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Abstract

We consider the problem of space-time super-resolution

(ST-SR): increasing spatial resolution of video frames and

simultaneously interpolating frames to increase the frame

rate. Modern approaches handle these axes one at a time.

In contrast, our proposed model called STARnet super-

resolves jointly in space and time. This allows us to lever-

age mutually informative relationships between time and

space: higher resolution can provide more detailed infor-

mation about motion, and higher frame-rate can provide

better pixel alignment. The components of our model that

generate latent low- and high-resolution representations

during ST-SR can be used to finetune a specialized mech-

anism for just spatial or just temporal SR. Experimental re-

sults demonstrate that STARnet improves the performances

of space-time, spatial, and temporal video SR by substantial

margins on publicly available datasets.

1. Introduction

The goal of Space-Time Super-Resolution (ST-SR),

originally proposed by [49], is to transform a low spa-

tial resolution video with a low frame-rate to a video with

higher spatial and temporal resolutions. However, exist-

ing SR methods treat spatial and temporal upsampling in-

dependently. Space SR (S-SR) with multiple input frames,

(i.e., multi-image SR [11, 12] and video SR [22, 33, 7, 46,

17]), aims to super-resolve spatial low-resolution (S-LR)

frames to spatial high-resolution (S-HR) frames by spa-

tially aligning similar frames (Fig. 1 (a)). Time SR (T-

SR) aims to increase the frame-rate of input frames from

temporal low-resolution (T-LR) frames to temporal high-

resolution (T-HR) frames by temporally interpolating in-

between frames [45, 36, 35, 42, 3, 41] (Fig. 1 (b)).

While few ST-SR methods are presented [49, 50, 47, 40,

32], these methods are not learning-based method and re-

quire each input video to be long enough to extract mean-

ingful space-time patterns. [48] proposed ST-SR based on
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a deep network. However, this method fails to fully exploit

the advantages of ST-SR schema because it relies only on

LR for interpolation.

On the other hand, one can perform ST-SR by using

any learning-based S-SR and T-SR alternately and inde-

pendently. For example, in-between frames are constructed

on S-LR, and then their SR frames are produced by S-SR;

Fig. 1 (c). The other way around is to spatially upsample in-

put frames by S-SR, and then to perform T-SR to construct

their in-between frames; Fig. 1 (d).

However, space and time are obviously related. This

relation allows us to jointly employ spatial and temporal

representations for solving vision tasks on both human [20,

21, 8] and machine perceptions [39, 62, 6, 55, 17, 57, 31].

Intuitively, more accurate motions can be represented on

a higher spatial representation and, the other way around,

a higher temporal representation (i.e., more frames all of

which are similar in appearance) can be used to accu-

rately extract more spatial contexts captured in the tempo-

ral frames as done in multi-image SR and video SR. This

intuition is also supported by various joint learning prob-

lems [18, 15, 61, 1, 60, 56, 29], which are proven to improve

learning efficiency and prediction accuracy.

In order to utilize the complementary nature of space and

time, we propose the Space-Time-Aware multi-Resolution

Network, called STARnet. STARnet explicitly incorporates

spatial and temporal representations for augmenting S-SR

and T-SR mutually in LR and HR spaces by presenting di-

rect connections from LR to HR for ST-SR, indicated as

purple arrows in Fig. 1 (e). This network also provides the

extensibility where the same network can be further fine-

tuned for either of ST-SR, S-SR, or T-SR. As shown in

Fig. 2, STAR-based finetuned models perform better than

state-of-the-arts [58, 14, 3, 17].

The main contributions of this paper are as follows:

1) The novel learning-based ST-SR method, which trains a

deep network end-to-end to jointly learn spatial and tem-

poral contexts, leading to what we call Space-Time-Aware

multi-Resolution Networks (STARnet). This approach out-

performs the combinations of S-SR and T-SR methods.

2) Joint learning on multiple resolutions to estimate both
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(a) Video SR (S-SR) (b) Video Interpolation (T-SR)

(c) Time-to-Space SR (d) Space-to-Time SR (e) Our STARnet

Figure 1. Comparison of SR methods. White and gray rectangles indicate input and output frames, respectively. Small and large rectangles

indicate S-LR and S-HR frames, respectively. We omit the feature extraction steps from images to features. (a) and (b) are original S-SR

and T-SR methods, respectively. For ST-SR, (c) performs T-SR to produce in-between frames then enlarge the frames using S-SR (e.g.,

DAIN [3]→RBPN [17]). The other way around, (d) performs S-SR then the SR frames are used to produce in-between frames using

T-SR (e.g., RBPN [17]→DAIN [3]). Our STARnet (e) jointly optimizes all tasks (S-SR, T-SR, and ST-SR) for augmenting space and

time features mutually in multiple resolutions. The purple arrows present direct connections from LR to HR for ST-SR. In addition to

upsampling, down-sampling is used to transform S-HR features back to S-LR features for the mutual connection in multiple resolutions.

S
T

-S
R

Input Overlayed TOFlow→DBPN DBPN→TOFlow Ours
[58] [14] [14] [58]

T
-S

R

Input Overlayed TOFlow[58] DAIN[3] Ours

S
-S

R

Input DBPN[14] RBPN[17] Ours

Figure 2. Comparison on ST-SR, T-SR, and S-SR (S-SR: 4× and

T-SR: 2×). Red arrows show artifacts and blur produced by other

approaches while STARnet (ours) can construct better images.

large and subtle motions observed in videos. Performing T-

SR on S-HR frames has difficulties in estimating large mo-

tions, while subtle motions can be difficult to interpolate on

S-LR frames. Our joint learning solves both problems by

presenting rich multi-scale features via direct lateral con-

nections between multiple resolutions.

3) A novel view of S-SR and T-SR that are superior to di-

rect S-SR and T-SR. In contrast to the direct S-SR and T-

SR approaches, our S-SR and T-SR models are acquired by

finetuning STAR. This finetuning from STAR allows the S-

SR and T-SR models to be augmented by ST-SR learning;

(1) S-SR is augmented by interpolated frames as well as by

input frames and (2) T-SR is augmented by subtle motions

observed in S-HR as well as large motion observed in S-LR.

2. Related Work

Space SR. Deep SR [9] is extended by better up-sampling

layers [51], residual learning [26, 54], back-projection [14,

16], recursive layers [27], and progressive upsampling [30].

In video SR, temporal information is retained by frame con-

catenation [7, 24] and recurrent networks [22, 46, 17].

Time SR. T-SR, or video interpolation, aims to synthesize

in-between frames [36, 45, 23, 35, 42, 41, 3, 43, 37, 59].

The previous methods use a flow image as a motion rep-

resentation [23, 41, 3, 58, 59]. However, the flow image

suffers from blur and large motions. DAIN [3] employed

monocular depth estimation in order to support robust flow

estimation. As another approach, by spatially downscaling

input S-HR frames, large and subtle motions can be ex-

tracted in downscaled S-LR and input S-HR frames, respec-

tively [37, 43]. While these methods [37, 43] downscale

input S-HR frames for T-SR with joint training of multiple

spatial resolutions, STARnet upscales input S-LR frames

both in input and interpolated frames for ST-SR with joint

training of multiple spatial and temporal resolutions.

Space-Time SR. The first work of ST-SR [49, 50] solved

huge linear equations, then created a vector containing all

the space-time measurement from all LR frames. Later,

[47] presented ST-SR from a single video recording under

the assumption of spatial and temporal recurrences. These
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previous work [49, 50, 47, 32, 40] have several drawbacks,

such as dependencies between the equations, its sensitiv-

ity to some parameters, and required longer videos to ex-

tract meaningful space-time patterns. [48] proposed STSR

method to learn LR-HR non-linear mapping. However, it

did not investigate the effectiveness of multiple spatial res-

olutions to improve the ST-SR results. Furthermore, it is

also evaluated on a limited test set.

Another approach is to combine S-SR and T-SR, as

shown in Fig. 1 (c) and (d). However, this approach treats

each context, spatial and temporal, independently. ST-SR

has not been investigated thoroughly using joint learning.

3. Space-Time-Aware multi-Resolution

3.1. Formulation

Given two LR frames (I lt and I lt+1) with size of (M l ×
N l), ST-SR obtains space-time SR frames (Isrt , Isrt+n, I

sr
t+1)

with size of (Mh ×Nh) where n ∈ [0, 1] and M l < Mh

and N l < Nh. The goal of ST-SR is to produce {Isrt }T+t=0

from {I l1}
T
t=0, where T+ indicates the higher number of

frames than T . In addition, STARnet computes an in-

between S-LR frame (I lt+n) from (I lt and I lt+1) for joint

learning on LR and HR in space and time. Bidirectional

dense motion flow maps, Ft→t+1 and Ft+1→t (describing a

2D vector per pixel), between I lt and I lt+1 are precomputed.

Let Lt ∈ R
M l

×N l
×cl and Ht ∈ R

Mh
×Nh

×ch represent

the S-LR and S-HR feature-maps on time t, respectively,

where cl and ch are the number of channels.

STARnet’s operation is divided into three stages: initial-

ization (stage 1), refinement (stage 2), and reconstruction

(stage 3); Fig. 3. We train the entire network end-to-end.

Initialization (Stage 1) achieves joint learning of S-SR, T-

SR, and ST-SR on LR and HR where T-SR and ST-SR are

performed in the same subnetwork indicated by “ST-SR.”

This stage takes four inputs: two RGB frames (I lt , I
l
t+1) and

their bidirectional flow images (Ft→t+1, Ft+1→t). Stage 1 is

defined as follows:

S-SR: Ht = NetS(I
l
t , I

l
t+1, Ft+1→t; θs)

Ht+1 = NetS(I
l
t+1, I

l
t , Ft→t+1; θs) (1)

Lt = NetD(Ht; θd)

Lt+1 = NetD(Ht+1; θd) (2)

Motion: M = NetM (Ft→t+1, Ft+1→t; θm) (3)

ST-SR: Ht+n, Lt+n = NetST (Ht, Ht+1, Lt, Lt+1,M ; θst)
(4)

In S-SR, S-HR feature-maps (Ht and Ht+1) are pro-

duced by NetS , as expressed in Eq. (1). As with other

video SR methods, this S-SR is performed with sequen-

tial frames (I lt and I lt+1) and their flow image (Ft+1→t or

Ft→t+1). θ denotes a set of weights in each network. Fol-

lowing up- and down-samplings for enhancing features for

SR [14, 17], Ht and Ht+1 are downscaled by NetD for up-

dating Lt and Lt+1, respectively, as expressed in Eq. (2).

NetM produces a motion representation (M ) which is cal-

culated from the bidirectional optical flows; Eq. (3). The

output of NetM is flow feature maps, learned by a CNN.

While it is hard to interpret these features directly, they

are intended to help spatial alignment between Ft→t+1 and

Ft+1→t.

Finally, with the concatenation of all these features, ST-

SR in the feature space is performed by NetST ; Eq. (4).

NetST achieves T-SR as well as ST-SR which are incorpo-

rated on LR and HR, shown as blue and purple arrows in

Fig. 1 (e). The outputs of stage 1 are HR and LR feature-

maps (Ht+n and Lt+n) for an in-between frame.

In this stage, STARnet maintains cycle consistencies (1)

between S-HR and S-LR and (2) between t and t+1, while

such a cycle consistency is demonstrated for general pur-

poses [64, 13, 63],

Refinement (Stage 2) further maintains the cycle consisten-

cies for refining the feature-maps again. While raw optical

flows (Ft+1→t and Ft→t+1) are used in Eq. (1) of Stage 1,

the motion feature (M ) is used in the first equations of Eqs

(5), (7), (9), and (10) in Stage 2. This difference allows us

to produce more reliable feature-maps. For further refine-

ment, residual features are extracted in Eqs. (6), (8), and

(11), as proposed in RBPN [17] for precise spatial align-

ment of temporal features.

Finally, Stage 2 is defined as follows:

t:H
b
t = NetB(Lt+n, Lt,M ; θb)

L
b
t = NetD(Hb

t ; θd) (5)

Ĥt = Ht+ReLU(Ht-H
b
t )

L̂t = Lt+ReLU(Lt-L
b
t) (6)

t+1:H
f
t+1 = NetF (Lt+n, Lt+1,M ; θf )

L
f
t+1 = NetD(Hf

t+1; θd) (7)

Ĥt+1 = Ht+1+ReLU(Ht+1-H
f
t+1)

L̂t+1 = Lt+1+ReLU(Lt+1-L
f
t+1) (8)

t+n:H
f
t+n = NetF (L̂t, Lt+n,M ; θf )

L
f
t+n = NetD(Hf

t+n; θd) (9)

H
b
t+n = NetB(L̂t+1, Lt+n,M ; θb)

L
b
t+n = NetD(Hb

t+n; θd) (10)

Ĥt+n = Ht+n+ReLU(Ht+n-H
f
t+n)+ReLU(Ht+n-H

b
t+n)

L̂t+n = Lt+n+ReLU(Lt+n-L
f
t+n)+ReLU(Lt+n-L

b
t+n)

(11)

Reconstruction (Stage 3) transforms four feature-maps

(Ĥt, Ĥt+n, Ĥt+1, and L̂t+n) to their corresponding images

(Isrt , Isrt+n, Isrt+1, and I lt+n) by using only one conv layer

Netrec; for example, Isrt = Netrec(Ĥt; θrec).
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Figure 3. Overview of Space-Time-Aware multi-Resolution Network (STARnet). First, S-SR produces a pair of S-LR and S-HR feature-

maps (Lt, Ht, Lt+1, and Ht+1) at each time. Motion representation (M ) is calculated by Motion network from bidirectional optical flow

images (Ft→t+1 and Ft+1→t). With these features, ST-SR produces the feature-maps of the in-between frame (Lt+n and Ht+n). Finally,

we reconstruct all outputs of STARnet (Isrt , Isrt+n, Isrt+1, and Ilt+n) by concatenating all features-maps on LR and HR in space and time.

(a) STAR (b) STAR-ST

(c) STAR-S (d) STAR-T

Figure 4. Variants of STARnet train on different training objec-

tive for specific tasks. Small and large rectangles indicate low-

and high-resolution frames, respectively. White and gray rectan-

gles indicate input and output frames, respectively. Dotted arrows

indicated that this computation is not directly optimized.

3.2. Training Objectives

The reconstructed images of STARnet (Isrt , Isrt+n, Isrt+1,

and I lt+n) are compared with their ground-truth images by

loss functions in a training phase. For this training, (1) S-

HR images as the ground-truth images are downscaled to S-

LR images and (2) T-HR frames as the ground-truth frames

are skimmed to T-LR frames. The loss functions are divided

into the following three types:

Space loss is evaluated on Isrt and Isrt+1.

Time loss is evaluated only on I lt+n.

Space-Time loss is evaluated only on Isrt+n.

Our framework provides the following four variants,

which are trained with different training objectives.

STAR is trained using all of the aforementioned three losses

on LR and HR in space and time. STAR produces {Isrt }T+t=0

and {I lt}
T+
t=0 simultaneously as in Fig. 4 (a).

STAR-ST is a fine-tuned model from STAR using Space

and Space-Time losses on HR in space and time. The net-

work is optimized on the space-time super-resolved frames

{Isrt }T+t=0 as in Fig. 4 (b).

STAR-S is a fine-tuned model from STAR using Space loss

on S-HR, optimizing only {Isrt }Tt=0 as in Fig. 4 (c).

STAR-T is a fine-tuned model from STAR using Time loss

on T-HR as in Fig. 4 (d). STAR-T can be trained on two

different regimes, S-LR and S-HR. While STAR-THR uses

the original frames (S-HR) as input frames, STAR-TLR uses

the downscaled frames (S-LR) as input frames.

3.3. Loss Functions

Each of Space, Time, and Space-Time losses consists of

two types of loss functions, L1 and Lvgg . L1 is the loss per-

pixel between a predicted super-resolved frame (Isrt ) and its

ground-truth HR frame (Iht ) where t ∈ [T ].

L1 =

T∑

t=0

||Iht -I
sr
t ||1 (12)

Lvgg is calculated in the feature space using a pretrained

VGG19 network [52]. For computing Lvgg , both Ih and

Isr are mapped into the feature space by differentiable func-

tions fm from the VGG multiple max-pool layer (m = 5).

Lvgg =

T∑

t=0

||fm(Iht )-fm(Isrt )||22 (13)

L1 is for fulfilling standard image quality assessment

metrics such as PSNR and validated for SR [42, 5], while
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Lvgg improves visual perception [25, 10]. Based on this

fact, only L1 or a weighted sum of L1 and Lvgg is utilized

for training STARnet depending on the purpose.

3.4. Flow Refinement

As mentioned in Section 3.1, we use flow images pre-

computed by [34]. As revealed in many video interpolation

papers [36, 45, 23, 35, 42, 41, 3, 43, 37, 59], large motions

between t and t+1 make video interpolation difficult. Flow

noise due to such large motions has a bad effect on the inter-

polation results. While STARnet suppresses this bad effect

by T-SR not only in S-HR but also in S-LR, it is difficult

to fully resolve this problem. For further improvement, we

propose a simple solution to refine or denoise the flow im-

ages, called a Flow Refinement (FR) module.

Let Ft→t+1 and Ft+1→t are flow images between frames

I lt and I lt+1 on forward and backward motions, respectively.

During training, Ft→t+n can be calculated from an in-

put frame at t to the ground truth (i.e., from I lt to I lt+n).

Netflow is a U-Net which defines as follows.

FR: F̂t→t+1 = Netflow(Ft→t+1, It, It+1; θflow)

F̂t+1→t = Netflow(Ft+1→t, It+1, It; θflow)
(14)

To reduce the noise, we propose the following flow re-

finement loss.

Lflow = ||F̂t→t+1-(Ft→t+n+Ft+n→t+1)||
2
2

+||F̂t+1→t-(Ft+1→t+n+Ft+n→t)||
2
2

(15)

With Lflow, the loss functions for training STARnet are

defined as follows:

Lr = w1 ∗ L1+w2 ∗ Lflow (16)

Lf = Lr+w3 ∗ Lvgg (17)

4. Experimental Results

In all experiments, we focus on 4× SR factor and n =
0.5. Isrt and Isrt+ denote the SR frames of input frames and

in-between frames, respectively.

4.1. Implementation Details

Stage 1. For NetS and NetD, we use DBPN [14] or

RBPN [17] that have up- and down-sampling layers to si-

multaneously produce a pair of S-LR and S-HR features

with ch=64 and cl=128. NetM is constructed with two

residual blocks where each block consists of two conv lay-

ers with 3 × 3 with stride = 1 and pad by 1. NetST has

five residual blocks followed by deconv layers for upsam-

pling.

Stage 2. Both NetF and NetB are constructed using five

residual blocks and deconv layers.

Train Dataset. We use the triplet training set in

Vimeo90K [58] for training. This dataset has 51,313 triplets

from 14,777 video clips with a fixed resolution, 448× 256.

During training, we apply augmentation, such as rotation,

flipping, and random cropping. The original images are re-

garded as S-HR and downscaled to 112 × 64 S-LR frames

(4× smaller than the originals) with Bicubic interpolation.

Test Dataset and Metrics. We evaluate our method on

several test sets. The test set of Vimeo90K [58] consists

of 3,782 triplets with the original resolution of 448 × 256
pixels. While UCF101 [53] is developed for action recog-

nition, it is also used for evaluating T-SR methods. This

test set consists of 379 triplets with the original resolution

of 256 × 256 pixels. Middlebury [2] has the original reso-

lution of 640 × 480 pixels. We evaluate PSNR, SSIM, and

interpolation error (IE) on the test sets.

Training Strategy. The batch size is 10 with 112× 64 pix-

els (S-LR scale). The learning rate is initialized to 1e − 4
for all layers and decreased by a factor of 10 on every 30

epochs for total 70 epochs. For each finetuned model, we

use another 20 epochs with learning rate 1e − 4 and de-

creased by a factor of 10 on every 10 epochs. We initial-

ize the weights based on [19]. For optimization, we used

AdaMax [28] with momentum to 0.9. All experiments were

conducted using Python 3.5.2 and PyTorch 1.0 on NVIDIA

Tesla V100 GPUs. For the loss setting, we use w1: 1, w2:

0.1, and w3: 0.1.

4.2. Ablation Studies

Here, we evaluate STARnet without T-SR paths (blue ar-

rows in Fig. 1 (e)) in order to clarify the effectiveness our

core contribution (i.e., joint learning in time and space on

multiple resolutions) with a simplified network using direct

ST-SR paths (purple arrows). The test set of Vimeo90K [58]

is used.

Basic components. We evaluate the basic components on

STARnet. In the first experiment, we remove the refinement

part (i.e., Stage 2), leaving only the initialization part. Sec-

ond, we omit input flow images and NetM , so no motion

context is used (STAR w/o Flow). Third, the FR module

is removed. Finally, the full model is evaluated. The re-

sults of these four models are shown in “STAR w/o Stage

2,” “STAR w/o Flow,” “STAR w/o FR,” and “STAR” in Ta-

ble 1. Compared with the full model, the PSNR of STAR

w/o Stage 2 decreases to 0.36dB and 1.0dB on Isrt+ and Isrt ,

respectively. The flow information can also improve the

PSNR 0.28dB and 0.43dB on Isrt+ and Isrt , respectively.

While FR is also useful, the quantitative improvement

by FR is not substantial compared with those of the other

two components. The examples of Isrt+ are shown in Fig. 5

where flow images are computed only by I lt and I lt+1, only

by I lt and I lt+1 and refined by FR, and by I lt+ (i.e., GT in-

between frame) in addition to I lt and I lt+1 in (a), (b), and

(c), respectively. In Fig. 5, the visual improvement by FR is

substantial. This result reveals that (1) erroneous flows are
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Isrt Isrt+
Method PSNR SSIM PSNR SSIM

STAR w/o Stage 2 30.920 0.921 30.002 0.917

STAR w/o Flow 31.489 0.928 30.086 0.918

STAR w/o FR 31.601 0.929 30.229 0.920

STAR 31.920 0.933 30.365 0.923

Table 1. Baseline comparison of STAR with DBPN [16] and Lf .

Red in all tables indicates the best performance.

Image 1 Image 2

PSNR: 22.68dB PSNR: 23.48dB PSNR: 24.26dB PSNR: 18.59dB PSNR: 19.19dB PSNR: 20.29dB

(a) w/o FR (b) w/ FR (c) GT Flow (a) w/o FR (b) w/ FR (c) GT Flow

Figure 5. Visual analysis of Isrt+ with and w/o FR. (a) Flows are

computed by Ilt and Ilt+1. (b) Flows are computed by Ilt and Ilt+1

and refined by FR. (c) Flows are computed by Ilt+ (i.e., GT in-

between frame) in addition to Ilt and Ilt+1

Isr
t Isr

t+ Il
t+

Method PSNR SSIM PSNR SSIM PSNR SSIM

STAR 31.601 0.929 30.229 0.920 39.014 0.990

STAR-ST 31.883 0.933 30.350 0.928 NA NA

STAR-S 32.026 0.935 NA NA NA NA

STAR-T NA NA NA NA 39.028 0.990

Table 2. Analysis on different training objectives using STARnet

with DBPN [16] and Lf .

Isr
t Isr

t+

Loss PSNR SSIM NIQE [38] PSNR SSIM NIQE [38]

Lf 32.153 0.936 6.288 30.545 0.925 6.289

Lr 32.349 0.938 6.905 30.704 0.928 6.942

Table 3. Analysis on two loss functions using STAR-ST with

RBPN. Higher PSNR and SSIM indicate better results, while a

lower NIQE indicates a better perceptual index.

critical for generating Isrt+ (i.e., for ST-SR) and (2) FR can

rectify the flow image significantly on several images.

Training Objectives. Table 2 shows that finetuning STAR

to STAR-ST, STAR-S, and STAR-T is beneficial for im-

proving ST-SR, S-SR, and T-SR, respectively.

Loss Functions. We investigate optimizability of two

losses, Eqs. (16) and (17), as shown in Table 3. The results

show that Lr increases the PSNR by 0.19dB and 0.16dB on

Isrt and Isrt+ , respectively. However, Lf has a better NIQE

score, which shows that this loss perceives better human

perception. In what follows, Lr is used.

S-SR module. We compare two S-SR methods, DBPN [16]

for single-image SR and RBPN [17] for video SR, as the S-

SR module in Stage 1; Table 4. RBPN can work better in

all cases.

Isrt Isrt+
Method PSNR SSIM PSNR SSIM

STAR with DBPN [16] 32.160 0.936 30.540 0.925

STAR with RBPN [17] 32.349 0.938 30.704 0.928

Table 4. Analysis on the S-SR module using STAR-ST and Lr .

I
sr
t I

sr
t+

Method PSNR SSIM PSNR SSIM

(1) STAR-ST → STAR-ST 33.007 0.941 27.186 0.893

(2) STAR-ST → STAR-T 34.146 0.950 27.640 0.901

Table 5. Analysis on larger scale T-SR (4×) on the Vimeo90K

setuplet test set with Lr .

Isrt Isrt+
Method PSNR SSIM PSNR SSIM

(1) Only ST-SR 32.349 0.938 30.704 0.928

(2) ST-SR+T-SRS−HR 32.398 0.939 30.712 0.928

(3) ST-SR+T-SRS−LR 32.421 0.939 30.760 0.928

(4) Full 32.547 0.940 30.830 0.929

Table 6. Analysis on ST-SR jointly trained with T-SR with

RBPN [17] and Lr . Models are optimized for STAR-ST w/ FR.

Larger scale T-SR. The performance on a larger scale T-SR

is investigated. While the S-SR factor is the same with that

in other experiments (i.e., 4×), the frame-rate is upscaled to

4×. We compare two upscaling paths: (1) STAR-ST (2×
S-SR and 2× T-SR) → STAR-ST (2× S-SR and 2× T-SR)

(2) STAR-ST (4× S-SR and 2× T-SR) → STAR-T (2× T-

SR). For training 4× T-SR, the training set of the Vimeo90K

setuplet, where each sequence has 7 frames, is used. Then,

the 1st and 5th frames in the Vimeo90K setuplet test set are

used as input frames for evaluation. As shown in in Table 5,

the second path is better. This result may suggest that a

higher spatial resolution provides better results on T-SR.

T-SR paths on S-HR and S-LR domains. We analyze the

effectiveness of T-SR on multiple spatial resolutions (blue

arrows in Fig. 1 (e)) as well as ST-SR (purple arrows in

Fig. 1 (e)). Table 6 shows the results of the following four

experiments. In (1), we remove all T-SR modules (blue ar-

rows). In (2), T-SR on S-HR is incorporated with ST-SR

module. In (3), T-SR on S-LR is incorporated with ST-SR

module. In (4), all modules are used as shown in Fig. 1 (e).

In these implementations, T-SR modules can be removed

by modifying NetST in Eq. (4) so that it contains only

ST-SR, ST-SR+T-SRS−HR, ST-SR+T-SRS−LR, and all of

them for (1), (2), (3), and (4), respectively. It confirms that

joint training of ST-SR and T-SR improves the performance.

Both S-HR and S-LR resolutions improve the performance

compared with only ST-SR, while the best results are ob-

tained by the full STAR model.

4.3. Comparisons with State­of­the­art

The following results are obtained by the full STAR

model, which is evaluated as the best in Table 6.
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UCF101 [53] Vimeo90K [58] Middlebury (Other) [2]

Method PSNR SSIM NIQE PSNR SSIM NIQE PSNR SSIM NIQE

TOFlow [58] → DBPN [16] 27.228 0.885 9.123 28.821 0.897 7.758 24.984 0.790 6.473

DBPN [16] → TOFlow [58] 28.112 0.902 8.630 29.867 0.915 7.120 26.012 0.808 5.801

DBPN [16] → DAIN [3] 28.175 0.902 8.755 30.021 0.918 7.223 26.268 0.809 5.869

DBPN-MI → DAIN [3] 28.578 0.916 8.922 30.286 0.923 7.218 26.447 0.815 5.702

DAIN [3] → RBPN [17] 27.631 0.909 8.932 29.422 0.916 7.253 25.744 0.811 5.814

RBPN [17] → DAIN [3] 28.729 0.919 8.769 30.455 0.926 7.081 26.766 0.821 5.522

*RBPN [17] → DAIN [3] 28.856 0.920 8.799 30.623 0.927 7.183 26.923 0.823 5.444

STAR-Lf 28.829 0.920 7.875 30.608 0.926 6.251 26.881 0.824 4.579

STAR-ST-Lf 28.806 0.920 7.868 30.714 0.927 6.470 27.020 0.826 4.802

STAR-ST-Lr 29.111 0.924 8.787 30.830 0.929 7.154 27.115 0.827 5.423

Table 7. Comparison on ST-SR (Isrt+ ) using Lr . α → β indicates the output of α is the input of β. Red indicates the best and blue indicates

the second best performance in all tables in Section 4.3. * indicates a joint learning of RBPN and DAIN methods to perform ST-SR.

(a) (b) (c) (d) (d)

DBPN [16]→TOFlow [58] DAIN [3]→RBPN [17] RBPN [17]→DAIN [3] STAR-ST GT

Figure 6. Visual results on ST-SR (Isrt+ ). Red arrows here and in the other figures indicates the highlighted area.

UCF101 Vimeo90K

Method PSNR SSIM PSNR SSIM

Bicubic 27.217 0.887 28.134 0.878

DBPN [16] 29.828 0.913 31.505 0.927

DBPN-MI 30.666 0.934 31.835 0.933

RBPN [17] 30.969 0.938 32.154 0.936

STAR-ST 31.532 0.942 32.547 0.940

STAR-S 31.604 0.943 32.702 0.941

Table 8. Comparison on S-SR (Isrt ) using Lr .

ST-SR. As discussed in Section 2, older ST-SR meth-

ods [49, 50, 47, 32, 40] cannot be applied to videos in the

Vimeo90K dataset. We can combine more modern S-SR

and T-SR methods to perform ST-SR. We use DBPN [16]

and RBPN [17] as S-SR. For T-SR, we choose TOFlow [58]

and DAIN [3]. In Table 7, we present the results of ST-SR

obtained by six combinations of these methods.

It is found that S-SR→T-SR performs better than T-

SR→S-SR. The margin is up to 1dB on Vimeo90K, show-

ing that the performance of previous T-SRs significantly

drops on LR images. Even STAR is better than the combi-

nation of state-of-the-arts (RBPN [17]→DAIN [3]), while

the best result is achieved by STAR-ST, which is the fine-

tuned model from STAR. STAR-ST has a better perfor-

mance around 0.38dB than RBPN [17]→DAIN [3] on

Vimeo90K test set.

We can also present ST-SR as a joint learning of

RBPN [17] and DAIN [3], indicated as (*). It shows that
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UCF101 [53] Vimeo90K [58] Middlebury [2]

Other *Eval

Method PSNR SSIM PSNR SSIM IE IE

SPyNet [44] 33.67 0.963 31.95 0.960 2.49 -

EpicFlow [45] 33.71 0.963 32.02 0.962 2.47 -

MIND [36] 33.93 0.966 33.50 0.943 3.35 -

DVF [35] 34.12 0.963 31.54 0.946 7.75 -

TOFlow [58] 34.58 0.967 33.73 0.968 2.51 5.49

SepConv-Lf [42] 34.69 0.965 33.45 0.967 2.44 -

SepConv-L1 [42] 34.78 0.967 33.79 0.970 2.27 5.61

MEMC-Net [4] 34.96 0.968 34.29 0.974 2.12 4.99

DAIN [3] 34.99 0.968 34.71 0.976 2.04 4.86

STAR 34.78 0.964 33.11 0.957 2.41 -

STAR-TLR 34.80 0.964 33.19 0.958 2.36 -

STAR-THR 35.07 0.967 35.11 0.976 1.95 4.70

Table 9. Comparison on T-SR on the original resolution. SSIM

is almost saturated especially on UCF101, so PSNR is a better

measure here. *Results are taken from Middlebury dashboard.

Methods TOFlow [58] DAIN [3] STAR STAR-THR STAR-TLR

PSNR 36.04 36.69 39.13 38.60 39.30

SSIM 0.984 0.986 0.991 0.990 0.991

Table 10. Comparison of T-SR on L-SR (Ilt+) with Vimeo90K [58].

(a) (b) (c) (d)

TOFlow [58] DAIN [3] STAR-T GT

Figure 7. Visual results on T-SR on the original resolution.

joint learning is effective to improve this combination as

well as STAR. However, STAR, which leverages direct con-

nections for ST-SR (i.e., purple arrows in Fig. 1 (e)) and

joint learning in space and time, shows the best perfor-

mance. Visual results shown in Fig. 6 demonstrate that

STAR-ST produces sharper images than others.

S-SR. The results on S-SR are shown in Table 8. Our

methods are compared with DBPN [16], DBPN-MI, and

RBPN [17]. DBPN is a single image SR method. A Multi-

Image extension of DBPN (DBPN-MI) uses DBPN with a

temporal concatenation of RGB and optical flow images.

DBPN-MI and RBPN have the same input regimes using

sequential frames and optical flow images.

It shows that multiple frames are able to improve the

performance of DBPN for around 0.3dB on Vimeo90K.

RBPN successfully leverages temporal connections of se-

quential frames for performance improvement compared

with DBPN and DBPN-MI. As expected, STAR-S is the

best, which is also better than STAR-ST. It can improve the

PSNR by 1.19dB dB, 0.87dB, and 0.55dB compared with

DBPN [16], DBPN-MI, and RBPN [17], respectively, on

Vimeo90K test set.

T-SR. Our method is compared with eight state-of-the-art

T-SR methods: SPyNet [44], EpicFlow [45], MIND [36],

DVF [35], TOFlow [58], SepConv [42], MEMC-Net [4],

and DAIN [3]. Input frames are the original size of the test

set without downscaling. As shown in Table 9, STAR-THR

is comparable with the state-of-the-art T-SR methods.

The visual results are shown in Fig. 7. We can see that

STAR produces better interpolation on subtle and large mo-

tions, and also sharper textures. DAIN [3] and TOFlow [58]

tend to produce blur images on subtle and large motion ar-

eas as shown by the red arrows.

We also investigate the performance on S-LR. There are

different motion magnitudes between S-HR and S-LR. Nat-

urally, when the frames are downscaled, the magnitude of

pixel displacements is reduced as well. Therefore, each spa-

tial resolution has a different access to the motion variance.

The evaluation on S-LR images focuses on subtle motions,

while S-HR images focus on large motions. Table 9 shows

that STAR-THR is superior to STAR-TLR and other methods

on S-HR (original size). Likewise, STAR-TLR is superior

than STAR-THR on S-LR (original frames are downscaled

↓ with Bicubic) as shown in Table 10. It shows that if we

finetune the network on the same domain, it can increase

the performance. Furthermore, we can see that STAR-TLR

is much superior than TOFlow and DAIN.

5. Conclusion

We proposed a novel approach to space-time super-

resolution (ST-SR) using a deep network called Space-

Time-Aware multi-Resolution Network (STARnet). The

network super-resolves jointly in space and time. We show

that a higher resolution presents detailed motions, while a

higher frame-rate provides better pixel alignment. Further-

more, we demonstrate a special mechanism to improve the

performance for just S-SR and T-SR. We conclude that the

integration of spatial and temporal contexts is able to im-

prove the performance of S-SR, T-SR, and ST-SR by sub-

stantial margin on publicly available datasets.

This work was supported by JSPS KAKENHI Grant Num-

ber 19K12129.
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