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Abstract

Point clouds are a popular representation for 3D shapes.

However, they encode a particular sampling without ac-

counting for shape priors or non-local information. We ad-

vocate for the use of a hierarchical Gaussian mixture model

(hGMM), which is a compact, adaptive and lightweight

representation that probabilistically defines the underlying

3D surface. We present PointGMM, a neural network that

learns to generate hGMMs which are characteristic of the

shape class, and also coincide with the input point cloud.

PointGMM is trained over a collection of shapes to learn

a class-specific prior. The hierarchical representation has

two main advantages: (i) coarse-to-fine learning, which

avoids converging to poor local-minima; and (ii) (an un-

supervised) consistent partitioning of the input shape. We

show that as a generative model, PointGMM learns a mean-

ingful latent space which enables generating consistent in-

terpolations between existing shapes, as well as synthesiz-

ing novel shapes. We also present a novel framework for

rigid registration using PointGMM, that learns to disentan-

gle orientation from structure of an input shape.

1. Introduction

Point clouds are a common and simple representation of

3D shapes. They can be directly obtained through scan-

ning devices, which sample the surface of a 3D object. A

major drawback of the point cloud representation is the in-

herent dependence on the particular sampling pattern, mak-

ing it sensitive to occlusions, noise and sparse sampling.

Moreover, they are unordered and irregular, and each indi-

vidual point sample does not carry any non-local informa-

tion [7, 28, 34, 43].

The Gaussian mixture model (GMM) is an alternative

representation for 3D shapes [4, 13]. Unlike the point cloud,

which uses an arbitrary specific discrete set of samples,

GMMs use a fixed and prescribed number of Gaussians that

probabilistically define the underlying 3D surface. GMMs

are a compact and lightweight representation, which excel

in representing a sparse and non-uniform point cloud. They

are inherently adaptive: representing intricate details with

Figure 1: Shape interpolation using a PointGMM generative

model. The consistent coloring in the hGMM leaf nodes

suggests that an interpretable partitioning has been learned,

without any supervision.

more Gaussians, while large smooth regions can be repre-

sented with a smaller number of Gaussians.

In this work, we present the use of GMMs as an interme-

diate and compact representation for point cloud process-

ing with a neural network, called PointGMM. PointGMM is

trained over a set of shapes to learn a class-specific prior.

For a given point cloud, PointGMM learns a set of Gaus-

sians which are characteristic of the shape class, and also

coincide with the input point cloud. In other words, Point-

GMM provides additional geometric information which is

otherwise missing from the input point cloud. Moreover,

PointGMM is a structured representation, where subsets of

Gaussians represent semantic spatial regions of the shape.

This provides a means to consistently parse a diverse set

of shapes, which is learned without any explicit ground-

truth labels (Figure 1). We demonstrate the advantage of

a learned GMM representation for the task of partial point

cloud registration and shape generation.

We show that a major challenge in training a neural net-

work to directly partition shapes into distinct regions for

each GMM is a loosely defined objective, which is highly

susceptible to local minima. To alleviate this issue, we learn

in a coarse-to-fine manner, through a hierarchical GMM

(hGMM) framework. We propose a network which learns

to subdivide the input points into distinct groups that are

modeled by GMMs at different shape scales. This promotes

and encourages more effective learning; since the GMMs at
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the bottom of the hierarchy concentrate on learning smaller

spatial regions, while the top-level GMMs learn larger re-

gions.

Although the input point cloud is unordered, PointGMM

learns to output GMMs in a consistent and meaningful or-

der.

This significant property motivates us to use PointGMM

as a generative model trained on collection of shapes. We

show that the learned latent space enables generating mean-

ingful interpolations between existing shapes, as well as

synthesizing novel shapes. Moreover, we present a novel

framework for rigid registration using PointGMM, which

learns to disentangle orientation from the input shape. To

facilitate registration of partial shapes, we train the network

to receive partial shapes, and generate GMMs as if they

were complete. This enables PointGMM to perform non-

trivial registrations which implicitly considers the overlap

between missing regions. We compare to state-of-the-art

rigid registration approaches on partial shapes with large ro-

tation angles demonstrating the applicability of PointGMM.

Finally, another important property of the hGMM rep-

resentation is that it enables a more efficient loss function

compared to voxels O(n3) or point clouds O(n2) which

are bound by the resolution of the grid or points, respec-

tively. By contrast, the complexity of a GMM loss function

depends on the number (k) of Gaussians O(n · k) (k ≪ n),

and the hGMM loss complexity is O(n · log k) [14].

2. Related work

Deep networks for irregular 3D shapes. Pointnet [34]

first proposed a neural network which operates directly on

irregular and unordered point clouds through 1×1 convolu-

tions followed by global (max) pooling. Several follow-up

works proposed incorporating local neighborhood informa-

tion. For example, Pointnet++ [35] used a hierarchical net-

work to capture local information. PointCNN [28] proposed

learning a χ-transformation on point clouds, without using

global pooling. Wang et al. [43] build Euclidean neighbor-

hoods by building a graph from point samples. SPLAT-

Net [39] represents points in a high-dimensional lattice. An-

other class of approaches propose irregular convolution and

pooling operators on 3D meshes [21] or treats shapes as a

graph [32]. For more details on learning on non-Euclidean

data (geometric deep learning) refer to [7].

GMMs for 3D data. Ben-Shabat et al. [4] suggested

using GMMs to represent 3D shapes, by pre-defining par-

titions of the point cloud and calculating the associated

GMM. The parameters of the GMM are used as input fea-

tures to a neural network for the task of classification, which

was later extended in [5] for normal estimation. Unlike pre-

vious works, PointGMM uses the networks loss function

to learn how to best partition the point cloud for the task

at hand. Moreover, instead of using the parameters of the

GMM as features, the learned GMMs are used directly as

the 3D shape representation.

Eckart et al. [13] also propose using a hierarchical GMM

representation for the task of shape registration.

Yet, their hGMM is generated without learning. Thus,

unlike our learned hGMM, it does not include any prior of

a training set, nor any implicit information about missing

parts. Moreover, [13] does not provide a latent space as

PointGMM does, which enables shape generation.

Generative models for 3D shapes. In recent years, var-

ious works proposed leveraging the power of deep genera-

tive models for 3D shape generation. Achlioptas et al. [1]

pioneered a deep generative model which directly generated

sparse and irregular point clouds. SO-NET [27] used hier-

archical feature structures for generative as well as discrim-

inative tasks. A generative adversarial network for point

clouds was proposed in [26]. Recently, StructureNet [31]

use graph neural networks to jointly learn geometry and

inter-part training on a collection of shapes. SDM-NET

proposed generating deformable mesh parts using a VAE

[18]. Surface Networks [25] propose a generative model

for 3D surfaces via a Dirac operator. Although not a gener-

ative model, Tulsiani et al. [41] demonstrated that learning

to fit primitives to shapes is an effective approach for ex-

ploiting visual similarities in the data. Our work proposes

a novel approach for shape generation via a learned hGMM

partition. The learned GMMs correspond to consistently

segmented regions across a diverse set of shapes, without

using any explicit correspondence in the loss function.

Shape registration. Shape registration is a well-studied

problem with a variety of different techniques proposed

over the years. There are two main classes of reg-

istration approaches: estimating global (rigid) or local

(non-rigid) transformations between two potentially par-

tial shapes. A popular technique for rigid registration is

to apply RANSAC to find three matching points [17, 10].

In 4PCS [2] a technique for filtering the number of trials

required, greatly improves efficiency. Often, rigid regis-

tration is followed by non-rigid registration for additional

refinement. A popular approach for local registration is

ICP [6, 11] and its many variants [36, 38]; which can also

be used to compute a rigid transformation.

Recently, there have been efforts to apply deep neural

networks for the task of rigid [40] and non-rigid [20, 19]

registration, which can be faster and more robust than clas-

sic techniques.

PointNetLK [3] proposed a recurrent PointNet frame-

work for rigid registration, which is more robust to initial-

ization and missing parts compared to ICP.

Instead of learning to align one shape to another, we

train PointGMM to orient shapes into a canonical pose,

thereby indirectly calculating the transformation between

two shapes.
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3. Method

Our solution aims at representing a point cloud by a set

of GMMs. To this end, we design an encoder-decoder based

framework that generates a set of GMMs for given a point

cloud. The encoder generates a latent vector from the input

point cloud, and the decoder reconstructs a GMM from the

latent vector. To train the network, we propose a maximum-

likelihood based loss function that maximizes the proba-

bility that the point cloud was generated by the estimated

Gaussians. To improve performance and avoid converging

to local minima, we learn a hierarchical GMM (hGMM) in-

stead of a single scale GMM. Our method follows Eckart et

al. [14], who demonstrated that hGMM is an effective tool

for representing 3D point clouds.

In the following, we describe the hGMM representation

(Section 3.1) using the notation of [14], and the PointGMM

architecture (Section 3.2). Finally, we describe how Point-

GMM can be used for shape generation (Section 3.3) and

registration (Section 3.4).

3.1. Hierarchical GMM

The hGMM can be viewed as a tree of Gaussians where

the child of each node are a refined Gaussian mixture of

their parent. The first level (root) is composed from a mix-

ture of J (overlapping) weighted 3-dimensional multivari-

ate Gaussians Θl=1
j = {πj , µj ,Σj}. Given a point cloud X

of size N , its probability of being generated by Θl=1 is:

p
(

X|Θl=1
)

=

N
∏

i=1

p
(

Xi|Θl=1
)

=

N
∏

i=1

J
∑

j=1

πjN
(

Xi|Θl=1
j

)

.

(1)

Based on this probability, we define a set of C latent vari-

ables cij that represent the binary associations between a

point Xi and a Gaussian Θl=1
j in the mixture model. We

calculate the posterior for all cij ∈ C given Θl=1 by

γl=1
ij

def

= E [cij ] =
πjp

(

Xi|Θl=1
j

)

∑J

j′=1 πj′p
(

Xi|Θl=1
j′

) . (2)

The next levels in the hierarchical model are defined re-

cursively. Given a point cloud X , At the root, we calculate

the probabilities p
(

Xi|Θl=1
j

)

and the posteriors γl=1
ij for

each point and Gaussian in the mixture. Each Θl=1
j can

then be refined as another Gaussian mixture of size Ĵ :

p
(

X|γl=1,Θl=2
)

=
N
∏

i=1

Ĵ
∑

j=1

π
l=2||1
j p

(

Xi|Θl=2||1
j

)

(3)

where the superscript l = 2|1 indicates the selection of

Gaussian parameters at level 2 given the parent node at level

1. Each refinement term is a Gaussian mixture that satis-

fies
∑Ĵ

j=1 π
l=2||1
j = 1. In the recursive step, we follow a

X

Z

Θl=1 Θl=2 Θl=3

Figure 2: Method Overview. PointGMM learns a hierarchi-

cal GMM representation of the input X . Each depth d of the

tree corresponds to a group of GMMs (with parameters Θd)

representing the input distribution at different resolutions.

hard partitioning scheme, where we assign each point in the

point cloud to a mixture model. For a point with posteriors

γl=d−1
ij in level d−1, the point is assigned to the parent with

the highest expectation in level d− 1, i.e., that corresponds

to arg max
j

γl=d−1
ij .

Log-likelihood. Finally, given a point cloud X , the log-

likelihood for each depth in the hierarchy is given by

ℓhGMM

(

X|Θl=d
)

=
{

log p
(

X|Θl=1
)

if d = 1

log p
(

X|γl=d−1,Θl=d
)

else.
(4)

hGMM sampling. When sampling from the hGMM,

we refer to the leaf nodes of the tree at level D as a single

mixture model to sample from. Therefore, each leaf weight

is scaled by its ancestors’ weights, i.e., the fixed leaf weight

becomes

π̂j =

D
∏

d=1

π
l=d||d−1
j . (5)

3.2. PointGMM

PointGMM proposes a novel encoder-decoder network

that builds an hGMM tree from an input point cloud. We

demonstrate two different use cases of PointGMM: shape
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generation and registration. The encoder architecture is

task-specific, and we use the same PointGMM decoder for

both tasks.

The PointGMM decoder network is illustrated in Fig-

ure 2. First, an input point cloud X goes through an encoder

network resulting in a latent vector Z. Then, the embedding

is used by the decoder to generate the hGMM representa-

tion. Starting at the root (with latent vector Z), the decoder

generates the nodes in the hGMM tree in a top-down split-

ting process. For each node, the network generates a feature

vector, which is used to extract the GMM parameters.

MLP split. For every depth in the tree, the decoder splits

each node into children. We apply a multi-layer perceptron

(MLP) on each node. The output of the MLP is a feature

map which is used later to extract the GMM parameters.

Specifically, the MLP creates a feature vector h that repre-

sents each Gaussian in the mixture. Starting at the root, the

initial latent vector is the encoder output Z.

Attentional split. After the first MLP split, we have

the first level in the hGMM that represents a single Gaus-

sian mixture. Since we want to combine information be-

tween siblings, i.e., children of the same parent, we utilize a

self-attention module [42]. This enables effective informa-

tion passing between siblings to generate a higher quality

mixture. Following the first MLP split into children, each

child will split recursively into new children using atten-

tional splits.

To calculate the self-attention, we follow [29, 42], and

compute for each node j, its query Qj ∈ R
dk , key Kj ∈

R
dk and value Vj ∈ R

h. This is done using three fully con-

nected layers such that Qj = fQ(j), Kj = fK(j), Vj =
fV (j), which share the same parameters for all nodes of the

same depth. The output of these layers are used for calculat-

ing the attention weights between the siblings Si (j) of each

node j, which are given by α̂j =

{

QT

ĵ
Kĵ√
dk

| ĵ ∈ Si (j)

}

.

As in regular attention, we transform this vector into a dis-

tribution by αj = softmax (α̂j). The node descriptor before

splitting is
∑

ĵ∈Si(j) αj,ĵVĵ , which is splitted into its chil-

dren by a MLP with one hidden layer as described above.

We repeat this process of attention followed by a MLP split

until reaching the pre-determined depth.

α

α

Q

QfQ

fQ

V

V

fV

fV

K

K
f
K

f
K

GMM parameter extraction. The children of each

node in the hGMM tree corresponds to a GMM. Each

child node j contributes one Gaussian N(µj ,Σj) with

weight πj to the GMM. We extract the Gaussian pa-

rameters from the feature vector h of each node by

applying an MLP with one hidden layer. The out-

put of this MLP ∈ R
16, corresponds to the parameters

{

π̂j ∈ R, µj ∈ R
3, Ûj ∈ R

3×3,
√

λj ∈ R
3
}

, which are

used afterwards to create the parameters Θj = {πj , µj ,Σj}
of each Gaussian in the GMM.

We ensure that the mixture weights sum to probability

1 by applying the softmax function to all the node weights

πi in the group of siblings. The covariance Σj is calculated

from the eigen-decomposition Σj = U−1
j DjUj where Dj

is diagonal with the vector λj as its diagonal and Uj is a

unitary matrix resulting from applying the Gram-Schmidt

orthogonalization process on Ûj . This decomposition is re-

quired since we would like to restrict Σ to be a positive

definite matrix (PSD). This characteristic is guaranteed as

the decomposition is of positive real eigenvalues and their

eigenvectors (columns of U ).

hGMM loss. As mentioned above, the loss function

for optimizing PointGMM is, naturally, the negative log-

likelihood (ℓhGMM ) of a given point cloud X under the

networks output parameters, that is:

LhGMM (X,Θ) = − 1

|X|
D
∑

d=1

ℓhGMM

(

X|Θl=d
)

. (6)

ℓhGMM are summed over all depths until reaching the

the finer level. In this way, the network is restricted to rep-

resent the shape by each of the GMMs in each level. This

creates a spatial connection between the tree nodes, where

children give a finer description of their Gaussian parent.

3.3. Shape generation

PointGMM can be trained for shape generation using a

variational auto encoder (VAE) framework [24]. In our ex-

periments, we adopt the PointNet architecture [34] for the

encoder. PointNet encodes a given point cloud X ∈ R
N×d

by employing an MLP on each point. PointNet maintains

the order invariance property by applying a global max-

pooling operator over each dimension resulting in an order

invariant embedding Ẑ.

This embedding contains the parameters Zµ and Zσ ,

which are used for generating the latent vector Z = Zµ +
ǫZσ , where ǫ ∼ N (0, I). This makes our model genera-

tive, enabling a smooth latent space which can randomly be

sampled.

The encoding Z is the input to the PointGMM decoder

described above, which outputs the hGMM parameters. The
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Figure 3: Registration overview. The input point cloud

X (green) is disentangled into two different embeddings:

transformation (Zt) and the shape (Zc); via two parallel en-

coders Et and Ec.

shape generation loss is composed of LhGMM (6) and the

KL (Kullback- Leibler) divergence with respect to the Nor-

mal distribution to encourage a continuous latent space

Lg = LhGMM (X,Θ) + γLKL

[

N
(

Zµ, Z
2
σ

)

‖N (0, I)
]

.

(7)

To generate novel shapes, we can sample or interpolate

vectors from the learned latent distribution. Latent vectors

are decoded by PointGMM to generate the hGMM repre-

sentation. Given the probabilistic representation defined by

the hGMM, we can sample the underlying surface of the

synthesized shape in any desired resolution.

3.4. Shape registration

For the registration task, we would like to find a trans-

formation to align two partial point clouds. The core as-

sumption of our approach is that for each shape in our data,

there is a canonical form. Thus, our registration strategy

is based on finding the transformation of each given shape

with respect to its canonical form.

Data processing. To train our network to learn a canon-

ical position, we use an aligned dataset, ShapeNet [8], for

training. We use partially sampled and rotated shapes as

an input to our network, generated by the following simple

steps. First, we sample the shape surface to get the canon-

ical point cloud Xc. Then, the shape is randomly rotated

with angle φ around the z axis, creating Xr. The partial

point cloud is obtained by sampling a subset of the points.

Finally, we translate the point cloud to the center by v result-

ing in the partial and full point clouds X and Xt = Xr + v.

To summarize, we obtain the input point cloud X together

with point clouds Xc, Xt and transformation T = {φ, v},

which satisfy Xt = T · Xc. These inputs are used as a

supervision to our method as detailed below.

Training. Our registration framework (illustrated in Fig-

ure 3) aims to disentangle the shape from the transformation

of an input point cloud. First, two different encoders Et

(transformation) and Ec (canonical) process the input point

cloud X in parallel. The transformation encoder Et learns

to map the Cartesian coordinates of X to a latent vector Zt

that is agnostic to the shape. On the other hand, the shape

encoder Ec learns to embed rotation-invariant features [9]

of X to a latent vector Zc, which is agnostic to the orienta-

tion. The final latent vector Z is a concatenation of both the

shape and rotation vectors Z = Zt ⊕ Zc.

The network learns to disentangle the shape and trans-

formation of the input point cloud in two different passes.

In the transformation pass, we estimate the (transformed)

complete shape Xt from the (transformed) partial input

X . In this scenario the latent vector Z is a concatena-

tion of the output of the transformation encoder and the

shape encoder Zt ⊕ Zc. The PointGMM decoder D builds

the hGMM of the transformed shape from the latent vector

Θt = D (Zt ⊕ Zc). In addition, the encoding Zt is passed

to an MLP with one hidden layers, which generates an esti-

mate T̂ =
{

φ̂, v̂
}

of the transformation T . Therefore, the

loss used for the transformation pass is given by

Lt = LhGMM (Xt,Θt) + L
(

T̂ , T
)

. (8)

The transformation loss L
(

T̂ , T
)

penalizes differences

between translation v using the L1-norm and rotation φ us-

ing cosine similarity. Thus, it is defined as

L
(

T̂ , T
)

= γ1L1 (v̂, v) + γ2Lcos

(

φ̂, φ
)

. (9)

In the shape pass, we estimate the (canonical) complete

shape Xc from the (transformed) partial input X . Since the

input features of X to Ec are rotation-invariant, the shape

latent vector Zc is agnostic to the orientation. Since we want

the network to disentangle the shape from the orientation,

we do not use the transformation encoder, which gets Carte-

sian coordinates to estimate the transformation, and set the

transformation latent vector with zeros ~0. This leaves the

final latent vector Z to be the output of the shape encoder

concatenated with zeros~0⊕Zc. The PointGMM decoder D

builds the hGMM of the transformed shape from the latent

vector Θc = D
(

~0⊕ Zc

)

. Clearly, in the shape pass, there

is no MLP-transformation update. Therefore, the loss for

the shape pass is given by

Lc = LhGMM (Xc,Θc) . (10)

Our proposed architecture learns to align shapes into a

global canonical orientation. Thus, we can easily obtain the

alignment between two shapes by inverting the transforma-

tion of one and applying it to the other.

4. Experiments

In all experiments we train our network on shapes from

the Shapenet dataset [8], where each network is trained on
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Figure 4: Ablation study. Top: significance of hGMM com-

pared to vanilla GMM. Bottom: impact of using attention.

a single class.

We train each network for 1000 epochs using Adam op-

timizer [23] with a learning rate (lr) of 10−4 and lr decay

of 0.5 applied in intervals of 200 epochs. The value Vj ,

key Kj and query Qj have dimension 512, 64 and 64 re-

spectively. All the networks use the following hGMM tree

form: starting with the first split of the root to 8 children,

with additional 3 splits to 4 children each. This results in

8, 32, 128 and 512 Gaussian mixtures in each level.

Our PyTorch [33] implementation as well as the pre-

trained models are available at https://github.com/

amirhertz/pointgmm.

4.1. Shape generation evaluation

Following the V AE framework (see Section 3.3), we

train class-specific networks on the chair, table and airplane

datasets. We train with latent vector Z of size 256 and a

weight of 1 for the LKL applied with decay of 0.98 every

100 epochs. We use the trained networks to make interpo-

lations between shapes from the dataset (see Figure 1). In

addition, we sample from the latent space to generate new

shapes (see Figure 5). Quantitative results based on the pro-

tocol of [16] are in the supplementary material, as well as

additional qualitative results.

shape Baseline Point Decoder PointGMM

chair 0.0612 0.1185 0.0382

car 0.1514 0.2073 0.0447

airplane 0.1688 0.1817 0.0447

Table 1: Decoder ablation. The registration results improve

when adding a PointGMM decoder (compared to baseline),

and excel compared to a vanilla point decoder.

Ablation Study. We perform an ablation study to high-

light the contributions of each component of PointGMM.

We use the chair dataset on the shape generation task. First,

we examine the influence of the hierarchical architecture

compared to a vanilla GMM architecture. In the vanilla

GMM setting there is no hierarchy, instead the decoder gen-

erates all the GMMs once in the last layer of the network.

We plot the log-likelihood of the hGMM and vanilla GMM

nodes vs. epochs in Figure 4a for k = 32, 128 and 512
respectively. Observe the use of hGMM is crucial in pre-

venting getting caught in a local minima. Namely, notice

that the vanilla GMM with k = 32 Gaussians was able to

learn something, indicating the solution is indeed a coarse-

to-fine learning procedure. Moreover, as we increase the

number of Gaussians, the hGMM network improves, while

the vanilla GMM becomes even more susceptible to local

minima (performance decreases). This phenomenon is also

common in image GANs, where a coarse to fine methodol-

ogy was found useful to help stabilize training [15].

We also verify the importance of the attention module

within our network architecture by conducting the experi-

ments for the different depths as before while the attention

modules are disabled. We can see in Figure 4b that adding

attention does improve the log-likelihood during training,

especially in the shallower cases (fewer Gaussians). This

shows that when the number of Gaussians is limited, it is

even more crucial to enable information passing across the

hGMM nodes using the attention module.

4.2. Shape registration evaluation

In the registration experiments, we assume the direction

of gravity is known (a common feature of real scanning de-

vices), resulting in partial point clouds in any position or

orientation around the z axis.

We test our registration approach (see Section 3.4) by

training three class-specific networks on chairs, airplanes

and cars. We replace the tables class due to symmetry

which makes the registration evaluation ambiguous. We use

weights of 20 and 10 for the translation L1 and rotation Lcos

losses respectively. The dimensions of Zc and Zt are 256
and 128, respectively. In all the training scenarios, the in-

put point clouds are uniformly sampled from only 30% to

80% of the underlying shape area and are randomly rotated
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Figure 5: Randomly sampled shapes using a PointGMM generative model.

Source Target FPFH [37] S4PCS [30] GMMREG [22] ICP [6] PointNetLK [3] PointGMM

Figure 6: Qualitative results from the rigid registration comparison.

around the z axis, for example, see source and target point

clouds in Figure 6.

Evaluation. We evaluate the performance of each net-

work on four test sets covering two cases: medium (≤ 30◦

) and large rotations (≤ 180◦). We also test different two

different ranges of surface area coverage: 50% to 80% and

30% to 50%.

Each test consists of 1000 pairs of point clouds, where

each pair is sampled from the same shape and are added

with a random Gaussian noise of σ = 0.02. All test shapes

are unseen during training.

Given a pair of source and target point clouds, we com-

pute the rigid transformation from source to target. In or-

der to evaluate alignment accuracy, we compute the mean

squared error per point in the transformed source point

cloud to the ground-truth target point cloud.

Comparisons. We run the same registration tests on five

additional approaches. Two of them, RANSAC-fast point

feature histograms (FPFH [37]) and Super 4-points Con-

gruent Sets (S4PCS [30]) are global registration approaches.

We also compare to point set registration approaches: the

ubiquitous Iterative Closest Point (ICP [6]) and a GMM-

based approach robust point set registration using GMMs

(GMMREG [22]). Lastly, we compare to a recent deep

learning approach PointNetLK [3], which we adapt for our

test by training it on the same Shapenet dataset.

The quantitative MSE evaluation results are reported in

Table 2 and qualitative examples in Figure 6. Our method

achieves out performs the other approaches, most notably

when large regions are missing with large rotation angles.

Observe that the gap between our method and the point set

approaches is small in the cases with medium rotations (≤
30◦ ) and larger sampling coverage (50% to 80%).

Ablation study. We perform two additional ablation

comparisons to demonstrate the utility of PointGMM as a

decoder within the registration framework (Figure 3).

As a baseline, we remove the decoder and train only the

transformation encoder Et to output the canonical transfor-

mation of an input point cloud. Thus, this baseline network

is trained by the transformation loss LT (Equation 8), with-

out the disentanglement hGMM losses.

We were also interested in comparing our approach
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shape
max

rotation (◦)
sampling

coverage %
RANSAC

FPFH [37]
S4PCS [30] GMMREG [22] ICP [6] PointNetLK [3]

Ours

PointGMM

chair 30 50 - 80 0.2113 0.3343 0.0434 0.0430 0.1665 0.0226

chair 30 30 - 50 0.2804 0.3500 0.0842 0.0824 0.2617 0.0496

chair 180 50 - 80 0.2481 0.3479 0.2586 0.2578 0.2768 0.0232

chair 180 30 - 50 0.3132 0.3732 0.2829 0.2817 0.3386 0.0574

car 30 50 - 80 0.1352 0.2344 0.0399 0.04003 0.0566 0.0246

car 30 30 - 50 0.2134 0.2573 0.0884 0.08774 0.1647 0.0552

car 180 50 - 80 0.1754 0.2411 0.2134 0.2134 0.2288 0.0290

car 180 30 - 50 0.2357 0.2593 0.2354 0.2350 0.2548 0.0702

airplane 30 50 - 80 0.0765 0.1254 0.0632 0.0661 0.0798 0.0312

airplane 30 30 - 50 0.1501 0.1637 0.1052 0.1070 0.1301 0.0490

airplane 180 50 - 80 0.1485 0.1768 0.1983 0.1979 0.2023 0.0350

airplane 180 30 - 50 0.1961 0.2084 0.2293 0.2302 0.2308 0.0489

Table 2: Quantitative comparisons for rigid registration on partial shapes.

against a simple point-based decoder. Therefore, we re-

placed PointGMM with an implementation of PointNet

auto-encoder 1. This decoder applies a 4 layer MLP net-

work on an input vector Z to output a point cloud with 2048
points. In this setting, the hGMM loss is replaced by the

dual Chamfer distance.

We ran the decoder ablation on random rotations (≤
180◦) with sampling area coverage between 30% to 80%
in Table 1. Observe that using PointGMM performs bet-

ter than without a decoder at all (baseline). On the other

hand, vanilla point decoder did not always do better than the

baseline (in fact, worse than the baseline in the chairs set).

We believe this is due to the fact that the PointNet decoder

struggles to generalize to the ill-posed problem of complet-

ing partial-shapes, while PointGMM can define the com-

plete shape with better certainty using a probabilistic model.

In other words, the probabilistic hGMM framework natu-

rally supports handling partial shapes by predicting large

variances in uncertain regions.

5. Conclusion

We have introduced a novel framework to transform

point clouds into a hGMM representation. This represen-

tation has various desirable properties, including represent-

ing the shape probabilistically and in a coarse to fine man-

ner. This facilitates coping with shapes that have missing

parts or non-uniform sampling. The coarse levels capture

global information of the shape better, while the probabilis-

tic framework may alleviate randomness in the sampling

process.

The key idea of representing a point cloud using a prob-

abilistic framework was demonstrated to be useful for con-

1www.github.com/charlesq34/pointnet-autoencoder

structing a generative model for 3D objects, a problem

which is known to be challenging. A common approach

for this task directly synthesizes a point cloud, which often

leads to a fixed number of points and fixed (uniform) sam-

pling. Using PointGMM to learn hGMM for shape genera-

tion enables sampling the learned distribution to any desired

resolution and possibly even non-uniformly.

Note that our model struggles to generate small sharp

details (see Figure 5). We believe that one source of the

problem is the fact that we use a VAE-based model, which

is known to produce non-sharp results. Accordingly, in-

corporating adversarial, or other detail-sensitive, losses is

expected to improve the representation of finer details.

An intriguing property that was revealed in our repre-

sentation is that it provides an interpretable and consistent

partitioning of a shape class within the hGMM leaf nodes

(Figure 1). This implies that the learned hGMM is struc-

tured and captures the shape information. We exploited this

inherent property to disentangle the shape from the orien-

tation, and demonstrated how to use this effectively for the

task of rigid registration.

We believe that PointGMM can be utilized in other shape

analysis tasks such as detection, segmentation and recon-

struction, to name a few. Note that hGMM is a more

compact representation compared to the whole point cloud.

Thus, such a conversion may allow a more efficient process-

ing in these tasks and serve as an alternative to various sam-

pling methods proposed to improve processing time [12].
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