
Attentive Weights Generation for Few Shot Learning via

Information Maximization

Yiluan Guo, Ngai-Man Cheung

Singapore University of Technology and Design

yiluan guo@mymail.sutd.edu.sg, ngaiman cheung@sutd.edu.sg

Abstract

Few shot image classification aims at learning a clas-

sifier from limited labeled data. Generating the classi-

fication weights has been applied in many meta-learning

methods for few shot image classification due to its sim-

plicity and effectiveness. In this work, we present Attentive

Weights Generation for few shot learning via Information

Maximization (AWGIM), which introduces two novel con-

tributions: i) Mutual information maximization between

generated weights and data within the task; this enables

the generated weights to retain information of the task and

the specific query sample. ii) Self-attention and cross-

attention paths to encode the context of the task and in-

dividual queries. Both two contributions are shown to be

very effective in extensive experiments. Overall, AWGIM

is competitive with state-of-the-art. Code is available at

https://github.com/Yiluan/AWGIM .

1. Introduction

While deep learning methods achieve great success in

computer vision [14], natural language processing [9], re-

inforcement learning [38], their hunger for large amount of

labeled data limits the application scenarios where only few

data are available for training. Humans, in contrast, are able

to learn from limited data, which is desirable for deep learn-

ing methods. Few shot learning is thus proposed to enable

deep models to learn from very few samples [10].

Meta learning is a promising approach for few shot prob-

lems [43, 11, 39, 33, 36]. In meta learning approaches,

the model extracts high level knowledge across different

tasks so that it can adapt itself quickly to a new-coming task

[37, 2]. There are several kinds of meta learning methods

for few shot learning, such as gradient-based [11, 33] and

metric-based [39, 41]. Weights generation, among these

different methods, has shown effectiveness with simple for-

mulation [31, 32, 12, 13]. In general, weights generation

methods learn to generate the classification weights for dif-

ferent tasks conditioned on the limited labeled data. How-

ever, fixed classification weights for different query samples

within one task could be sub-optimal.

In this work, we present Attentive Weights Generation

for few shot learning via Information Maximization

(AWGIM) to address the limitation. AWGIM models

the probability distribution of classification weights condi-

tioned on the whole support set and individual query sam-

ple. In our model, two paths composed of attention blocks

are employed to encode contextual and query-specific infor-

mation. However, we show in experiments that cross atten-

tion between query samples and support set is not adequate

to generate classification weights that are adaptive to diverse

query data. In particular, some query-specific information

is lost during weights generation.

To address this issue, we take inspiration from

InfoGAN[6]. In particular, when training GAN, [6] pro-

poses to learn disentangled representation by maximizing

the mutual information (MI) between a structured latent

code and the generator output. The MI maximization helps

retain the information of the structured latent code in the

generator output. In a similar spirit, we apply MI maxi-

mization in order to retain the information of query/support

samples in the generated weights. Our contributions are:

• We solve the weights generation problem for few shot

classification by maximizing the mutual information

between generated weights and support/query data.

With MI maximization, the weights generator is able

to generate classification weights that adapt to diverse

query samples.

• We propose to encode the task context and individual

query sample in two separate paths. Attention mech-

anism is applied in both paths to capture the context

information.

• We conduct extensive experiments and show that

AWGIM compares favorably to state-of-the-art meth-

ods. We also conduct detailed analysis to validate the

contribution of each component in AWGIM. The in-

113499

duced computational overhead is minimal due to the

nature of few shot problems. Adaptive classification

weights generating also results in faster convergence.

2. Related Works

2.1. Few Shot Learning

Learning from few labeled training data has received

growing attentions recently. Most successful existing meth-

ods apply meta learning to solve this problem and can be

divided into several categories. In the gradient-based ap-

proaches, an optimal initialization for all tasks is learned

[11]. [33] learned a meta-learner LSTM directly to opti-

mize the given few shot classification task. [40] learned the

transformation for activations of each layer by gradients to

better suit the current task. In the metric-based methods,

a similarity metric between query and support samples is

learned. [19, 43, 39, 41, 23]. Spatial information or lo-

cal image descriptors are also considered in some works to

compute richer similarities [25, 24, 45].

Generating the classification weights directly has been

explored by some works. [12] generated classification

weights as linear combinations of weights for base and

novel classes. Similarly, [32] and [31] both generated the

classification weights from activations of a trained feature

extractor. Graph neural network denoising auto-encoders

are used in [13]. [29] proposed to generate “fast weights”

from the loss gradient for each task. All these methods do

not consider generating different weights for different query

examples, nor maximizing the MI.

There are some other methods for few shot classifica-

tion. Generative models are used to generate or hallucinate

more data in [50, 44, 7]. [5] and [21] used the closed-form

solutions directly. [26] integrated label propagation on a

transductive graph to predict the query class label.

2.2. Attention

Attention mechanism shows great success in computer

vision [46, 30] and natural language processing [3, 42]. It

is effective in modeling the interaction between queries and

key-value pairs from certain context. Based on the fact that

keys and queries point to the same entities or not, people

refer to attention as self attention or cross attention. In this

work, we use both types of attention to encode the task and

query-task information. The most similar work is Attentive

Neural Processes [17], which also employ self and cross at-

tention. However, we are using attention for few shot image

classification via maximizing the MI. In stark contrast, [17]

works on regression from the perspective of stochastic pro-

cesses and the variational objective is optimized. There are

some works [47, 16] employing spatial attention to enhance

features while we do not rely on spatial cues and focus on

modeling the interactions with self/cross attention.

2.3. Mutual Information

Given two random variables x and y, mutual informa-

tion I(x; y) measures the decrease of uncertainty in one

random variable when another is known. It is defined as

the Kullback-Leibler divergence between joint distribution

p(x, y) and product of marginal distributions p(x)⊗ p(y),

I(x; y) = DKL(p(x, y)‖p(x)⊗ p(y)). (1)

When x and y are independent, p(x, y) = p(x) ⊗ p(y) so

that I(x, y) = 0, indicating that knowing x does not re-

veal any information about y. When y is a deterministic

function of x, I(x, y) achieves its maximum value. MI

has been widely applied in Generative Adversarial Net-

works [6], self-supervised learning [15], visual question

generation [20], etc.. Recently, MI is introduced in few

shot learning as a regularization for memorization problem

[48]. Specifically, MI between query labels and support

data is maximized or MI between query labels and meta

parameters is minimized. In [22], MI between learned bi-

nary codes and labels are maximized with a closed-form

solution. Instead, we solve the few shot classification prob-

lem directly by generating accurate weights with variational

lower bound of MI.

3. Proposed Method

In this section, we provide the problem formulation. We

then discuss the most related work and reveal its limitations.

We derive our objective function from theoretical analysis

in Section 3.3. The overall model is detailed in Section 3.4.

3.1. Problem Formulation

Following many popular meta-learning methods for few

shot classification, we formulate the problem under episodic

training paradigm [43, 11]. One N -way K-shot task T sam-

pled from an unknown task distribution P (T) includes sup-

port set and query set:

T = (S,Q), (2)

where S = {(xk
cn
,yk

cn
)|k = 1, ...,K;n = 1, ..., N},

Q = {(x̂1, ..., x̂|Q|)}. Support set S contains NK labeled

samples. Query set Q includes x̂ and we need to predict la-

bel ŷ for x̂ based on S . In the following discussion, we use

(xcn ,ycn) and (x̂, ŷ) to represent support (from class cn)

and query samples respectively. During meta-testing, the

performance of meta-learning method is evaluated on Q,

provided the labeled S . The classes used in meta-training

and meta-testing are disjoint so that the meta-learned model

needs to learn the high level knowledge transferable across

tasks and adapt itself quickly to novel tasks.

Our proposed approach follows the general framework to

generate the classification weights [31, 32, 36, 12, 13]. In

13500

SA
1

SA
2

CA

𝑔𝑔
𝑟𝑟1

𝐗𝐗𝑐𝑐𝑐𝑐

�𝐱𝐱𝑎𝑎𝑐𝑐 �𝐱𝐱𝑟𝑟𝑟𝑟𝑎𝑎𝑐𝑐

𝐗𝐗𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐
𝐖𝐖𝐗𝐗

�𝐱𝐱

𝑟𝑟2
�𝐲𝐲𝑐𝑐𝑟𝑟𝑟𝑟𝑝𝑝 𝒀𝒀𝑐𝑐𝑟𝑟𝑟𝑟𝑝𝑝

attentive path contextual path

SA

self-attention

CA

cross-attention information maximization

Figure 1. The overview of our proposed AWGIM. The input task is 5-way 1-shot with X as support set and x̂ as one query example.

Different colors of the data in support set indicate different categories. The encoding process in contextual path produces context-aware

support representations Xcp. Similarly, the attentive path enables the query sample x̂ to be equipped with task knowledge. Both paths are

achieved by attention mechanism. x̂ap is repeated to concatenate with X
cp. The weight generator g takes these concatenated representa-

tions as input to generate classification weights W specific for x̂, denoted by the colorful matrix with slash. W can be used to predict the

class label for x̂ and X. W is also used to reconstruct the inputs of the generator g by two networks r1 and r2. In this way, the lower

bound of mutual information is maximized and g is forced to generate classification weights sensitive to different query samples. During

meta-testing, r1 and r2 are discarded.

this framework, there is a feature extractor to output image

feature embeddings. The meta-learner needs to generate the

classification weights for different tasks.

3.2. Latent Embedding Optimization

Latent Embedding Optimization (LEO) [36] is one of the

weights generation methods that is most related to our work.

In LEO, a latent code z is generated by u conditioned on S ,

described as z = u(S). Classification weights w can be

decoded from z with generating function v, w = v(z). In

the inner loop, w is used to compute the loss (usually cross

entropy) on the support set and then update z:

z
′ = z − η∇zLS(w), (3)

where LS indicates that the loss is evaluated on S only. The

updated latent code z
′ is used to decode new classification

weights w′ with v. w′ is adopted in the outer loop for query

set Q and the objective function of LEO then can be written

as

min
θ

LQ(w
′), (4)

where θ stands for the parameters of u and v. LEO avoids

updating high-dimensional w in the inner loop by learning a

lower-dimensional latent space, from which sampled z can

be used to generate w.

There are two significant differences between LEO and

AWGIM. First, LEO relies on inner update (Equation 3) to

guide v to generate the weights suitable for the input tasks.

Instead, AWGIM is a feedforward network trained to max-

imize the MI so that it fits to different tasks well. Second,

AWGIM learns to generate optimal classification weights

for each query sample while LEO generates fixed weights

conditioned on the support set of one task.

3.3. Information Maximization for Weights Gener­
ation

Our goal is to generate classification weights for one

sampled task with few labeled training data. In other words,

we want to define model p(w|T) for one task T . It is

noted that the classification weights generated in LEO are

not sensitive to different query samples, which are also part

of the task T . To remedy this problem, we could encode

the query-specific information during generation of weights

and learn the model p(w|x̂,S) instead. However, informa-

tion on x̂ might be ignored during generation, which has

been observed in the experiments.

To address this limitation, we propose to maximize the

MI between generated weights w and query as well as sup-

port data. Without loss of generality, we consider classifica-

tion weight wi for class ci in the following discussion. The

objective function can be described as

max I((x̂, ŷ);wi) +
1

K

∑

K

I((xci ,yci);wi). (5)

According to the chain rule of MI, we have

I((x̂, ŷ);wi) = I(x̂;wi) + I(ŷ;wi|x̂). (6)

Equation 6 holds for both terms in 5. So the objective func-

13501

tion can be written as

max I(x̂;wi)+I(ŷ;wi|x̂)+
1

K

∑

K

[I(xci ;wi)+I(yci ;wi|xci)].

(7)

Directly computing the MI in Equation 7 is intractable since

the true posteriori distributions like p(ŷ|x̂,wi), p(x̂|wi) are

still unknown. Therefore, we use Variational Information

Maximization [4, 6] to compute the lower bound of Equa-

tion 5. We use pθ(x̂|wi) to approximate the true posteriori

distribution, where θ represents the model parameters. As a

result, we have

I(x̂;wi) = H(x̂)−H(x̂|wi)

= H(x̂) + Ewi∼p(w)[Ex̂∼p(x̂|wi)[log p(x̂|wi)]]

= H(x̂) + Ewi∼p(w)[DKL(p(x̂|wi)‖pθ(x̂|wi))

+Ex̂∼p(x̂|wi)[log pθ(x̂|wi)]]

≥ H(x̂) + Ewi∼p(w)[Ex̂∼p(x̂|wi)[log pθ(x̂|wi)]]

= H(x̂) + Ewi,x̂∼p(w,x̂)[log pθ(x̂|wi)]

= H(x̂) + Ex̂∼p(x̂)[Ewi∼p(w|x̂)[log pθ(x̂|wi)]]

(8)

H(·) is the entropy of a random variable. H(x̂) is a constant

value for given data. We can maximize this lower bound as

the proxy for the true MI.

Similar to I(x̂;wi),

I(ŷ;wi|x̂) ≥H(ŷ|x̂)+
Eŷ∼p(ŷ|x̂)[Ewi∼p(w|ŷ,x̂)[log pθ(ŷ|x̂,wi)]].

(9)

We can make the same derivation for the support data

(xci ,yci) from class ci. Put the lower bounds back into

Equation 7. Omit the constant entropy terms and the ex-

pectation subscripts for clarity, we have the new objective

function as

max
θ

E[log pθ(ŷ|x̂,wi) + log pθ(x̂|wi)+

1

K

∑

K

log pθ(yci |xci ,wi) + log pθ(xci |wi)].

(10)

The first and third terms are maximizing the log likelihood

of label for both support and query data with respective to

the network parameters, given the generated classification

weights. This is equivalent to minimizing the cross en-

tropy between prediction and ground-truth. Furthermore,

we assume that pθ(x̂|wi) and pθ(xci |wi) are Gaussian dis-

tributions. Therefore maximizing the log likelihood can be

achieved by minimizing L2 reconstruction loss. Overall,

applying MI maximization, we arrive at an objective func-

tion with cross entropy loss and reconstruction loss, which

will be discussed in Section 3.5.

3.4. Attentive Weights Generation

The framework of our proposed method is shown in Fig-

ure 1. Assume that we have a feature extractor, which can

be a simple 4-layer Convnet or a deeper Resnet. All the im-

ages included in the sampled task T are processed by this

feature extractor and represented as d-dimensional vectors

afterwards, i.e., x, x̂ ∈ R
d. There are two paths to encode

the task context and individual query sample respectively,

which are called contextual path and attentive path. The

outputs of both paths are concatenated together as input to

the generator for classification weights. Generated classifi-

cation weights are used to not only predict the label of x̂,

but also maximize the lower bound of MI.

3.4.1 Contextual and Attentive Paths

We use multi-head attention networks for encoding. The

use of attention mechanism is to model the interac-

tions/relations between samples within one task as the task-

specific property. Previous work has applied relation net-

works for this purpose[36]. We use more advanced multi-

head attention because of its advantage in modeling inter-

actions from different representation subspaces[42]. The

multi-head attention with H heads can be described as

MultiHead(Q,K, V) = Concat(head1, ..., headH)WO,

(11)

headj(Q
j ,Kj , V j) = Attention(Qj ,Kj , V j), (12)

Attention(Q,K, V) = softmax(
QKT

√
dk

V), (13)

Qj = QW
j
Q,K

j = KW
j
K , V i = VW

j
V , (14)

where Q,K, V are query, key, value matrices.

W
j
Q,W

j
K ,W

j
V are the weight matrices for jth head.

WO is the weight matrix for output. dk is the dimension of

keys. Original Q is added to the output of Equation 11 to

stabilize the training as residual learning.

The encoding process includes two paths, namely the

contextual path and attentive path. The contextual path aims

at learning representations for only the support set with

a multi-head self-attention network fθsa
cp

parameterized by

θsacp
1 [42], described as

Xcp = fθsa
cp
(Q = X,K = X, V = X). (15)

The outputs of contextual path Xcp ∈ R
NK×dh , thus con-

tain richer information about the task and can be used later

for weights generation. dh < d is the hidden dimension.

Existing weights generation methods generate the classi-

fication weights conditioned on the support set only, which

1
cp, sa stand for contextual path, self-attention respectively.

13502

is equivalent to using contextual path. However, the clas-

sification weights generated in this way might be sub-

optimal, lacking necessary adaptation to different query

samples. We address this issue by introducing an atten-

tive path, where the individual query example attends to the

task context and then is used to generate the classification

weights. Therefore, the classification weights are adaptive

to different query samples and aware of the task context as

well. In other words, our contextual/attentive path models

global/local task structure respectively.

In the attentive path, a new multi-head self-attention net-

work fθsa
ap

on the support set is employed to encode the

global task information,

Xap = fθsa
ap
(Q = X,K = X, V = X). (16)

fθsa
ap

is different from fθsa
cp

in contextual path because the

self-attention network in contextual path emphasizes on

generating the classification weights. On the contrary, Xap

plays the role of providing the V alue context to be at-

tended by different query samples in the following cross

attention. Sharing the same self-attention networks might

limit the expressiveness of learned representations in both

paths. The cross attention network fθca
ap

applied on each

query sample and task-aware support set is followed to pro-

duce x̂ap ∈ R
dh ,

x̂ap = fθca
ap
(Q = x̂,K = X, V = Xap). (17)

3.4.2 Weights Generator

The outputs of contextual path Xcp ∈ R
NK×dh are con-

catenated with x̂ap ∈ R
dh . Then we have Xcp⊕ap ∈

R
NK×2dh . Xcp⊕ap is specific for one query to generate

classification weights.

Xcp⊕ap is fed into the weights generator g : R
2dh →

R
2d, parameterized by θg . We assume that the classification

weights follow Gaussian distribution with diagonal covari-

ance. g outputs the distribution parameters and we sample

the weights from learned distribution with reparameteriza-

tion trick [18], shown in Equation 18 and 19.

µwi
,σwi

= g(xcp⊕ap
ci

) (18)

wi|x̂,xci ∼ N (µwi
,Σwi

) (19)

Σwi
is the covariance matrix with σwi

as diagonal en-

tries. The sampled classification weights are represented

as W ∈ R
NK×d. To reduce complexity, we compute the

mean value on K classification weights for each class to

have Wfinal ∈ R
N×d. The prediction for query data can

be computed by Wfinalx̂. The prediction for support data

can also be computed as Wfinalxci .

Besides the weights generator g, we have another two

decoders r1 : Rd → R
dh and r2 : Rd → R

dh , parameter-

ized by θr1 and θr2 . They both take the generated weights

W as inputs and are used to learn pθ(x̂|wi) and pθ(xci |wi)
in Equation 10. In other words, r1 and r2 learn to recon-

struct xcp
ci

and x̂ap respectively since xcp
ci

and x̂ap are the

direct inputs to g. The outputs of r1 and r2 are denoted as

xcp
ci,re

, x̂ap
re ∈ R

dh .

3.5. Training and Inference

The objective function 10 used during meta-training is

equivalent to

min
θsa
cp ,θ

sa
ap,θ

ca
ap,θg

CE(ŷpred, ŷ) +
λ1

K

∑

K

CE(ypred,ci ,yci)

+ min
θg,θr1 ,θr2

λ2

K

∑

K

||xcp
ci

− x
cp
ci,re||2 + λ3||x̂ap − x̂ap

re ||2.

(20)

CE here stands for cross entropy. Since we convert the log

likelihood in Equation 10 to mean square error or cross en-

tropy in Equation 20 to optimize, the value of each term in

Equation 20 is different from the corresponding log likeli-

hood in Equation 10 by some constant multiplier. Thus, we

have to decide the hyper-parameters λ1, λ2, λ3 for trade-off

of different terms. The reconstruction loss is used to update

r1, r2 for reconstruction and g for weights generation. This

is because we want the attention modules in two paths to

focus on encoding expressive representations for following

classification. With the help of last three terms, the gener-

ated classification weights are forced to carry information

about the support data and the specific query sample. It

should be noted that this loss function is computed for one

query example in one task. During meta training, there are

certain number of query samples in one task and multiple

tasks in one batch, which are used to compute average of

Equation 20. In meta-testing, µwi
is used as the classifica-

tion weight for class ci without sampling.

3.6. Complexity Analysis

The encoding process in contextual path results in com-

putational complexity O((NK)2) due to self-attention.

Similarly, the computational complexity of attentive path

is O((NK)2 + |Q|(NK)). In total, the complexity is

O((NK)2+ |Q|(NK)). However, because of the nature of

few shot learning problem, the value of (NK)2 is usually

negligible. The value of |Q| is task-dependent and the cross

attention can be implemented in parallel via matrix multi-

plication. Besides, AWGIM avoids the inner update without

compromising the performance, further reducing inference

time. Therefore, when |Q| is not extremely large, the in-

duced computational overhead will be negligible.

13503

Table 1. Accuracy comparison with other approaches on miniImageNet. Top 3 results are highlighted. We remark that our AWGIM is

trained with fixed image features in order to have fair comparison with LEO [36]. On the contrary, MetaOptNet [21] is trained with a

feature extractor end-to-end. The same for the results on tieredImageNet.

Model Feature Extractor 5-way 1-shot 5-way 5-shot

Matching Networks [43] Conv-4 46.60 60.00

MAML[11] Conv-4 48.70 ± 1.84% 63.11 ± 0.92%

Meta LSTM [33] Conv-4 43.44 ± 0.77% 60.60 ± 0.71%

Prototypical Nets [39] Conv-4 49.42 ± 0.78% 68.20 ± 0.66%

Relation Nets [41] Conv-4 50.44 ± 0.82% 65.32 ± 0.70%

SNAIL [28] Resnets-12 55.71 ± 0.99% 68.88 ± 0.92%

TPN [26] Resnets-12 59.46 75.65

MTL [40] Resnets-12 61.20 ± 1.80% 75.50 ± 0.80

MetaOptNet [21] Resnets-12 64.09 ± 0.62% 80.00 ± 0.45%

Dynamic [12] WRN-28-10 60.06 ± 0.14% 76.39 ± 0.11%

Prediction [32] WRN-28-10 59.60 ± 0.41% 73.74 ± 0.19%

DAE-GNN [13] WRN-28-10 62.96 ± 0.15% 78.85 ± 0.10%

LEO [36] WRN-28-10 61.76 ± 0.08% 77.59 ± 0.12%

AWGIM WRN-28-10 63.12 ± 0.08% 78.40 ± 0.11%

Table 2. Accuracy comparison with other approaches on tieredImageNet. Top 3 results are highlighted.

Model Feature Extractor 5-way 1-shot 5-way 5-shot

MAML [11] Conv-4 51.67 ± 1.81% 70.30 ± 1.75%

Prototypical Nets [39] Conv-4 53.31± 0.89% 72.69 ± 0.74%

Relation Nets [41] Conv-4 54.48 ± 0.93% 71.32 ± 0.78%

TPN [26] Conv-4 59.91 ± 0.96% 72.85 ± 0.74%

MetaOptNet [21] Resnets-12 65.81 ± 0.74% 81.75 ± 0.53%

Dynamic [12] WRN-28-10 67.92 ± 0.16% 83.10 ± 0.12%

DAE-GNN [13] WRN-28-10 68.18 ± 0.16% 83.09 ± 0.12%

LEO [36] WRN-28-10 66.33 ± 0.05% 81.44 ± 0.09%

AWGIM WRN-28-10 67.69 ± 0.11% 82.82 ± 0.13%

4. Experiments

4.1. Datasets and Protocols

We conduct experiments on miniImageNet [43] and

tieredImageNet [34], two commonly used benchmark

datasets, to compare with other methods and analyze our

model. Both datasets are subsets of ILSVRC-12 dataset

[35]. miniImageNet contains 100 randomly sampled classes

with 600 images per class. We follow the train/test split in

[33], where 64 classes are used for meta-training, 16 for

meta-validation and 20 for meta-testing. tieredImageNet

is a larger dataset with 608 classes and 779,165 images

in total. They are selected from 34 higher level nodes in

ImageNet [8] hierarchy. 351 classes from 20 high level

nodes are used for meta-training, 97 from 6 nodes for meta-

validation and 160 from 8 nodes for meta-testing.

For fair comparison, we use the same image features in

LEO [36] provided by the authors 2. They trained a 28-

layer Wide Residual Network [49] on the meta-training set.

Each image then is represented by a 640 dimensional vector,

which is used as the input to our network.

For N -way K-shot experiments, we randomly sample

2https://github.com/deepmind/leo

N classes from meta-training set and each of them contains

K samples as the support set and 15 as query set. Similar

to other works, we train 5-way 1-shot and 5-shot models.

During meta-testing, 600 N -way K-shot tasks are sampled

from meta-testing set and the average accuracy for query set

is reported with 95% confidence interval, as done in recent

works [11, 39, 36].

4.2. Implementation Details

We use TensorFlow [1] to implement our method. d =
640 is the dimension of feature embeddings. dh is set to

be 128. The number of heads H in attention module is set

to be 4. g, r1 and r2 are 2-layer MLPs with 256 hidden

units. We use λ1 = 1, λ2 = λ3 = 0.001 by meta-validation

performance.

ADAMW [27] is used to optimize the network with

weight decay 1 × 10−6. The initial learning rate is set to

0.0002 for 5-way 1-shot and 0.001 for 5-way 5-shot, which

is decayed by 0.2 for every 15,000 iterations. We train the

model for 50,000 iterations. Batch size is 64 for 5-way 1-

shot and 32 for 5-way 5-shot. Similar to LEO [36], we first

train the model on meta-training set and choose the optimal

hyper-parameters by validation results. Then we train the

model on meta-training and meta-validation sets together

13504

Table 3. Analysis of our proposed AWGIM. In the top half, the attentive path is removed to compare with LEO. In the bottom part, ablation

analysis with respective to different components is provided. We also shuffle the generated classification weights randomly to show that

they are indeed optimal for different query samples.

Model
miniImageNet tieredImageNet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

LEO 61.76 % 77.59 % 66.33% 81.44 %

Generator in LEO 60.33 % 74.53 % 65.17% 78.77 %

Generator conditioned on S only 61.02% 74.33% 66.22% 79.66%

Generator conditioned on S with IM 62.04% 77.54% 66.43% 81.73%

MLP encoding (i.e. no attention) 62.26% 76.91% 65.84% 79.24%

MLP encoding, λ1 = λ2 = λ3 = 0 58.95% 71.68% 63.92% 75.80%

λ1 = λ2 = λ3 = 0 61.61% 74.14% 65.65% 79.93%

λ1 = λ2 = 0 62.06% 74.18% 65.85% 80.42%

λ3 = 0 62.91% 77.88% 67.27% 81.67%

λ1 = 0 62.19% 74.21% 66.82% 80.61%

λ2 = λ3 = 0 62.12% 77.65% 66.86% 81.03%

random shuffle in class 62.87% 77.48% 67.52% 82.55%

random shuffle between classes 61.20% 77.48% 66.55% 82.53%

AWGIM (ours) 63.12% 78.40% 67.69% 82.82%

using fixed hyper-parameters.

4.3. Comparison with Other Methods

We compare the performance of our approach AWGIM

on two datasets with several state-of-the-art methods pro-

posed in recent years. The results of MAML, Prototyp-

ical Nets, Relation Nets on tieredImageNet are evaluated

by [26]. The results of Dynamic on miniImageNet with

WRN-28-10 as the feature extractor are reported in [13].

The other results are reported in the corresponding original

papers. We also include the backbone network of feature

extractor for reference. The results on miniImageNet and

tieredImageNet are shown in Table 1 and 2 respectively.

The top half parts of Table 1 and 2 display the meth-

ods belonging with different meta learning categories, such

as metric-based(Matching Networks [43], Prototypical Nets

[39]), gradient-based (MAML [11], MTL [40]), graph-

based (TPN [26]). The bottom part shows the classifi-

cation weights generation approaches including Dynamic

[12], Prediction [32], DAE-GNN [13], LEO [36].

AWGIM achieves top 3 highest accuracy on both

datasets and compares favorably to the best results. In par-

ticular, AWGIM can outperform LEO in all settings. It

should be noted that AWGIM is trained with fixed image

features extracted from WRN-28-10 in order to have fair

comparison with LEO. On the contrary, MetaOptNet [21]

is trained with a feature extractor end-to-end. From Table

4 in the MetaOptNet paper [21], we can see that large parts

of performance gains stem from the strong feature extrac-

tor. Several training techniques including data augmenta-

tion, weight decay, drop block and so on boost the perfor-

mance significantly.

4.4. Analysis

We perform detailed analysis on AWGIM, shown in Ta-

ble 3. We include the results of LEO [36] for reference.

The effect of attentive path is shown in the upper part

of Table 3. “Generator in LEO” means that there is no inner

update in LEO. We implemented two generators including

only the contextual path during encoding. “Generator con-

ditioned on S only” is trained with cross entropy on query

set, which is similar to “Generator in LEO” without inner

update. It is able to achieve similar or slightly better results

than “Generator in LEO”, which implies that self-attention

on support set is no worse than relation networks used in

LEO to model task-context. “Generator conditioned on S
with IM” indicates that we add the cross entropy loss and

reconstruction loss for support set. With information maxi-

mization, our generator is able to obtain slightly better per-

formance than LEO.

The effect of attention is investigated by replacing the

attention modules with 2-layer MLPs, which is shown as

“MLP encoding”. More specifically, one MLP in con-

textual path is used for support set and another MLP in

attentive path for query samples. We can see that even

without attention to encode the task-contextual information,

“MLP encoding” can achieve accuracy close to LEO, for

the sake of information maximization. However, if we let

λ1 = λ2 = λ3 = 0 for MLP encoding, the performance

drops significantly, which demonstrates the importance of

maximizing the information.

The contribution of multi-head attention is further

clarified in Table 4. We replace the multi-head attention in

the two paths with single-head attention and conduct the 5-

way 1-shot and 5-way 5-shot experiments on miniImageNet

dataset. We can see clearly that multi-head attention im-

proves the performance. In particular, for 1-shot experi-

ment, single head attention gives results close to MLP en-

coding, which indicates that single head attention struggles

when labeled support data are extremely scarce.

Ablation analysis with respective to λ1, λ2 and λ3 is

conducted to study the effect of information maximization.

13505

Table 4. Accuracy results on miniImageNet with 4 heads or single

head in attention networks.

Method 5-way 1-shot 5-way 5-shot

4 heads 63.12% 78.40%

single head 62.35% 77.75%

First, λ1, λ2 and λ3 are all set to be 0. In this case, the accu-

racy is similar to “generator conditioned on S only”, show-

ing that the generated classification weights are not fitted

for current tasks, even with the attentive path. It can also be

observed that maximizing the MI between weights and sup-

port is more crucial since λ1 = λ2 = 0 degrades accuracy

significantly, comparing with λ3 = 0. We further investi-

gate the relative importance of the classification on support

as well as reconstruction. λ1 = 0 affects the performance

noticeably, which implies that the support label prediction

is more critical for information maximization.

Whether the classification weights are adapted for

different query samples is investigated by shuffling the

classification weights. In particular, we shuffle the clas-

sification weights between query samples within the same

classes and between different classes as well. Assume there

are T query samples per class in one task. W
final ∈

R
|Q|×N×d can be reshaped into W

final ∈ R
N×T×N×d.

Then we shuffle this weight tensor along the first and sec-

ond axis randomly. The results are shown as “random shuf-

fle between classes” and “random shuffle in class” in Table

3. For 5-way 1-shot experiments, the random shuffle be-

tween classes degrades the accuracy noticeably while the

random shuffle in class dose not affect too much. This indi-

cates that when the support data are very limited, the gen-

erated weights for query samples from the same class are

very similar to each other while distinct for different classes.

When there are more labeled data in support set, two kinds

of random shuffle show very close or even the same results

in 5-way 5-shot experiments, which are both worse than the

original ones. This implies that the generated classification

weights are more diverse and specific for each query sample

in 5-way 5-shot setting. The possible reason is that larger

support set provides more knowledge to estimate the opti-

mal classification weights for each query example.

4.5. Convergence

We compare AWGIM with LEO in terms of convergence

speed. The batch size is set to be 16 for both methods. We

use the hyper-parameters tuned by authors to train LEO.

The accuracy of meta-validation set during meta-training on

5-way 1-shot miniImageNet is plotted, shown in Figure 2.

We can see clearly that AWGIM converges faster than LEO

and outperforms LEO except for the first few iterations.

4.6. Inference Time Cost

We measure the inference time of AWGIM to show that

it induces minimal computational overhead. One MLP in

0 2000 4000 6000 8000 10000
iteration

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

m
et

a-
va

lid
at

io
n

ac
cu

ra
cy

AWGIM
LEO

Figure 2. The meta-validation accuracy during meta-training.

both paths and LEO are compared to AWGIM, which have

time complexity O(NK + |Q|) and O((NK)2). Since the

time complexity of AWGIM and MLP depends on |Q|, we

test different number of query samples. We use two set-ups

on miniImageNet and the batch size is set to be 64. 100

batches are processed and we report the average consumed

time for one batch. All these experiments are conducted on

the same computing device. The results are shown in Table

5. It can be observed that when |Q| is small, AWGIM is

faster than LEO due to avoiding inner update. When |Q| is

large, both MLP and AWGIM performs slower. Noticeably,

the usage of self-attention and cross attention in AWGIM

incurs negligible overhead, compared with MLP encoding.

Table 5. Inference time cost of AWGIM and MLP encoding.

Method
5-way 1-shot 5-way 5-shot

|Q| = 5 |Q| = 50 |Q| = 5 |Q| = 50

MLP 0.015s 0.031s 0.021s 0.076s

LEO 0.029s 0.032s 0.033s 0.039s

AWGIM 0.019s 0.036s 0.025s 0.079s

5. Conclusion

In this work, we introduce Attentive Weights Genera-

tion via Information Maximization for few shot image clas-

sification. AWGIM learns to generate optimal classifica-

tion weights for each query sample within the task by two

encoding paths. To this end, the lower bound of mutual

information between generated weights and query, sup-

port data is maximized. The effectiveness of AWGIM is

demonstrated by competitive performance on two bench-

mark datasets and extensive analysis.

6. Acknowledgments

This work was supported by ST Electronics and the

National Research Foundation(NRF), Prime Minister’s Of-

fice, Singapore under Corporate Laboratory @ University

Scheme (Programme Title: STEE Infosec - SUTD Corpo-

rate Laboratory), National Research Foundation Singapore

under its AI Singapore Programme [Award Number: AISG-

100E2018-005] and partially supported by the Energy Mar-

ket Authority (EP award no. NRF2017EWT-EP003-061).

13506

References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy

Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:

Large-scale machine learning on heterogeneous distributed

systems. arXiv preprint arXiv:1603.04467, 2016.

[2] Marcin Andrychowicz, Misha Denil, Sergio Gomez,

Matthew W Hoffman, David Pfau, Tom Schaul, Brendan

Shillingford, and Nando De Freitas. Learning to learn by

gradient descent by gradient descent. In NeurIPS, 2016.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

Neural machine translation by jointly learning to align and

translate. In ICLR, 2015.

[4] David Barber and Felix V Agakov. The im algorithm: a vari-

ational approach to information maximization. In NeurIPS,

2003.

[5] Luca Bertinetto, Joao F Henriques, Philip Torr, and An-

drea Vedaldi. Meta-learning with differentiable closed-form

solvers. In ICLR, 2019.

[6] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya

Sutskever, and Pieter Abbeel. Infogan: Interpretable rep-

resentation learning by information maximizing generative

adversarial nets. In NeurIPS, 2016.

[7] Zitian Chen, Yanwei Fu, Yu-Xiong , Lin Ma, Wei Liu, and

Martial Hebert. Image deformation meta-networks for one-

shot learning. In CVPR, 2019.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, 2009.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[10] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning

of object categories. TPAMI, 2006.

[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-

agnostic meta-learning for fast adaptation of deep networks.

In ICML, 2017.

[12] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot

visual learning without forgetting. In CVPR, 2018.

[13] Spyros Gidaris and Nikos Komodakis. Generating classifi-

cation weights with gnn denoising autoencoders for few-shot

learning. In CVPR, 2019.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[15] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon,

Karan Grewal, Phil Bachman, Adam Trischler, and Yoshua

Bengio. Learning deep representations by mutual informa-

tion estimation and maximization. ICLR, 2019.

[16] Ruibing Hou, Hong Chang, MA Bingpeng, Shiguang Shan,

and Xilin Chen. Cross attention network for few-shot classi-

fication. In NeurIPS, 2019.

[17] Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Gar-

nelo, Ali Eslami, Dan Rosenbaum, Oriol Vinyals, and

Yee Whye Teh. Attentive neural processes. In ICLR, 2019.

[18] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. ICLR, 2014.

[19] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.

Siamese neural networks for one-shot image recognition. In

ICML Deep Learning Workshop, 2015.

[20] Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. Informa-

tion maximizing visual question generation. In CVPR, 2019.

[21] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and

Stefano Soatto. Meta-learning with differentiable convex op-

timization. In CVPR, 2019.

[22] Yoonho Lee, Wonjae Kim, and Seungjin Choi. Dis-

crete infomax codes for meta-learning. arXiv preprint

arXiv:1905.11656, 2019.

[23] Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler,

and Xiaogang Wang. Finding task-relevant features for few-

shot learning by category traversal. In CVPR, 2019.

[24] Wenbin Li, Lei Wang, Jinglin Xu, Jing Huo, Yang Gao, and

Jiebo Luo. Revisiting local descriptor based image-to-class

measure for few-shot learning. In CVPR, 2019.

[25] Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, and Andrei

Bursuc. Dense classification and implanting for few-shot

learning. In CVPR, 2019.

[26] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim, Eunho

Yang, Sung Ju Hwang, and Yi Yang. Learning to propagate

labels: Transductive propagation network for few-shot learn-

ing. In ICLR, 2019.

[27] Ilya Loshchilov and Frank Hutter. Fixing weight decay reg-

ularization in adam. arXiv preprint arXiv:1711.05101, 2017.

[28] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter

Abbeel. A simple neural attentive meta-learner. In ICLR,

2018.

[29] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In

ICML, 2017.

[30] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz

Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-

age transformer. ICML, 2018.

[31] Hang Qi, Matthew Brown, and David G Lowe. Low-shot

learning with imprinted weights. In CVPR, 2018.

[32] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L Yuille. Few-

shot image recognition by predicting parameters from activa-

tions. In CVPR, 2018.

[33] Sachin Ravi and Hugo Larochelle. Optimization as a model

for few-shot learning. In ICLR, 2016.

[34] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,

Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle, and

Richard S Zemel. Meta-learning for semi-supervised few-

shot classification. In ICLR, 2018.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. IJCV, 2015.

[36] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol

Vinyals, Razvan Pascanu, Simon Osindero, and Raia Had-

sell. Meta-learning with latent embedding optimization. In

ICLR, 2019.

[37] Jürgen Schmidhuber. Evolutionary principles in self-

referential learning, or on learning how to learn: the meta-

meta-... hook. PhD thesis, 1987.

13507

[38] David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-

nis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot,

Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A

general reinforcement learning algorithm that masters chess,

shogi, and go through self-play. Science, 362(6419):1140–

1144, 2018.

[39] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical

networks for few-shot learning. In NeurIPS, 2017.

[40] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele.

Meta-transfer learning for few-shot learning. In CVPR, 2019.

[41] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS

Torr, and Timothy M Hospedales. Learning to compare: Re-

lation network for few-shot learning. In CVPR, 2018.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, 2017.

[43] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan

Wierstra, et al. Matching networks for one shot learning.

In NeurIPS, 2016.

[44] Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath

Hariharan. Low-shot learning from imaginary data. In

CVPR, 2018.

[45] Davis Wertheimer and Bharath Hariharan. Few-shot learning

with localization in realistic settings. In CVPR, 2019.

[46] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron

Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua

Bengio. Show, attend and tell: Neural image caption gen-

eration with visual attention. In ICML, 2015.

[47] Shipeng Yan, Songyang Zhang, Xuming He, et al. A dual at-

tention network with semantic embedding for few-shot learn-

ing. In AAAI, 2019.

[48] Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey

Levine, and Chelsea Finn. Meta-learning without memoriza-

tion. ICLR, 2020.

[49] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. arXiv preprint arXiv:1605.07146, 2016.

[50] Ruixiang Zhang, Tong Che, Zoubin Ghahramani, Yoshua

Bengio, and Yangqiu Song. Metagan: An adversarial ap-

proach to few-shot learning. In NeurIPS, 2018.

13508

