
Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan Yuxin Wu Saining Xie Ross Girshick

Facebook AI Research (FAIR)

Abstract

We present Momentum Contrast (MoCo) for unsuper-

vised visual representation learning. From a perspective on

contrastive learning [29] as dictionary look-up, we build

a dynamic dictionary with a queue and a moving-averaged

encoder. This enables building a large and consistent dic-

tionary on-the-fly that facilitates contrastive unsupervised

learning. MoCo provides competitive results under the

common linear protocol on ImageNet classification. More

importantly, the representations learned by MoCo transfer

well to downstream tasks. MoCo can outperform its super-

vised pre-training counterpart in 7 detection/segmentation

tasks on PASCAL VOC, COCO, and other datasets, some-

times surpassing it by large margins. This suggests that

the gap between unsupervised and supervised representa-

tion learning has been largely closed in many vision tasks.

Code: https://github.com/facebookresearch/moco

1. Introduction

Unsupervised representation learning is highly success-

ful in natural language processing, e.g., as shown by GPT

[50, 51] and BERT [12]. But supervised pre-training is still

dominant in computer vision, where unsupervised meth-

ods generally lag behind. The reason may stem from dif-

ferences in their respective signal spaces. Language tasks

have discrete signal spaces (words, sub-word units, etc.)

for building tokenized dictionaries, on which unsupervised

learning can be based. Computer vision, in contrast, further

concerns dictionary building [54, 9, 5], as the raw signal is

in a continuous, high-dimensional space and is not struc-

tured for human communication (e.g., unlike words).

Several recent studies [61, 46, 36, 66, 35, 56, 2] present

promising results on unsupervised visual representation

learning using approaches related to the contrastive loss

[29]. Though driven by various motivations, these methods

can be thought of as building dynamic dictionaries. The

“keys” (tokens) in the dictionary are sampled from data

(e.g., images or patches) and are represented by an encoder

network. Unsupervised learning trains encoders to perform

dictionary look-up: an encoded “query” should be similar

to its matching key and dissimilar to others. Learning is

formulated as minimizing a contrastive loss [29].

encoder
momentum

encoder

q

contrastive loss

similarity

queue

k0 k1 k2 ...

xquery x
key
0 x

key
1 x

key
2 ...

Figure 1. Momentum Contrast (MoCo) trains a visual represen-

tation encoder by matching an encoded query q to a dictionary

of encoded keys using a contrastive loss. The dictionary keys

{k0, k1, k2, ...} are defined on-the-fly by a set of data samples.

The dictionary is built as a queue, with the current mini-batch en-

queued and the oldest mini-batch dequeued, decoupling it from

the mini-batch size. The keys are encoded by a slowly progressing

encoder, driven by a momentum update with the query encoder.

This method enables a large and consistent dictionary for learning

visual representations.

From this perspective, we hypothesize that it is desirable

to build dictionaries that are: (i) large and (ii) consistent

as they evolve during training. Intuitively, a larger dictio-

nary may better sample the underlying continuous, high-

dimensional visual space, while the keys in the dictionary

should be represented by the same or similar encoder so that

their comparisons to the query are consistent. However, ex-

isting methods that use contrastive losses can be limited in

one of these two aspects (discussed later in context).

We present Momentum Contrast (MoCo) as a way of

building large and consistent dictionaries for unsupervised

learning with a contrastive loss (Figure 1). We maintain the

dictionary as a queue of data samples: the encoded repre-

sentations of the current mini-batch are enqueued, and the

oldest are dequeued. The queue decouples the dictionary

size from the mini-batch size, allowing it to be large. More-

over, as the dictionary keys come from the preceding sev-

eral mini-batches, a slowly progressing key encoder, imple-

mented as a momentum-based moving average of the query

encoder, is proposed to maintain consistency.

19729

MoCo is a mechanism for building dynamic dictionar-

ies for contrastive learning, and can be used with various

pretext tasks. In this paper, we follow a simple instance

discrimination task [61, 63, 2]: a query matches a key if

they are encoded views (e.g., different crops) of the same

image. Using this pretext task, MoCo shows competitive

results under the common protocol of linear classification

in the ImageNet dataset [11].

A main purpose of unsupervised learning is to pre-train

representations (i.e., features) that can be transferred to

downstream tasks by fine-tuning. We show that in 7 down-

stream tasks related to detection or segmentation, MoCo

unsupervised pre-training can surpass its ImageNet super-

vised counterpart, in some cases by nontrivial margins. In

these experiments, we explore MoCo pre-trained on Ima-

geNet or on a one-billion Instagram image set, demonstrat-

ing that MoCo can work well in a more real-world, billion-

image scale, and relatively uncurated scenario. These re-

sults show that MoCo largely closes the gap between un-

supervised and supervised representation learning in many

computer vision tasks, and can serve as an alternative to Im-

ageNet supervised pre-training in several applications.

2. Related Work

Unsupervised/self-supervised1 learning methods gener-

ally involve two aspects: pretext tasks and loss functions.

The term “pretext” implies that the task being solved is not

of genuine interest, but is solved only for the true purpose

of learning a good data representation. Loss functions can

often be investigated independently of pretext tasks. MoCo

focuses on the loss function aspect. Next we discuss related

studies with respect to these two aspects.

Loss functions. A common way of defining a loss function

is to measure the difference between a model’s prediction

and a fixed target, such as reconstructing the input pixels

(e.g., auto-encoders) by L1 or L2 losses, or classifying the

input into pre-defined categories (e.g., eight positions [13],

color bins [64]) by cross-entropy or margin-based losses.

Other alternatives, as described next, are also possible.

Contrastive losses [29] measure the similarities of sam-

ple pairs in a representation space. Instead of matching an

input to a fixed target, in contrastive loss formulations the

target can vary on-the-fly during training and can be defined

in terms of the data representation computed by a network

[29]. Contrastive learning is at the core of several recent

works on unsupervised learning [61, 46, 36, 66, 35, 56, 2],

which we elaborate on later in context (Sec. 3.1).

Adversarial losses [24] measure the difference between

probability distributions. It is a widely successful technique

1Self-supervised learning is a form of unsupervised learning. Their dis-

tinction is informal in the existing literature. In this paper, we use the more

classical term of “unsupervised learning”, in the sense of “not supervised

by human-annotated labels”.

for unsupervised data generation. Adversarial methods for

representation learning are explored in [15, 16]. There are

relations (see [24]) between generative adversarial networks

and noise-contrastive estimation (NCE) [28].

Pretext tasks. A wide range of pretext tasks have been pro-

posed. Examples include recovering the input under some

corruption, e.g., denoising auto-encoders [58], context auto-

encoders [48], or cross-channel auto-encoders (coloriza-

tion) [64, 65]. Some pretext tasks form pseudo-labels by,

e.g., transformations of a single (“exemplar”) image [17],

patch orderings [13, 45], tracking [59] or segmenting ob-

jects [47] in videos, or clustering features [3, 4].

Contrastive learning vs. pretext tasks. Various pretext

tasks can be based on some form of contrastive loss func-

tions. The instance discrimination method [61] is related

to the exemplar-based task [17] and NCE [28]. The pretext

task in contrastive predictive coding (CPC) [46] is a form

of context auto-encoding [48], and in contrastive multiview

coding (CMC) [56] it is related to colorization [64].

3. Method

3.1. Contrastive Learning as Dictionary Look­up

Contrastive learning [29], and its recent developments,

can be thought of as training an encoder for a dictionary

look-up task, as described next.

Consider an encoded query q and a set of encoded sam-

ples {k0, k1, k2, ...} that are the keys of a dictionary. As-

sume that there is a single key (denoted as k+) in the dic-

tionary that q matches. A contrastive loss [29] is a function

whose value is low when q is similar to its positive key k+
and dissimilar to all other keys (considered negative keys

for q). With similarity measured by dot product, a form of

a contrastive loss function, called InfoNCE [46], is consid-

ered in this paper:

Lq = − log
exp(q·k+/τ)

∑K

i=0
exp(q·ki/τ)

(1)

where τ is a temperature hyper-parameter per [61]. The sum

is over one positive and K negative samples. Intuitively,

this loss is the log loss of a (K+1)-way softmax-based clas-

sifier that tries to classify q as k+. Contrastive loss functions

can also be based on other forms [29, 59, 61, 36], such as

margin-based losses and variants of NCE losses.

The contrastive loss serves as an unsupervised objective

function for training the encoder networks that represent the

queries and keys [29]. In general, the query representation

is q = fq(x
q) where fq is an encoder network and xq is a

query sample (likewise, k = fk(x
k)). Their instantiations

depend on the specific pretext task. The input xq and xk can

be images [29, 61, 63], patches [46], or context consisting a

set of patches [46]. The networks fq and fk can be identical

[29, 59, 63], partially shared [46, 36, 2], or different [56].

9730

q k

contrastive loss

gradient gradient

(a) end-to-end
xq xk

q k

contrastive loss

gradient

(c) MoCo
xq xk

encoder
momentum

encoder

q k

contrastive loss

sampling

memory

bank

gradient

(b) memory bank
xq

encoderencoder q encoder k

q·k q·k q·k

Figure 2. Conceptual comparison of three contrastive loss mechanisms (empirical comparisons are in Figure 3 and Table 3). Here we

illustrate one pair of query and key. The three mechanisms differ in how the keys are maintained and how the key encoder is updated.

(a): The encoders for computing the query and key representations are updated end-to-end by back-propagation (the two encoders can

be different). (b): The key representations are sampled from a memory bank [61]. (c): MoCo encodes the new keys on-the-fly by a

momentum-updated encoder, and maintains a queue (not illustrated in this figure) of keys.

3.2. Momentum Contrast

From the above perspective, contrastive learning is a way

of building a discrete dictionary on high-dimensional con-

tinuous inputs such as images. The dictionary is dynamic in

the sense that the keys are randomly sampled, and that the

key encoder evolves during training. Our hypothesis is that

good features can be learned by a large dictionary that cov-

ers a rich set of negative samples, while the encoder for the

dictionary keys is kept as consistent as possible despite its

evolution. Based on this motivation, we present Momentum

Contrast as described next.

Dictionary as a queue. At the core of our approach is

maintaining the dictionary as a queue of data samples. This

allows us to reuse the encoded keys from the immediate pre-

ceding mini-batches. The introduction of a queue decouples

the dictionary size from the mini-batch size. Our dictionary

size can be much larger than a typical mini-batch size, and

can be flexibly and independently set as a hyper-parameter.

The samples in the dictionary are progressively replaced.

The current mini-batch is enqueued to the dictionary, and

the oldest mini-batch in the queue is removed. The dictio-

nary always represents a sampled subset of all data, while

the extra computation of maintaining this dictionary is man-

ageable. Moreover, removing the oldest mini-batch can be

beneficial, because its encoded keys are the most outdated

and thus the least consistent with the newest ones.

Momentum update. Using a queue can make the dictio-

nary large, but it also makes it intractable to update the key

encoder by back-propagation (the gradient should propa-

gate to all samples in the queue). A naı̈ve solution is to

copy the key encoder fk from the query encoder fq, ignor-

ing this gradient. But this solution yields poor results in

experiments (Sec. 4.1). We hypothesize that such failure

is caused by the rapidly changing encoder that reduces the

key representations’ consistency. We propose a momentum

update to address this issue.

Formally, denoting the parameters of fk as θk and those

of fq as θq, we update θk by:

θk ← mθk + (1−m)θq. (2)

Here m ∈ [0, 1) is a momentum coefficient. Only the pa-

rameters θq are updated by back-propagation. The momen-

tum update in Eqn.(2) makes θk evolve more smoothly than

θq. As a result, though the keys in the queue are encoded

by different encoders (in different mini-batches), the dif-

ference among these encoders can be made small. In ex-

periments, a relatively large momentum (e.g., m = 0.999,

our default) works much better than a smaller value (e.g.,

m = 0.9), suggesting that a slowly evolving key encoder is

a core to making use of a queue.

Relations to previous mechanisms. MoCo is a general

mechanism for using contrastive losses. We compare it with

two existing general mechanisms in Figure 2. They exhibit

different properties on the dictionary size and consistency.

The end-to-end update by back-propagation is a natural

mechanism (e.g., [29, 46, 36, 63, 2, 35], Figure 2a). It uses

samples in the current mini-batch as the dictionary, so the

keys are consistently encoded (by the same set of encoder

parameters). But the dictionary size is coupled with the

mini-batch size, limited by the GPU memory size. It is also

challenged by large mini-batch optimization [25]. Some re-

cent methods [46, 36, 2] are based on pretext tasks driven by

local positions, where the dictionary size can be made larger

by multiple positions. But these pretext tasks may require

special network designs such as patchifying the input [46]

or customizing the receptive field size [2], which may com-

plicate the transfer of these networks to downstream tasks.

Another mechanism is the memory bank approach pro-

posed by [61] (Figure 2b). A memory bank consists of the

representations of all samples in the dataset. The dictionary

for each mini-batch is randomly sampled from the memory

bank with no back-propagation, so it can support a large

dictionary size. However, the representation of a sample in

9731

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

f_q, f_k: encoder networks for query and key
queue: dictionary as a queue of K keys (CxK)
m: momentum
t: temperature

f_k.params = f_q.params # initialize
for x in loader: # load a minibatch x with N samples

x_q = aug(x) # a randomly augmented version
x_k = aug(x) # another randomly augmented version

q = f_q.forward(x_q) # queries: NxC
k = f_k.forward(x_k) # keys: NxC
k = k.detach() # no gradient to keys

positive logits: Nx1
l_pos = bmm(q.view(N,1,C), k.view(N,C,1))

negative logits: NxK
l_neg = mm(q.view(N,C), queue.view(C,K))

logits: Nx(1+K)
logits = cat([l_pos, l_neg], dim=1)

contrastive loss, Eqn.(1)
labels = zeros(N) # positives are the 0-th
loss = CrossEntropyLoss(logits/t, labels)

SGD update: query network
loss.backward()
update(f_q.params)

momentum update: key network
f_k.params = m*f_k.params+(1-m)*f_q.params

update dictionary
enqueue(queue, k) # enqueue the current minibatch
dequeue(queue) # dequeue the earliest minibatch

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.

the memory bank was updated when it was last seen, so the

sampled keys are essentially about the encoders at multiple

different steps all over the past epoch and thus are less con-

sistent. A momentum update is adopted on the memory

bank in [61]. Its momentum update is on the representa-

tions of the same sample, not the encoder. This momentum

update is irrelevant to our method, because MoCo does not

keep track of every sample. Moreover, our method is more

memory-efficient and can be trained on billion-scale data,

which can be intractable for a memory bank.

Sec. 4 empirically compares these three mechanisms.

3.3. Pretext Task

Contrastive learning can drive a variety of pretext tasks.

As the focus of this paper is not on designing a new pretext

task, we use a simple one mainly following the instance

discrimination task in [61], to which some recent works [63,

2] are related.

Following [61], we consider a query and a key as a pos-

itive pair if they originate from the same image, and other-

wise as a negative sample pair. Following [63, 2], we take

two random “views” of the same image under random data

augmentation to form a positive pair. The queries and keys

are respectively encoded by their encoders, fq and fk. The

encoder can be any convolutional neural network [39].

Algorithm 1 provides the pseudo-code of MoCo for this

pretext task. For the current mini-batch, we encode the

queries and their corresponding keys, which form the posi-

tive sample pairs. The negative samples are from the queue.

Technical details. We adopt a ResNet [33] as the encoder,

whose last fully-connected layer (after global average pool-

ing) has a fixed-dimensional output (128-D [61]). This out-

put vector is normalized by its L2-norm [61]. This is the

representation of the query or key. The temperature τ in

Eqn.(1) is set as 0.07 [61]. The data augmentation setting

follows [61]: a 224×224-pixel crop is taken from a ran-

domly resized image, and then undergoes random color jit-

tering, random horizontal flip, and random grayscale con-

version, all available in PyTorch’s torchvision package.

Shuffling BN. Our encoders fq and fk both have Batch

Normalization (BN) [37] as in the standard ResNet [33]. In

experiments, we found that using BN prevents the model

from learning good representations, as similarly reported

in [35] (which avoids using BN). The model appears to

“cheat” the pretext task and easily finds a low-loss solu-

tion. This is possibly because the intra-batch communica-

tion among samples (caused by BN) leaks information.

We resolve this problem by shuffling BN. We train with

multiple GPUs and perform BN on the samples indepen-

dently for each GPU (as done in common practice). For the

key encoder fk, we shuffle the sample order in the current

mini-batch before distributing it among GPUs (and shuffle

back after encoding); the sample order of the mini-batch

for the query encoder fq is not altered. This ensures the

batch statistics used to compute a query and its positive key

come from two different subsets. This effectively tackles

the cheating issue and allows training to benefit from BN.

We use shuffled BN in both our method and its end-to-

end ablation counterpart (Figure 2a). It is irrelevant to the

memory bank counterpart (Figure 2b), which does not suf-

fer from this issue because the positive keys are from differ-

ent mini-batches in the past.

4. Experiments

We study unsupervised training performed in:

ImageNet-1M (IN-1M): This is the ImageNet [11] train-

ing set that has ∼1.28 million images in 1000 classes (often

called ImageNet-1K; we count the image number instead,

as classes are not exploited by unsupervised learning). This

dataset is well-balanced in its class distribution, and its im-

ages generally contain iconic view of objects.

Instagram-1B (IG-1B): Following [44], this is a dataset

of ∼1 billion (940M) public images from Instagram. The

images are from ∼1500 hashtags [44] that are related to the

ImageNet categories. This dataset is relatively uncurated

comparing to IN-1M, and has a long-tailed, unbalanced

distribution of real-world data. This dataset contains both

iconic objects and scene-level images.

9732

Training. We use SGD as our optimizer. The SGD weight

decay is 0.0001 and the SGD momentum is 0.9. For IN-1M,

we use a mini-batch size of 256 (N in Algorithm 1) in 8

GPUs, and an initial learning rate of 0.03. We train for 200

epochs with the learning rate multiplied by 0.1 at 120 and

160 epochs [61], taking ∼53 hours training ResNet-50. For

IG-1B, we use a mini-batch size of 1024 in 64 GPUs, and

a learning rate of 0.12 which is exponentially decayed by

0.9× after every 62.5k iterations (64M images). We train

for 1.25M iterations (∼1.4 epochs of IG-1B), taking ∼6 days

for ResNet-50.

4.1. Linear Classification Protocol

We first verify our method by linear classification on

frozen features, following a common protocol. In this sub-

section we perform unsupervised pre-training on IN-1M.

Then we freeze the features and train a supervised linear

classifier (a fully-connected layer followed by softmax). We

train this classifier on the global average pooling features of

a ResNet, for 100 epochs. We report 1-crop, top-1 classifi-

cation accuracy on the ImageNet validation set.

For this classifier, we perform a grid search and find the

optimal initial learning rate is 30 and weight decay is 0

(similarly reported in [56]). These hyper-parameters per-

form consistently well for all ablation entries presented in

this subsection. These hyper-parameter values imply that

the feature distributions (e.g., magnitudes) can be substan-

tially different from those of ImageNet supervised training,

an issue we will revisit in Sec. 4.2.

Ablation: contrastive loss mechanisms. We compare the

three mechanisms that are illustrated in Figure 2. To focus

on the effect of contrastive loss mechanisms, we implement

all of them in the same pretext task as described in Sec. 3.3.

We also use the same form of InfoNCE as the contrastive

loss function, Eqn.(1). As such, the comparison is solely on

the three mechanisms.

The results are in Figure 3. Overall, all three mecha-

nisms benefit from a larger K. A similar trend has been

observed in [61, 56] under the memory bank mechanism,

while here we show that this trend is more general and can

be seen in all mechanisms. These results support our moti-

vation of building a large dictionary.

The end-to-end mechanism performs similarly to MoCo

when K is small. However, the dictionary size is limited

by the mini-batch size due to the end-to-end requirement.

Here the largest mini-batch a high-end machine (8 Volta

32GB GPUs) can afford is 1024. More essentially, large

mini-batch training is an open problem [25]: we found it

necessary to use the linear learning rate scaling rule [25]

here, without which the accuracy drops (by ∼2% with a

1024 mini-batch). But optimizing with a larger mini-batch

is harder [25], and it is questionable whether the trend can

be extrapolated into a larger K even if memory is sufficient.

256 512 1024 4096 16384 65536

K (log-scale)

50

52

54

56

58

60

a
c
c
u
ra

c
y
 (

%
)

50.0

52.0

54.1

56.5

57.8 58.0

54.7

56.4

57.5

59.0

60.4 60.6

54.9

56.3

57.3

end-to-end

memory bank

MoCo

Figure 3. Comparison of three contrastive loss mechanisms un-

der the ImageNet linear classification protocol. We adopt the same

pretext task (Sec. 3.3) and only vary the contrastive loss mecha-

nism (Figure 2). The number of negatives is K in memory bank

and MoCo, and is K−1 in end-to-end (offset by one because the

positive key is in the same mini-batch). The network is ResNet-50.

The memory bank [61] mechanism can support a larger

dictionary size. But it is 2.6% worse than MoCo. This is

inline with our hypothesis: the keys in the memory bank

are from very different encoders all over the past epoch and

they are not consistent. Note the memory bank result of

58.0% reflects our improved implementation of [61].2

Ablation: momentum. The table below shows ResNet-50

accuracy with different MoCo momentum values (m in

Eqn.(2)) used in pre-training (K = 4096 here) :

momentum m 0 0.9 0.99 0.999 0.9999

accuracy (%) fail 55.2 57.8 59.0 58.9

It performs reasonably well when m is in 0.99 ∼ 0.9999,

showing that a slowly progressing (i.e., relatively large mo-

mentum) key encoder is beneficial. When m is too small

(e.g., 0.9), the accuracy drops considerably; at the extreme

of no momentum (m is 0), the training loss oscillates and

fails to converge. These results support our motivation of

building a consistent dictionary.

Comparison with previous results. Previous unsuper-

vised learning methods can differ substantially in model

sizes. For a fair and comprehensive comparison, we report

accuracy vs. #parameters3 trade-offs. Besides ResNet-50

(R50) [33], we also report its variants that are 2× and 4×
wider (more channels), following [38].4 We set K = 65536

and m = 0.999. Table 1 is the comparison.

MoCo with R50 performs competitively and achieves

60.6% accuracy, better than all competitors of similar

model sizes (∼24M). MoCo benefits from larger models and

achieves 68.6% accuracy with R50w4×.

Notably, we achieve competitive results using a standard

ResNet-50 and require no specific architecture designs, e.g.,

2Here 58.0% is with InfoNCE and K=65536. We reproduce 54.3%

when using NCE and K=4096 (the same as [61]), close to 54.0% in [61].
3Parameters are of the feature extractor: e.g., we do not count the pa-

rameters of convx if convx is not included in linear classification.
4Our w2× and w4× models correspond to the “×8” and “×16” cases

in [38], because the standard-sized ResNet is referred to as “×4” in [38].

9733

0 200 400 600

#parameters (M)

40

50

60

70

a
c
c
u

ra
c
y
 (

%
)

Exemplar

RelativePosition

Jigsaw

Rotation

Colorization

DeepCluster

InstDisc

CPCv1

CPCv2

BigBiGAN-R50

BigBiGAN-Rv50w4x

AMDIM-small

AMDIM-large

CMC-R50

CMC-R50w2x

LocalAgg

R50

RX50
R50w2x

R50w4x

previous

MoCo

method architecture #params (M) accuracy (%)

Exemplar [17] R50w3× 211 46.0 [38]

RelativePosition [13] R50w2× 94 51.4 [38]

Jigsaw [45] R50w2× 94 44.6 [38]

Rotation [19] Rv50w4× 86 55.4 [38]

Colorization [64] R101∗ 28 39.6 [14]

DeepCluster [3] VGG [53] 15 48.4 [4]

BigBiGAN [16] R50 24 56.6

Rv50w4× 86 61.3

methods based on contrastive learning follow:

InstDisc [61] R50 24 54.0

LocalAgg [66] R50 24 58.8

CPC v1 [46] R101∗ 28 48.7

CPC v2 [35] R170∗wider 303 65.9

CMC [56] R50L+ab 47 64.1†

R50w2×L+ab 188 68.4†

AMDIM [2] AMDIMsmall 194 63.5†

AMDIMlarge 626 68.1†

MoCo R50 24 60.6

RX50 46 63.9

R50w2× 94 65.4

R50w4× 375 68.6

Table 1. Comparison under the linear classification protocol

on ImageNet. The figure visualizes the table. All are reported as

unsupervised pre-training on the ImageNet-1M training set, fol-

lowed by supervised linear classification trained on frozen fea-

tures, evaluated on the validation set. The parameter counts are

those of the feature extractors. We compare with improved re-

implementations if available (referenced after the numbers).

Notations: R101∗/R170∗ is ResNet-101/170 with the last residual stage

removed [14, 46, 35], and R170 is made wider [35]; Rv50 is a reversible

net [23], RX50 is ResNeXt-50-32×8d [62].
†: Pre-training uses FastAutoAugment [40] that is supervised by ImageNet labels.

patchified inputs [46, 35], carefully tailored receptive fields

[2], or combining two networks [56]. By using an architec-

ture that is not customized for the pretext task, it is easier to

transfer features to a variety of visual tasks and make com-

parisons, studied in the next subsection.

This paper’s focus is on a mechanism for general con-

trastive learning; we do not explore orthogonal factors (such

as specific pretext tasks) that may further improve accuracy.

As an example, “MoCo v2” [8], an extension of a prelim-

inary version of this manuscript, achieves 71.1% accuracy

with R50 (up from 60.6%), given small changes on the data

augmentation and output projection head [7]. We believe

that this additional result shows the generality and robust-

ness of the MoCo framework.

pre-train AP50 AP AP75

random init. 64.4 37.9 38.6

super. IN-1M 81.4 54.0 59.1

MoCo IN-1M 81.1 (−0.3) 54.6 (+0.6) 59.9 (+0.8)

MoCo IG-1B 81.6 (+0.2) 55.5 (+1.5) 61.2 (+2.1)

(a) Faster R-CNN, R50-dilated-C5

pre-train AP50 AP AP75

random init. 60.2 33.8 33.1

super. IN-1M 81.3 53.5 58.8

MoCo IN-1M 81.5 (+0.2) 55.9 (+2.4) 62.6 (+3.8)

MoCo IG-1B 82.2 (+0.9) 57.2 (+3.7) 63.7 (+4.9)

(b) Faster R-CNN, R50-C4

Table 2. Object detection fine-tuned on PASCAL VOC

trainval07+12. Evaluation is on test2007: AP50 (default

VOC metric), AP (COCO-style), and AP75, averaged over 5 trials.

All are fine-tuned for 24k iterations (∼23 epochs). In the brackets

are the gaps to the ImageNet supervised pre-training counterpart.

In green are the gaps of at least +0.5 point.

R50-dilated-C5 R50-C4

pre-train AP50 AP AP75 AP50 AP AP75

end-to-end 79.2 52.0 56.6 80.4 54.6 60.3

memory bank 79.8 52.9 57.9 80.6 54.9 60.6

MoCo 81.1 54.6 59.9 81.5 55.9 62.6

Table 3. Comparison of three contrastive loss mechanisms on

PASCAL VOC object detection, fine-tuned on trainval07+12

and evaluated on test2007 (averages over 5 trials). All models

are implemented by us (Figure 3), pre-trained on IN-1M, and fine-

tuned using the same settings as in Table 2.

4.2. Transferring Features

A main goal of unsupervised learning is to learn features

that are transferrable. ImageNet supervised pre-training is

most influential when serving as the initialization for fine-

tuning in downstream tasks (e.g., [21, 20, 43, 52]). Next

we compare MoCo with ImageNet supervised pre-training,

transferred to various tasks including PASCAL VOC [18],

COCO [42], etc. As prerequisites, we discuss two important

issues involved [31]: normalization and schedules.

Normalization. As noted in Sec. 4.1, features produced by

unsupervised pre-training can have different distributions

compared with ImageNet supervised pre-training. But a

system for a downstream task often has hyper-parameters

(e.g., learning rates) selected for supervised pre-training. To

relieve this problem, we adopt feature normalization during

fine-tuning: we fine-tune with BN that is trained (and syn-

chronized across GPUs [49]), instead of freezing it by an

affine layer [33]. We also use BN in the newly initialized

layers (e.g., FPN [41]), which helps calibrate magnitudes.

We perform normalization when fine-tuning supervised

and unsupervised pre-training models. MoCo uses the same

hyper-parameters as the ImageNet supervised counterpart.

Schedules. If the fine-tuning schedule is long enough,

training detectors from random initialization can be strong

baselines, and can match the ImageNet supervised counter-

part on COCO [31]. Our goal is to investigate transferabil-

9734

AP50 AP AP75

pre-train RelPos, by [14] Multi-task [14] Jigsaw, by [26] LocalAgg [66] MoCo MoCo Multi-task [14] MoCo

super. IN-1M 74.2 74.2 70.5 74.6 74.4 42.4 44.3 42.7

unsup. IN-1M 66.8 (−7.4) 70.5 (−3.7) 61.4 (−9.1) 69.1 (−5.5) 74.9 (+0.5) 46.6 (+4.2) 43.9 (−0.4) 50.1 (+7.4)

unsup. IN-14M - - 69.2 (−1.3) - 75.2 (+0.8) 46.9 (+4.5) - 50.2 (+7.5)

unsup. YFCC-100M - - 66.6 (−3.9) - 74.7 (+0.3) 45.9 (+3.5) - 49.0 (+6.3)

unsup. IG-1B - - - - 75.6 (+1.2) 47.6 (+5.2) - 51.7 (+9.0)

Table 4. Comparison with previous methods on object detection fine-tuned on PASCAL VOC trainval2007. Evaluation is on

test2007. The ImageNet supervised counterparts are from the respective papers, and are reported as having the same structure as the

respective unsupervised pre-training counterparts. All entries are based on the C4 backbone. The models in [14] are R101 v2 [34], and

others are R50. The RelPos (relative position) [13] result is the best single-task case in the Multi-task paper [14]. The Jigsaw [45] result is

from the ResNet-based implementation in [26]. Our results are with 9k-iteration fine-tuning, averaged over 5 trials. In the brackets are the

gaps to the ImageNet supervised pre-training counterpart. In green are the gaps of at least +0.5 point.

ity of features, so our experiments are on controlled sched-

ules, e.g., the 1× (∼12 epochs) or 2× schedules [22] for

COCO, in contrast to 6×∼9× in [31]. On smaller datasets

like VOC, training longer may not catch up [31].

Nonetheless, in our fine-tuning, MoCo uses the same

schedule as the ImageNet supervised counterpart, and ran-

dom initialization results are provided as references.

Put together, our fine-tuning uses the same setting as the

supervised pre-training counterpart. This may place MoCo

at a disadvantage. Even so, MoCo is competitive. Doing so

also makes it feasible to present comparisons on multiple

datasets/tasks, without extra hyper-parameter search.

4.2.1 PASCAL VOC Object Detection

Setup. The detector is Faster R-CNN [52] with a backbone

of R50-dilated-C5 or R50-C4 [32] (details in appendix),

with BN tuned, implemented in [60]. We fine-tune all lay-

ers end-to-end. The image scale is [480, 800] pixels during

training and 800 at inference. The same setup is used for all

entries, including the supervised pre-training baseline. We

evaluate the default VOC metric of AP50 (i.e., IoU threshold

is 50%) and the more stringent metrics of COCO-style AP

and AP75. Evaluation is on the VOC test2007 set.

Ablation: backbones. Table 2 shows the results fine-tuned

on trainval07+12 (∼16.5k images). For R50-dilated-

C5 (Table 2a), MoCo pre-trained on IN-1M is comparable

to the supervised pre-training counterpart, and MoCo pre-

trained on IG-1B surpasses it. For R50-C4 (Table 2b),

MoCo with IN-1M or IG-1B is better than the supervised

counterpart: up to +0.9 AP50, +3.7 AP, and +4.9 AP75.

Interestingly, the transferring accuracy depends on the

detector structure. For the C4 backbone, by default used

in existing ResNet-based results [14, 61, 26, 66], the ad-

vantage of unsupervised pre-training is larger. The relation

between pre-training vs. detector structures has been veiled

in the past, and should be a factor under consideration.

Ablation: contrastive loss mechanisms. We point out that

these results are partially because we establish solid detec-

tion baselines for contrastive learning. To pin-point the gain

that is solely contributed by using the MoCo mechanism

in contrastive learning, we fine-tune the models pre-trained

with the end-to-end or memory bank mechanism, both im-

plemented by us (i.e., the best ones in Figure 3), using the

same fine-tuning setting as MoCo.

These competitors perform decently (Table 3). Their AP

and AP75 with the C4 backbone are also higher than the

ImageNet supervised counterpart’s, c.f . Table 2b, but other

metrics are lower. They are worse than MoCo in all metrics.

This shows the benefits of MoCo. In addition, how to train

these competitors in larger-scale data is an open question,

and they may not benefit from IG-1B.

Comparison with previous results. Following the com-

petitors, we fine-tune on trainval2007 (∼5k images)

using the C4 backbone. The comparison is in Table 4.

For the AP50 metric, no previous method can catch

up with its respective supervised pre-training counterpart.

MoCo pre-trained on any of IN-1M, IN-14M (full Ima-

geNet), YFCC-100M [55], and IG-1B can outperform the

supervised baseline. Large gains are seen in the more strin-

gent metrics: up to +5.2 AP and +9.0 AP75. These gains are

larger than the gains seen in trainval07+12 (Table 2b).

4.2.2 COCO Object Detection and Segmentation

Setup. The model is Mask R-CNN [32] with the FPN [41]

or C4 backbone, with BN tuned, implemented in [60]. The

image scale is in [640, 800] pixels during training and is 800

at inference. We fine-tune all layers end-to-end. We fine-

tune on the train2017 set (∼118k images) and evaluate

on val2017. The schedule is the default 1× or 2× in [22].

Results. Table 5 shows the results on COCO with the FPN

(Table 5a, b) and C4 (Table 5c, d) backbones. With the

1× schedule, all models (including the ImageNet super-

vised counterparts) are heavily under-trained, as indicated

by the ∼2 points gaps to the 2× schedule cases. With the

2× schedule, MoCo is better than its ImageNet supervised

counterpart in all metrics in both backbones.

4.2.3 More Downstream Tasks

Table 6 shows more downstream tasks (implementation de-

tails in appendix). Overall, MoCo performs competitively

9735

pre-train APbb APbb
50

APbb
75

APmk APmk
50 APmk

75

random init. 31.0 49.5 33.2 28.5 46.8 30.4

super. IN-1M 38.9 59.6 42.7 35.4 56.5 38.1

MoCo IN-1M 38.5 (−0.4) 58.9 (−0.7) 42.0 (−0.7) 35.1 (−0.3) 55.9 (−0.6) 37.7 (−0.4)

MoCo IG-1B 38.9 (+0.0) 59.4 (−0.2) 42.3 (−0.4) 35.4 (+0.0) 56.5 (+0.0) 37.9 (−0.2)

(a) Mask R-CNN, R50-FPN, 1× schedule

APbb APbb
50

APbb
75

APmk APmk
50 APmk

75

36.7 56.7 40.0 33.7 53.8 35.9

40.6 61.3 44.4 36.8 58.1 39.5

40.8 (+0.2) 61.6 (+0.3) 44.7 (+0.3) 36.9 (+0.1) 58.4 (+0.3) 39.7 (+0.2)

41.1 (+0.5) 61.8 (+0.5) 45.1 (+0.7) 37.4 (+0.6) 59.1 (+1.0) 40.2 (+0.7)

(b) Mask R-CNN, R50-FPN, 2× schedule

pre-train APbb APbb
50

APbb
75

APmk APmk
50 APmk

75

random init. 26.4 44.0 27.8 29.3 46.9 30.8

super. IN-1M 38.2 58.2 41.2 33.3 54.7 35.2

MoCo IN-1M 38.5 (+0.3) 58.3 (+0.1) 41.6 (+0.4) 33.6 (+0.3) 54.8 (+0.1) 35.6 (+0.4)

MoCo IG-1B 39.1 (+0.9) 58.7 (+0.5) 42.2 (+1.0) 34.1 (+0.8) 55.4 (+0.7) 36.4 (+1.2)

(c) Mask R-CNN, R50-C4, 1× schedule

APbb APbb
50

APbb
75

APmk APmk
50 APmk

75

35.6 54.6 38.2 31.4 51.5 33.5

40.0 59.9 43.1 34.7 56.5 36.9

40.7 (+0.7) 60.5 (+0.6) 44.1 (+1.0) 35.4 (+0.7) 57.3 (+0.8) 37.6 (+0.7)

41.1 (+1.1) 60.7 (+0.8) 44.8 (+1.7) 35.6 (+0.9) 57.4 (+0.9) 38.1 (+1.2)

(d) Mask R-CNN, R50-C4, 2× schedule

Table 5. Object detection and instance segmentation fine-tuned on COCO: bounding-box AP (APbb) and mask AP (APmk) evaluated

on val2017. In the brackets are the gaps to the ImageNet supervised pre-training counterpart. In green are the gaps of at least +0.5 point.

COCO keypoint detection

pre-train APkp AP
kp

50
AP

kp

75

random init. 65.9 86.5 71.7

super. IN-1M 65.8 86.9 71.9

MoCo IN-1M 66.8 (+1.0) 87.4 (+0.5) 72.5 (+0.6)

MoCo IG-1B 66.9 (+1.1) 87.8 (+0.9) 73.0 (+1.1)

COCO dense pose estimation

pre-train APdp AP
dp

50
AP

dp

75

random init. 39.4 78.5 35.1

super. IN-1M 48.3 85.6 50.6

MoCo IN-1M 50.1 (+1.8) 86.8 (+1.2) 53.9 (+3.3)

MoCo IG-1B 50.6 (+2.3) 87.0 (+1.4) 54.3 (+3.7)

LVIS v0.5 instance segmentation

pre-train APmk APmk
50 APmk

75

random init. 22.5 34.8 23.8

super. IN-1M† 24.4 37.8 25.8

MoCo IN-1M 24.1 (−0.3) 37.4 (−0.4) 25.5 (−0.3)

MoCo IG-1B 24.9 (+0.5) 38.2 (+0.4) 26.4 (+0.6)

Cityscapes instance seg. Semantic seg. (mIoU)

pre-train APmk APmk
50 Cityscapes VOC

random init. 25.4 51.1 65.3 39.5

super. IN-1M 32.9 59.6 74.6 74.4

MoCo IN-1M 32.3 (−0.6) 59.3 (−0.3) 75.3 (+0.7) 72.5 (−1.9)

MoCo IG-1B 32.9 (+0.0) 60.3 (+0.7) 75.5 (+0.9) 73.6 (−0.8)

Table 6. MoCo vs. ImageNet supervised pre-training, fine-

tuned on various tasks. For each task, the same architecture and

schedule are used for all entries (see appendix). In the brackets are

the gaps to the ImageNet supervised pre-training counterpart. In

green are the gaps of at least +0.5 point.
†: this entry is with BN frozen, which improves results; see main text.

with ImageNet supervised pre-training:

COCO keypoint detection: supervised pre-training has

no clear advantage over random initialization, whereas

MoCo outperforms in all metrics.

COCO dense pose estimation [1]: MoCo substantially

outperforms supervised pre-training, e.g., by 3.7 points in

AP
dp
75, in this highly localization-sensitive task.

LVIS v0.5 instance segmentation [27]: this task has
∼1000 long-tailed distributed categories. Specifically in

LVIS for the ImageNet supervised baseline, we find fine-

tuning with frozen BN (24.4 APmk) is better than tunable

BN (details in appendix). So we compare MoCo with the

better supervised pre-training variant in this task. MoCo

with IG-1B surpasses it in all metrics.

Cityscapes instance segmentation [10]: MoCo with IG-1B

is on par with its supervised pre-training counterpart in

APmk, and is higher in APmk
50 .

Semantic segmentation: On Cityscapes [10], MoCo out-

performs its supervised pre-training counterpart by up to 0.9

point. But on VOC semantic segmentation, MoCo is worse

by at least 0.8 point, a negative case we have observed.

Summary. In sum, MoCo can outperform its ImageNet

supervised pre-training counterpart in 7 detection or seg-

mentation tasks.5 Besides, MoCo is on par on Cityscapes

instance segmentation, and lags behind on VOC semantic

segmentation; we show another comparable case on iNatu-

ralist [57] in appendix. Overall, MoCo has largely closed

the gap between unsupervised and supervised representa-

tion learning in multiple vision tasks.

Remarkably, in all these tasks, MoCo pre-trained on

IG-1B is consistently better than MoCo pre-trained on

IN-1M. This shows that MoCo can perform well on this

large-scale, relatively uncurated dataset. This represents a

scenario towards real-world unsupervised learning.

5. Discussion and Conclusion

Our method has shown positive results of unsupervised

learning in a variety of computer vision tasks and datasets.

A few open questions are worth discussing. MoCo’s im-

provement from IN-1M to IG-1B is consistently noticeable

but relatively small, suggesting that the larger-scale data

may not be fully exploited. We hope an advanced pretext

task will improve this. Beyond the simple instance discrim-

ination task [61], it is possible to adopt MoCo for pretext

tasks like masked auto-encoding, e.g., in language [12] and

in vision [46]. We hope MoCo will be useful with other

pretext tasks that involve contrastive learning.

5Namely, object detection on VOC/COCO, instance segmentation on

COCO/LVIS, keypoint detection on COCO, dense pose on COCO, and

semantic segmentation on Cityscapes.

9736

References

[1] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos.

DensePose: Dense human pose estimation in the wild. In

CVPR, 2018.

[2] Philip Bachman, R Devon Hjelm, and William Buchwalter.

Learning representations by maximizing mutual information

across views. arXiv:1906.00910, 2019.

[3] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and

Matthijs Douze. Deep clustering for unsupervised learning

of visual features. In ECCV, 2018.

[4] Mathilde Caron, Piotr Bojanowski, Julien Mairal, and Ar-

mand Joulin. Unsupervised pre-training of image features

on non-curated data. In ICCV, 2019.

[5] Ken Chatfield, Victor Lempitsky, Andrea Vedaldi, and An-

drew Zisserman. The devil is in the details: an evaluation of

recent feature encoding methods. In BMVC, 2011.

[6] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. DeepLab: Semantic im-

age segmentation with deep convolutional nets, atrous con-

volution, and fully connected CRFs. TPAMI, 2017.

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. arXiv:2002.05709, 2020.

[8] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.

Improved baselines with momentum contrastive learning.

arXiv:2003.04297, 2020.

[9] Adam Coates and Andrew Ng. The importance of encoding

versus training with sparse coding and vector quantization.

In ICML, 2011.

[10] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The Cityscapes

dataset for semantic urban scene understanding. In CVPR,

2016.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. ImageNet: A large-scale hierarchical image

database. In CVPR, 2009.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. BERT: Pre-training of deep bidirectional trans-

formers for language understanding. In NAACL, 2019.

[13] Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-

vised visual representation learning by context prediction. In

ICCV, 2015.

[14] Carl Doersch and Andrew Zisserman. Multi-task self-

supervised visual learning. In ICCV, 2017.

[15] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Ad-

versarial feature learning. In ICLR, 2017.

[16] Jeff Donahue and Karen Simonyan. Large scale adversarial

representation learning. arXiv:1907.02544, 2019.

[17] Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Ried-

miller, and Thomas Brox. Discriminative unsupervised

feature learning with convolutional neural networks. In

NeurIPS, 2014.

[18] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The Pascal Visual Ob-

ject Classes (VOC) Challenge. IJCV, 2010.

[19] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-

supervised representation learning by predicting image rota-

tions. In ICLR, 2018.

[20] Ross Girshick. Fast R-CNN. In ICCV, 2015.

[21] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In CVPR, 2014.

[22] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari, Piotr

Dollár, and Kaiming He. Detectron, 2018.

[23] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B

Grosse. The reversible residual network: Backpropagation

without storing activations. In NeurIPS, 2017.

[24] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NeurIPS,

2014.

[25] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large minibatch

SGD: Training ImageNet in 1 hour. arXiv:1706.02677, 2017.

[26] Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan

Misra. Scaling and benchmarking self-supervised visual rep-

resentation learning. In ICCV, 2019.

[27] Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS: A

dataset for large vocabulary instance segmentation. In CVPR,

2019.

[28] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive

estimation: A new estimation principle for unnormalized sta-

tistical models. In AISTATS, 2010.

[29] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-

ality reduction by learning an invariant mapping. In CVPR,

2006.

[30] Bharath Hariharan, Pablo Arbeláez, Lubomir Bourdev,

Subhransu Maji, and Jitendra Malik. Semantic contours from

inverse detectors. In ICCV, 2011.

[31] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking

ImageNet pre-training. In ICCV, 2019.

[32] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask R-CNN. In ICCV, 2017.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In ECCV,

2016.

[35] Olivier J Hénaff, Ali Razavi, Carl Doersch, SM Eslami, and

Aaron van den Oord. Data-efficient image recognition with

contrastive predictive coding. arXiv:1905.09272, 2019. Up-

dated version accessed at https://openreview.net/

pdf?id=rJerHlrYwH.

[36] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon,

Karan Grewal, Adam Trischler, and Yoshua Bengio. Learn-

ing deep representations by mutual information estimation

and maximization. In ICLR, 2019.

[37] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015.

9737

[38] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Re-

visiting self-supervised visual representation learning. In

CVPR, 2019.

[39] Yann LeCun, Bernhard Boser, John S Denker, Donnie

Henderson, Richard E Howard, Wayne Hubbard, and

Lawrence D Jackel. Backpropagation applied to handwrit-

ten zip code recognition. Neural computation, 1989.

[40] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and

Sungwoong Kim. Fast AutoAugment. arXiv:1905.00397,

2019.

[41] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, 2017.

[42] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

ECCV, 2014.

[43] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In

CVPR, 2015.

[44] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,

Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,

and Laurens van der Maaten. Exploring the limits of weakly

supervised pretraining. In ECCV, 2018.

[45] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of

visual representations by solving jigsaw puzzles. In ECCV,

2016.

[46] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Rep-

resentation learning with contrastive predictive coding.

arXiv:1807.03748, 2018.

[47] Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Darrell,

and Bharath Hariharan. Learning features by watching ob-

jects move. In CVPR, 2017.

[48] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor

Darrell, and Alexei A Efros. Context encoders: Feature

learning by inpainting. In CVPR, 2016.

[49] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu

Zhang, Kai Jia, Gang Yu, and Jian Sun. MegDet: A large

mini-batch object detector. In CVPR, 2018.

[50] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya

Sutskever. Improving language understanding by generative

pre-training. 2018.

[51] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario

Amodei, and Ilya Sutskever. Language models are unsuper-

vised multitask learners. 2019.

[52] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. In NeurIPS, 2015.

[53] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

2015.

[54] Josef Sivic and Andrew Zisserman. Video Google: a text

retrieval approach to object matching in videos. In ICCV,

2003.

[55] Bart Thomee, David A Shamma, Gerald Friedland, Ben-

jamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and

Li-Jia Li. YFCC100M: The new data in multimedia research.

Communications of the ACM, 2016.

[56] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-

trastive multiview coding. arXiv:1906.05849, 2019. Updated

version accessed at https://openreview.net/pdf?

id=BkgStySKPB.

[57] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,

Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and

Serge Belongie. The iNaturalist species classification and

detection dataset. In CVPR, 2018.

[58] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and

Pierre-Antoine Manzagol. Extracting and composing robust

features with denoising autoencoders. In ICML, 2008.

[59] Xiaolong Wang and Abhinav Gupta. Unsupervised learning

of visual representations using videos. In ICCV, 2015.

[60] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen

Lo, and Ross Girshick. Detectron2. https://github.

com/facebookresearch/detectron2, 2019.

[61] Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Un-

supervised feature learning via non-parametric instance dis-

crimination. In CVPR, 2018. Updated version accessed at:

https://arxiv.org/abs/1805.01978v1.

[62] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In CVPR, 2017.

[63] Mang Ye, Xu Zhang, Pong C Yuen, and Shih-Fu Chang. Un-

supervised embedding learning via invariant and spreading

instance feature. In CVPR, 2019.

[64] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful

image colorization. In ECCV, 2016.

[65] Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain

autoencoders: Unsupervised learning by cross-channel pre-

diction. In CVPR, 2017.

[66] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local

aggregation for unsupervised learning of visual embeddings.

In ICCV, 2019. Additional results accessed from supplemen-

tary materials.

9738

