simply introducing an ad-

ditional source of unlabeled videos, such as the publicly

available CityScapes dataset (CS+K) [8], we are able to fur-

ther improve monocular depth estimation performance. As

indicated by Pillai et al. [38], we also observe an improve-

ment in performance at higher image resolutions, which

we attribute to the proposed network’s ability to properly

preserve and process spatial information end-to-end. Our

best results are achieved when injecting both more unla-

beled data at training time and processing higher resolution

input images, achieving performance comparable to semi-

supervised [28] and fully supervised [14] methods.

5.4. Scale­Aware Depth Estimation Performance

Due to their inherent scale ambiguity, self-supervised

monocular methods [18, 33, 52] evaluate depth by scaling

their estimates to the median ground-truth as measured via

LiDAR. In Section 3.2 we propose to also recover the metric

scale of the scene from a single image by imposing a loss

on the magnitude of the translation for the pose network

output. Table 3 shows that introducing this weak velocity

supervision at training time allows the generation of scale-

aware depth models with similar performance as their un-

scaled counterparts, with the added benefit of not requiring

ground-truth depth scaling (or even velocity information) at

test-time. Another benefit of scale-awareness is that we can

compose metrically accurate trajectories directly from the

output of the pose network. Due to space constraints, we

report pose estimation results in supplementary material.

Figure 5: PackNet pointcloud reconstructions on DDAD.

Method Abs Rel Sq Rel RMSE RMSElog δ1.25

Monodepth2 (R18) 0.381 8.387 21.277 0.371 0.587

Monodepth2‡ (R18) 0.213 4.975 18.051 0.340 0.761
Monodepth2 (R50) 0.324 7.348 20.538 0.344 0.615

Monodepth2‡ (R50) 0.198 4.504 16.641 0.318 0.781
PackNet-SfM 0.162 3.917 13.452 0.269 0.823

Table 2: Depth Evaluation on DDAD, for 640 x 384 reso-

lution and distances up to 200m. While the ResNet family

heavily relies on large-scale supervised ImageNet [9] pre-

training (denoted by ‡), PackNet achieves significantly bet-

ter results despite being trained from scratch.

Figure 6: Depth Evaluation on DDAD binned at differ-

ent intervals, calculated independently by only considering

ground-truth depth pixels in that range (0-20m, 20-40m, ...).

5.5. Network Complexity

The introduction of packing and unpacking as alterna-

tives to standard downsampling and upsampling operations

increases the complexity of the network, due to the num-

ber of added parameters. To ensure that the gain in perfor-

mance shown in our experiments is not only due to an in-

crease in model capacity, we compare different variations of

our PackNet architecture (obtained by modifying the num-

ber of layers and feature channels) against available ResNet

architectures. These results are depicted in Fig. 8 and show

that, while the ResNet family stabilizes with diminishing

returns as the number of parameters increase, the PackNet

family matches its performance at around 70M parameters

and further improves as more complexity is added. Finally,

the proposed architecture (Table 1) reaches around 128M

parameters with an inference time of 60ms on a Titan V100

GPU, which can be further improved to < 30ms using Ten-

sorRT [1], making it suitable for real-time applications.
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Method Supervision Resolution Dataset Abs Rel Sq Rel RMSE RMSElog δ < 1.25 δ < 1.25
2

δ < 1.25
3

O
ri

g
in

al
[1

3
]

SfMLearner [52] M 416 x 128 CS + K 0.198 1.836 6.565 0.275 0.718 0.901 0.960
Vid2Depth [33] M 416 x 128 CS + K 0.159 1.231 5.912 0.243 0.784 0.923 0.970
DF-Net [53] M 576 x 160 CS + K 0.146 1.182 5.215 0.213 0.818 0.943 0.978
Struct2Depth [5] M 416 x 128 K 0.141 1.026 5.291 0.215 0.816 0.945 0.979

Zhou et al.‡ [50] M 1248 x 384 K 0.121 0.837 4.945 0.197 0.853 0.955 0.982

Monodepth2‡ [18] M 640 x 192 K 0.115 0.903 4.863 0.193 0.877 0.959 0.981

Monodepth2‡ [18] M 1024 x 320 K 0.115 0.882 4.701 0.190 0.879 0.961 0.982

PackNet-SfM M 640 x 192 K 0.111 0.785 4.601 0.189 0.878 0.960 0.982
PackNet-SfM M+v 640 x 192 K 0.111 0.829 4.788 0.199 0.864 0.954 0.980
PackNet-SfM M 640 x 192 CS + K 0.108 0.727 4.426 0.184 0.885 0.963 0.983
PackNet-SfM M+v 640 x 192 CS + K 0.108 0.803 4.642 0.195 0.875 0.958 0.980

PackNet-SfM M 1280 x 384 K 0.107 0.802 4.538 0.186 0.889 0.962 0.981
PackNet-SfM M+v 1280 x 384 K 0.107 0.803 4.566 0.197 0.876 0.957 0.979
PackNet-SfM M 1280 x 384 CS + K 0.104 0.758 4.386 0.182 0.895 0.964 0.982
PackNet-SfM M+v 1280 x 384 CS + K 0.103 0.796 4.404 0.189 0.881 0.959 0.980

Im
p

ro
v
ed

[4
1
]

SfMLeaner [52] M 416 x 128 CS + K 0.176 1.532 6.129 0.244 0.758 0.921 0.971
Vid2Depth [33] M 416 x 128 CS + K 0.134 0.983 5.501 0.203 0.827 0.944 0.981
GeoNet [47] M 416 x 128 CS + K 0.132 0.994 5.240 0.193 0.883 0.953 0.985
DDVO [43] M 416 x 128 CS + K 0.126 0.866 4.932 0.185 0.851 0.958 0.986
EPC++ [32] M 640 x 192 K 0.120 0.789 4.755 0.177 0.856 0.961 0.987

Monodepth2‡ [18] M 640 x 192 K 0.090 0.545 3.942 0.137 0.914 0.983 0.995

Kuznietsov et al.‡ [28] D 621 x 187 K 0.089 0.478 3.610 0.138 0.906 0.980 0.995

DORN‡ [14] D 513 x 385 K 0.072 0.307 2.727 0.120 0.932 0.984 0.995

PackNet-SfM M 640 x 192 K 0.078 0.420 3.485 0.121 0.931 0.986 0.996
PackNet-SfM M 1280 x 384 CS + K 0.071 0.359 3.153 0.109 0.944 0.990 0.997
PackNet-SfM M+v 1280 x 384 CS + K 0.075 0.384 3.293 0.114 0.938 0.984 0.995

Table 3: Quantitative performance comparison of PackNet-SfM on the KITTI dataset for distances up to 80m. For

Abs Rel, Sq Rel, RMSE and RMSElog lower is better, and for δ < 1.25, δ < 1.252 and δ < 1.253 higher is better. In the

Dataset column, CS+K refers to pretraining on CityScapes (CS) and fine-tuning on KITTI (K). M refers to methods that train

using monocular (M) images, and M+v refers to added velocity weak supervision (v), as shown in Section 3.2. ‡ indicates

ImageNet [9] pretraining. Original uses raw depth maps from [13] for evaluation, and Improved uses annotated depth maps

from [41]. At test-time, all monocular methods (M) scale estimated depths with median ground-truth LiDAR information.

Velocity-scaled (M+v) and supervised (D) methods are not scaled in such way, since they are already metrically accurate.

Input image PackNet-SfM Monodepth2 [18] DORN [14] SfMLearner [52]

Figure 7: Qualitative monocular depth estimation performance comparing PackNet with previous methods, on frames

from the KITTI dataset (Eigen test split). Our method is able to capture sharper details and structure (e.g., on vehicles,

pedestrians, and thin poles) thanks to the learned preservation of spatial information.
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Figure 8: Performance of different depth network ar-

chitectures for varying numbers of parameters on the

original KITTI Eigen split [13] with resolutions of 640 x

192 (MR) and 1280 x 384 (HR). While the ResNet family

plateaus at 70M parameters, the PackNet family matches its

performance at the same number of parameters for MR, out-

performs it clearly for HR, and improves significantly with

more parameters in both cases without overfitting.

The PackNet family is also consistently better at higher

resolution, as it properly preserves and propagates spatial

information between layers. In contrast, as reported in prior

works [18], ResNet architectures do not scale well, with

only minor improvements at higher resolution.

5.6. Ablation Studies

To further study the performance improvements that

PackNet provides, we perform an ablative analysis on the

different architectural components introduced, as depicted

in Table 4. We show that the base architecture, without

the proposed packing and unpacking blocks, already pro-

duces a strong baseline for the monocular depth estimation

task. The introduction of packing and unpacking boosts

depth estimation performance, especially as more 3D con-

volutional filters are added, with new state-of-the-art results

being achieved by the architecture described in Table 1.

As mentioned in [14, 18], ResNet architectures highly

benefit from ImageNet pretraining, since they were origi-

nally developed for classification tasks. Interestingly, we

also noticed that the performance of pretrained ResNet ar-

chitectures degrades in longer training periods, due to catas-

trophic forgetting that leads to overfitting. The proposed

PackNet architecture, on the other hand, achieves state-of-

the-art results from randomly initialized weights, and can

be further improved by self-supervised pretraining on other

datasets, thus properly leveraging the large-scale availabil-

ity of unlabeled information thanks to its structure.

5.7. Generalization Capability

We also investigate the generalization performance of

PackNet, as evidence that it does not simply memorize train-

ing data but learns transferable discriminative features. To

assess this, we evaluate on the recent NuScenes dataset [4]

models trained on a combination of CityScapes and KITTI

(CS+K), without any fine-tuning. Results in Table 5 show

PackNet indeed generalizes better across a large spectrum of

Depth Network Abs Rel Sq Rel RMSE RMSElog δ1.25

ResNet18 0.133 1.023 5.123 0.211 0.845

ResNet18‡ 0.120 0.896 4.869 0.198 0.868
ResNet50 0.127 0.977 5.023 0.205 0.856

ResNet50‡ 0.117 0.900 4.826 0.196 0.873

PackNet
0.122 0.880 4.816 0.198 0.864

(w/o pack/unpack)
PackNet (D = 0) 0.121 0.922 4.831 0.195 0.869
PackNet (D = 2) 0.118 0.802 4.656 0.194 0.868
PackNet (D = 4) 0.113 0.818 4.621 0.190 0.875
PackNet (D = 8) 0.111 0.785 4.601 0.189 0.878

Table 4: Ablation study on the PackNet architecture, on

the standand KITTI benchmark for 640 x 192 resolution.

ResNetXX indicates that specific architecture [20] as en-

coder, with and without ImageNet [9] pretraining (denoted

with ‡). We also show results with the proposed PackNet

architecture, first without packing and unpacking (replaced

respectively with convolutional striding and bilinear upsam-

pling) and then with increasing numbers of 3D convolu-

tional filters (D = 0 indicates no 3D convolutions and the

corresponding reshape operations).

Method Abs Rel Sq Rel RMSE RMSElog δ1.25

ResNet18 0.218 2.053 8.154 0.355 0.650

ResNet18‡ 0.212 1.918 7.958 0.323 0.674
ResNet50 0.216 2.165 8.477 0.371 0.637

ResNet50‡ 0.210 2.017 8.111 0.328 0.697
PackNet 0.187 1.852 7.636 0.289 0.742

Table 5: Generalization capability of different depth net-

works, trained on both KITTI and CityScapes and evalu-

ated on NuScenes [4], for 640 x 192 resolution and dis-

tances up to 80m. ‡ denotes ImageNet [9] pretraining.

vehicles and countries (Germany for CS+K, USA + Singa-

pore for NuScenes), outperforming standard architectures

in all considered metrics without the need for large-scale

supervised pretraining on ImageNet.

6. Conclusion

We propose a new convolutional network architecture for

self-supervised monocular depth estimation: PackNet. It

leverages novel, symmetrical, detail-preserving packing and

unpacking blocks that jointly learn to compress and decom-

press high resolution visual information for fine-grained

predictions. Although purely trained on unlabeled monoc-

ular videos, our approach outperforms other existing self-

and semi-supervised methods and is even competitive with

fully-supervised methods while able to run in real-time. It

also generalizes better to different datasets and unseen en-

vironments without the need for ImageNet pretraining, es-

pecially when considering longer depth ranges, as assessed

up to 200m on our new DDAD dataset. Additionally, by

leveraging during training only weak velocity information,

we are able to make our model scale-aware, i.e. producing

metrically accurate depth maps from a single image.
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[7] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-

iter. Fast and accurate deep network learning by exponential

linear units (elus). In ICLR, 2016. 4

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In IEEE

conference on computer vision and pattern recognition,

pages 3213–3223, 2016. 5, 6

[9] Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai Li, and Li

Fei-fei. Imagenet: A large-scale hierarchical image database.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2009. 6, 7, 8

[10] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.

Density estimation using real nvp. In ICLR, 2017. 4

[11] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou

Tang. Image super-resolution using deep convolutional net-

works. IEEE Trans. Pattern Anal. Mach. Intell., 38(2):295–

307, Feb. 2016. 4

[12] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip

Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van

Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:

Learning optical flow with convolutional networks. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 2758–2766, 2015. 2

[13] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map

prediction from a single image using a multi-scale deep net-

work. In Advances in neural information processing systems,

pages 2366–2374, 2014. 2, 5, 6, 7, 8

[14] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-

manghelich, and Dacheng Tao. Deep ordinal regression net-

work for monocular depth estimation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2002–2011, 2018. 6, 7, 8

[15] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian

Reid. Unsupervised cnn for single view depth estimation:

Geometry to the rescue. In European Conference on Com-

puter Vision, pages 740–756. Springer, 2016. 2, 3

[16] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The kitti dataset. The Inter-

national Journal of Robotics Research, 32(11):1231–1237,

2013. 2, 5

[17] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. In CVPR, volume 2, page 7, 2017. 2,

3

[18] Clément Godard, Oisin Mac Aodha, Michael Firman, and

Gabriel J. Brostow. Digging into self-supervised monocular

depth prediction. In ICCV, 2019. 3, 6, 7, 8

[19] Benjamin Graham. Fractional max-pooling.

arXiv:1412.607, 2015. 2, 4

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1, 8

[21] Jrn-Henrik Jacobsen, Arnold W.M. Smeulders, and Edouard

Oyallon. i-revnet: Deep invertible networks. In International

Conference on Learning Representations, 2018. 4

[22] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.

Spatial transformer networks. In Advances in neural infor-

mation processing systems, pages 2017–2025, 2015. 2

[23] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task

learning using uncertainty to weigh losses for scene geome-

try and semantics. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 7482–

7491, 2018. 1

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[25] Durk P Kingma and Prafulla Dhariwal. Glow: Generative

flow with invertible 1x1 convolutions. In Advances in Neural

Information Processing Systems, 2018. 4

[26] Maria Klodt and Andrea Vedaldi. Supervising the new with

the old: Learning sfm from sfm. In European Conference on

Computer Vision, pages 713–728. Springer, 2018. 2

[27] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Re-

visiting self-supervised visual representation learning. arXiv

preprint arXiv:1901.09005, 2019. 1

[28] Yevhen Kuznietsov, Jörg Stückler, and Bastian Leibe. Semi-

supervised deep learning for monocular depth map predic-

tion. In IEEE Conference on Computer Vision and Pattern

Recognition, pages 6647–6655, 2017. 6, 7

[29] Chen-Yu Lee, Patrick Gallagher, and Zhuowen Tu. Gener-

alizing pooling functions in convolutional neural networks:

Mixed, gated, and tree. In International Conference on Arti-

ficial Intelligence and Statistics (AISTATS), 2016. 2

[30] Kuan-Hui Lee, German Ros, Jie Li, and Adrien Gaidon. Spi-

gan: Privileged adversarial learning from simulation. In

ICLR, 2019. 1

[31] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

2493



ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3431–3440, 2015. 2

[32] C. Luo, Z. Yang, P. Wang, Y. Wang, W. Xu, R. Nevatia, and

A. Yuille. Every pixel counts++: Joint learning of geometry

and motion with 3d holistic understanding. arXiv preprint

arXiv:1810.06125, 2018. 7

[33] Reza Mahjourian, Martin Wicke, and Anelia Angelova. Un-

supervised learning of depth and ego-motion from monoc-

ular video using 3d geometric constraints. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5667–5675, 2018. 1, 2, 3, 6, 7

[34] Fabian Manhardt, Wadim Kehl, and Adrien Gaidon. Roi-

10d: Monocular lifting of 2d detection to 6d pose and metric

shape. IEEE Conference on Computer Vision and Pattern

Recognition, 2018. 1

[35] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4040–4048, 2016. 2, 5

[36] Jeff Michels, Ashutosh Saxena, and Andrew Y Ng. High

speed obstacle avoidance using monocular vision and rein-

forcement learning. In 22nd international conference on Ma-

chine learning, pages 593–600. ACM, 2005. 1

[37] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In NIPS-W, 2017. 5

[38] Sudeep Pillai, Rares Ambrus, and Adrien Gaidon. Su-

perdepth: Self-supervised, super-resolved monocular depth

estimation. In Robotics and Automation (ICRA), 2019 IEEE

International Conference on, 2018. 2, 6

[39] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,

Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1874–1883, 2016. 2, 4

[40] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15:1929–1958, 2014. 4

[41] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and

A. Geiger. Sparsity invariant cnns. 3DV, 2017. 5, 6, 7

[42] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Niko-

laus Mayer, Eddy Ilg, Alexey Dosovitskiy, and Thomas

Brox. Demon: Depth and motion network for learning

monocular stereo. In IEEE Conference on computer vision

and pattern recognition (CVPR), volume 5, page 6, 2017. 2
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