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Abstract

If NAS methods are solutions, what is the problem? Most

existing NAS methods require two-stage parameter opti-

mization. However, performance of the same architecture

in the two stages correlates poorly. In this work, we pro-

pose a new problem definition for NAS, task-specific end-

to-end, based on this observation. We argue that given a

computer vision task for which a NAS method is expected,

this definition can reduce the vaguely-defined NAS evalu-

ation to i) accuracy of this task and ii) the total compu-

tation consumed to finally obtain a model with satisfying

accuracy. Seeing that most existing methods do not solve

this problem directly, we propose DSNAS, an efficient differ-

entiable NAS framework that simultaneously optimizes ar-

chitecture and parameters with a low-biased Monte Carlo

estimate. Child networks derived from DSNAS can be de-

ployed directly without parameter retraining. Comparing

with two-stage methods, DSNAS successfully discovers net-

works with comparable accuracy (74.4%) on ImageNet in

420 GPU hours, reducing the total time by more than 34%.

1. Introduction

The success of deep learning is partially built upon the

architecture of neural networks. However, the variation of

network architectures always incurs unpredictable changes

in performance, causing tremendous efforts in ad hoc ar-

chitecture design. Neural Architecture Search (NAS) is be-

lieved to be promising in alleviating this pain. Practitioners

from the industry would like to see NAS techniques that au-

tomatically discover task-specific networks with reasonable

performance, regardless of their generalization capability.

Therefore, NAS is always formulated as a hyper-parameter

optimization problem, whose algorithmic realization spans

evolution algorithm [21, 7], reinforcement learning [28],

Bayesian optimization [9], Monte Carlo Tree Search [25],

and differentiable architecture search [14, 27, 3]. Re-
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Figure 1. Projecting from the architecture space A to the network

space N (θ) with different parameter training schemes in search-

ing and retraining results in accuracy with low correlation.

cently, these algorithmic frameworks have exhibited prag-

matic success in various challenging tasks, e.g. semantic

segmentation [12] and object detection [4] etc.

However, even as an optimization problem, NAS is al-

most vaguely defined. Most of the NAS methods proposed

recently are implicitly two-stage methods. These two stages

are searching and evaluation (or retraining). While the ar-

chitecture optimization process is referring to the searching

stage, in which a co-optimization scheme is designed for

parameters and architectures, there runs another round of

parameter optimization in the evaluation stage, on the same

set of training data for the same task. This is to some extent

contradicting the norm in a machine learning task that no

optimization is allowed in evaluation. A seemingly sensi-

ble argument could be that the optimization result of NAS is

only the architecture, and the evaluation of an architecture

is to check its performance after retraining. There is cer-

tainly no doubt that architectures that achieve high perfor-

mance when retrained from scratch are reasonable choices

12084



for deployment. But is this search method still valid if the

searched architecture does not perform well after retraining,

due to the inevitable difference of training setup in search-

ing and evaluation?

These questions can only be answered with an assump-

tion that the final searching performance can be general-

ized to evaluation stage even though the training schemes

in two stages are different. Specifically, differences in train-

ing schemes may include different number of cells, different

batch sizes, and different epoch numbers, etc. Using param-

eter sharing with efficiency concerns during search is also

a usual cause. Unfortunately, this assumption is not a valid

one. The correlation between the performance at the end of

searching and after the retraining in evaluation is fairly low,

as long as the parameter-sharing technique is used [20, 5].

We are thus motivated to rethink the problem definition

of neural architecture search. We want to argue that as an

application-driven field, there can be a diverse set of prob-

lem definitions, but every one of them should not be vague.

And in this work, we put our cards on the table: we aim

to tackle the task-specific end-to-end NAS problem. Given

a task, defined by a data set and an objective (e.g. training

loss), the expected NAS solution optimizes architecture and

parameters to automatically discover a neural network with

reasonable (if not optimal by principle) performance. By

the term end-to-end, we highlight the solution only need a

single-stage training to obtain a ready-to-deploy neural net-

work of the given task. And the term task-specific high-

lights the boundary of this solution. The searched neural

network can only handle this specific task. We are not con-

fident whether this neural network generalizes well in other

tasks. Rather, what can be expected to generalize is this

NAS framework.

Under this definition, the evaluation metrics of a pro-

posed framework become clear, namely searching effi-

ciency and final performance. Scrutinizing most existing

methods in these two metrics, we find a big niche for a brand

new framework. On one side of the spectrum, gradient-

based methods such as ENAS [17], DARTS [14], Proxyless-

NAS [3] require two-stage parameter optimization. This is

because in the approximation to make them differentiable,

unbounded bias or variance are introduced to their gradi-

ents. Two-stage methods always consume more compu-

tation than single-stage ones, not only because of another

round of training but also the reproducibility issue [11].

On the other side of the spectrum, one-shot methods such

as random search [11] and SPOS [7] can be extended to

single-stage training. But since they do not optimize the

architecture distribution in parameter training, the choice

of prior distribution becomes crucial. A uniform sampling

strategy may potentially subsume too many resources for

satisfying accuracy. Lying in the middle, SNAS [27] shows

a proof of concept, where the derived network maintains the

performance in the searching stage. However, the gumbel-

softmax relaxation makes it necessary to store the whole

parent network in memory in both forward and backward,

inducing tremendous memory and computation waste.

In this work, we confront the challenge of single-stage

simultaneous optimization on architecture and parameters.

Our proposal is an efficient differentiable NAS framework,

Discrete Stochastic Neural Architecture Search (DSNAS).

Once the search process finishes, the best-performing sub-

network is derived with optimized parameters, and no fur-

ther retraining is needed. DSNAS is built upon a novel

search gradient, combining the stability and robustness of

differentiable NAS and the memory efficiency of discrete-

sampling NAS. This search gradient is shown to be equiva-

lent to SNAS’s gradient at the discrete limit, optimizing the

task-specific end-to-end objective with little bias. And it

can be calculated in the same round of back-propagation as

gradients to neural parameters. Its forward pass and back-

propagation only involve the compact subnetwork, whose

computational complexity can be shown to be much more

friendly than DARTS, SNAS and even ProxylessNAS, en-

abling large-scale direct search. We instantiate this frame-

work in a single-path setting. The experimental results show

that DSNAS discovers networks with comparable perfor-

mance (74.4%) in ImageNet classification task in only 420

GPU hours, reducing the total time of obtaining a ready-to-

deploy solution by 34% from two-stage NAS.

To summarize, our main contributions are as follows:

• We propose a well-defined neural architecture search

problem, task-specific end-to-end NAS, under the eval-

uation metrics of which most existing NAS methods

still have room for improvement.

• We propose a plug-and-play NAS framework,

DSNAS, as an efficient solution to this problem in

large scale. DSNAS updates architecture parameters

with a novel search gradient, combining the advan-

tages of policy gradient and SNAS gradient. A simple

but smart implementation is also introduced.

• We instantiate it in a single-path parent network. The

empirical study shows DSNAS robustly discovers neu-

ral networks with state-of-the-art performance in Ima-

geNet, reducing the computational resources by a big

margin over two-stage NAS methods. We have made

our implementation public1.

2. Problem definition of NAS

2.1. TwoStage NAS

Most existing NAS methods involve optimization in both

searching stage and evaluation stage. In the searching

1https://github.com/SNAS-Series/SNAS-Series/
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stage, there must be parameter training and architecture op-

timization, even though they may not run simultaneously.

The ideal way is to train all possible architectures from

scratch and then select the optimal one. However, it is in-

feasible with the combinatorial complexity of architecture.

Therefore, designing the co-occurrence of parameter and

architecture optimization to improve efficiency is the main

challenge of any general NAS problems. This challenge has

not been overcome elegantly yet. The accuracy at the end

of the searching stage has barely been reported to be satis-

fying. And an ad hoc solution is to perform another round

of parameter optimization in the evaluation stage.

Optimizing parameters in evaluation stage is not normal

in traditional machine learning. Normally, the data set pro-

vided is divided into training set and validation set. Ones

do learning in the training stage, with data from the training

set. Then the learned model is tested on the withheld vali-

dation set, where no further training is conducted. With the

assumption that training data and validation data are from

the same distribution, the learning problem is reduced to an

optimization problem. Ones can hence be confident to ex-

pect models with high training accuracy, if the assumption

is correct, have high evaluation accuracy.

Allowing parameter retraining in the evaluation stage

makes NAS a vaguely defined machine learning problem.

Terming problems as Neural Architecture Search give peo-

ple an inclined interpretation that only the architecture is the

learning result, instead of parameters. But if the searched

architecture is the answer, what is the problem? Most NAS

methods claim they are discovering best-performing archi-

tecture in the designated space efficiently [3, 7, 9], but what

specifically does best-performing mean? Given that retrain-

ing is conducted in evaluation stage, ones may naturally

presume it is a meta-learning-like hyperparameter problem.

Then the optimization result should exhibit some meta-level

advantages, such as faster convergence, better optimum or

higher transferability, etc. These are objectives that ones

are supposed to state clearly in a NAS proposal. Nonethe-

less, objectives are only implicitly conveyed (mostly better

optimum) in experiments.

Defining problem precisely is one of the milestones in

scientific research, whose direct gift in a machine learning

task is a clear objective and evaluation metric. Subsequent

efforts can then be devoted into validating if the proposed

learning loss is approximating a necessary and sufficient

equivalence of this objective. Unfortunately, under this cri-

terion, most existing two-stage NAS methods are reported

[20, 11] failing to prove the correlation between the search-

ing accuracy and the retraining accuracy.

2.2. Taskspecific endtoend NAS

Seeing that the aforementioned dilemma lies in the am-

biguity in evaluating an architecture alone, we propose a

type of problem termed task-specific end-to-end NAS, the

solution to which should provide a ready-to-deploy network

with optimized architecture and parameters.

Task refers to generally any machine learning tasks (in

this work we discuss computer vision tasks specifically). A

well-defined task should at least have a set of data repre-

senting its functioning domain, a learning objective for the

task-specific motives e.g. classification, segmentation, etc.

And the task is overwritten if there is a modification in ei-

ther factor, even a trivial augmentation in the data. In other

words, task-specific sets a boundary on what we can expect

from the searched result and what cannot. This can bring

tremendous operational benefits to industrial applications.

End-to-end highlights that, given a task, the expected

solution can provide a ready-to-deploy network with satis-

fying accuracy, the whole process of which can be regarded

as a black-box module. Theoretically, it requires a direct

confrontation of the main challenge of any general NAS

problem, i.e. co-optimizing parameter and architecture ef-

ficiently. Empirically, task-specific end-to-end is the best

description of NAS’s industrial application scenarios: i) the

NAS method itself should be generalizable for any off-the-

shelf tasks; and ii) when applied to a specific task, practi-

tioners can at least have some conventional guarantees on

the results. Basically, it is to reduce vaguely defined NAS

problems to established tasks.

The evaluation metrics become clear under this problem

definition. The performance of the final result is, by prin-

ciple, the accuracy in this task. And the efficiency should

be calculated based on the time from this NAS solver starts

taking data to it outputs the neural network whose architec-

ture and parameters are optimized. This efficiency metric

is different from all existing works. For two-stage methods,

the time for both searching and evaluation should be taken

into account in this metric. Therefore, their efficiency may

not be as what they claim. Moreover, two-stage methods do

not optimize the objective higher accuracy of final derived

networks in an end-to-end manner.

3. Direct NAS without retraining

3.1. Stochastic Neural Architecture Search (SNAS)

In the literature, SNAS is one of those close to a solution

to the task-specific end-to-end NAS problem. Given any task

with differentiable loss, the SNAS framework directly opti-

mizes the expected performance over architectures in terms

of this task. In this subsection, we provide a brief introduc-

tion on SNAS.

Basically, SNAS is a differentiable NAS framework that

maintains the generative nature as reinforcement-learning-

based methods [28]. Exploiting the deterministic nature of

the Markov Decision Process (MDP) of network construc-

tion process, SNAS reformulated it as a Markov Chain. This
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reformulation leads to a novel representation of the net-

work construction process. As shown in Fig.2, nodes xi

(blue lumps) in the DAG represent feature maps. Edges

(i, j) (arrow lines) represent information flows between

nodes xi and xj , on which n possible operations Oi,j (or-

ange lumps) are attached. Different from DARTS, which

avoids sampling subnetwork with an attention mechanism,

SNAS instantiates this Directed Acyclic Graph (DAG) with

a stochastic computational graph. Forwarding a SNAS par-

ent network is to first sample random variables Zi,j and

multiplying it to edges (i, j) in the DAG:

Õi,j(·) = ZT
i,jOi,j(·). (1)

Ones can thus obtain a Monte Carlo estimate of the expec-

tation of task objective Lθ(Z) over possible architectures:

EZ∼pα(Z)[Lθ(Z)], (2)

where α and θ are parameters of architecture distribution

and neural operations respectively. This is exactly the task-

specific end-to-end NAS objective.

To optimize parameters θ and architecture α simultane-

ously with Eq. 2, (termed as single-level optimization in

[14]), SNAS relaxes the discrete one-hot random variable

Z to a continuous random variable Z̃ with the gumbel-

softmax trick. However, the continuous relaxation requires

to store the whole parent network in GPU, preventing it

from directly applying to large-scale networks. In Xie et

al. [27], SNAS is still a two-stage method.

If the temperature in SNAS’s gumble-softmax trick can

be directly pushed to zero, SNAS can be extended to large-

scale networks trivially. However, it is not the case. Take a

look at the search gradient given in Xie et al. [27]:

∂L

∂αk
i,j

=
∂L

∂xj

OT
i,j(xi)(δ(k

′ − k)− Z̃i,j)Z
k
i,j

1

λαk
i,j

, (3)

ones can see that the temperature λ is not valid to be zero for

the search gradient. Xie et al. [27] only gradually annealed

it to be close to zero. In this work, we seek for an alterna-

tive way to differentiate Eq. 2, combining the efficiency of

discrete sampling and the robustness of continuous differ-

entiation. And we start from SNAS’s credit assignment.

3.2. Discrete SNAS (DSNAS)

In original SNAS [27], to prove its efficiency over

ENAS, a policy gradient equivalent of the search gradient

is provided

E
Z̃∼p(Z̃)[

∂L

∂αk
i,j

]

= E
Z̃∼p(Z̃)[∇αk

i,j
log p(Z̃)[

∂L

∂xj

OT
i,j(xi)Z̃i,j ]c],

(4)

where Z̃i,j is the gumbel-softmax random variable, [·]c de-

notes that · is a cost independent from α for gradient calcu-

lation. In other words, Eq. 4 and Eq. 3 both optimize the

task-specific end-to-end NAS objective i.e. Eq. 2.

In order to get rid of SNAS’s continuous relaxation, we

push the λ in the PG equivalent (4) to the limit 0, with the

insight that only reparameterization trick needs continuous

relaxation but policy gradient doesn’t. The expected search

gradient for architecture parameters at each edge becomes:

lim
λ→0

E
Z̃∼p(Z̃)[

∂L

∂αk
i,j

]

= lim
λ→0

E
Z̃∼p(Z̃)[∇αk

i,j
log p(Z̃i,j)[

∂L

∂xj

Õi,j(xi)]c]

= EZ∼p(Z)[∇αk
i,j

log p(Zi,j)[
∂L

∂xj

OT
i,j(xi)Zi,j ]c]

= EZ∼p(Z)[∇αk
i,j

log p(Zi,j)[
∂L

∂xj

∑

k

Ok
i,j(xi)Z

k
i,j ]c],

(5)

where Zi,j is a strictly one-hot random variable, Zk
i,j is the

kth element in it, [·]c denotes that · is a cost independent

from α for gradient calculation. Line 3 is derived from line

2 since p(Zi,j) = limλ→0 p(Z̃i,j) [16], L = limλ→0 L.

Exploiting the one-hot nature of Zi,j , i.e. only Zs
i,j on

edge (i, j) is 1, others i.e. Zrs
i,j are 0, the cost function can

be further reduced to

C(Zi,j) =
∑

k

∂L

∂xj

Ok
i,j(xi)Z

k
i,j

=
∂L

∂xi
j

Os
i,j(xi)Z

s
i,j =

∂L

∂xi
j

xi
j

=
∂L

∂xi
j

∂xi
j

∂Zs
i,j

=
∂L

∂Zs
i,j

,

(6)

as long as | ∂L
∂xj

Ors
i,j (xi)| 6= ∞. Here xi

j = Os
i,j(xi)Z

s
i,j is

the output of the operation Os
i,j chosen at edge (i, j). The

equality in line 3 is due to Zs
i,j = 1.

3.3. Implementation

The algorithmic fruit of the mathematical manipulation

in Eq. 6 is a parallel-friendly implementation of Discrete

SNAS, as illustrated in Fig. 2. In SNAS, the network con-

struction process is a pass of forward of stochastic computa-

tional graph. The whole network has to be instantiated with

the batch dimension. In DSNAS we offer an alternative im-

plementation. Note that C(Zi,j) =
∂L

∂Zs
i,j

only needs to be

calculated for the sampled subnetworks. And apparently it

is also the case for ∂L
∂θ

. That is to say, the back-propagation

of DSNAS only involves the sampled network, instead of

the whole parent network. Thus we only instantiate the
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Figure 2. Forward and backward on SNAS, ProxylessNAS and DSNAS. Blue lumps stand for feature maps, orange ones for operation

candidates. Blue arrow lines indicate forward data flows, purple dashed lines indicate backward ones. Semi-transparent lumps stand for

parent networks that are not instantiated with batch dimension, a technique to reduce computation in ProxylessNAS and DSNAS. dummy

1 highlights the smart implementation introduced in Sec. 3.3.

Algorithm 1 Discrete SNAS

Require: parent network, operation parameters θ and categorical

arch distribution pα(Z)
Initialize θ, α

while not converged do

Sample one-hot random variables Z from pα(Z)
Construct child network with θ according to Z, multiply a

1dummy after each feature map X

Get a batch from data and forward to get L

Backward L to both θ and 1dummy , backward log pα(Z) to

α

Update θ with ∂L
∂θ

, update α with
∂ log pα(Z)

∂α
∂L

∂1dummy

end while

subnetwork with the batch dimension for forward and back-

ward. However, the subnetwork derived in this way does not

necessarily contain Zi,j . If it was not with Line 3 of Eq. 6,

we would have to calculate C(Zi,j) with ∂L
∂xi

j

xi
j . Then the

policy gradient loss would explicitly depend on the interme-

diate result xi
j = Os

i,j(xi), which may need an extra round

of forward if it is not stored by the automated differentiation

infrastructure. With a smart mathematical manipulation in

Eq. 6, ones can simply multiply a dummy 1 to the out-

put of each selected operation, and calculate C(Zi,j) with
∂L

∂1dummy

i,j

. The whole algorithm is shown in Alg. 1

3.4. Complexity analysis

In this subsection, we provide a complexity analysis of

DSNAS, SNAS, and ProxylessNAS. Without loss of gen-

erality, we define a parent network with l layers and each

layer has n candidate choice blocks. Let the forward time

on a sampled subnetwork be P , its backward time be Q, and

the memory requirement for this round be M .

As the original SNAS instantiates the whole graph with

batch dimension, it needs n times GPU memory and n times

calculation comparing to a subnetwork. It is the same case

in DARTS.

Method
Forward

time

Backward

time
Memory

Subnetwork O(P ) O(Q) O(M)
SNAS O(nP ) O(nQ) O(nM)

ProxylessNAS* O(nP ) O(nQ) O(nM)
ProxylessNAS O(2P ) O(2Q) O(2M)

DSNAS O(P ) O(Q) O(M)
Table 1. Computation complexity comparison between SNAS,

ProxylessNAS and DSNAS. ProxylessNAS* indicates its theoret-

ical complexity.

This memory consumption problem of differentiable

NAS was first raised by [3]. And they proposed an ap-

proximation to DARTS’s optimization objective, with the

BinaryConnect [6] technique:

∂L

∂αi,j

=
∂L

∂Ẑi,j

∂Ẑi,j

∂αi,j

≈
∑

k

∂L

∂Zk
i,j

∂Ẑk
i,j

∂αi,j

, (7)

where Ẑi,j denotes the attention-based estimator as in

DARTS [14], distinct from the discrete random variable

Zi,j , highlighting how the approximation is being done.

But this approximation does not directly save the memory

and computation. Different from Eq. 5 and Eq. 6, theoret-

ically, the calculation of Eq. 7 still involves the whole net-

work, as indicated by the summation
∑

. To reduce memory

consumption, they further empirically proposed a path sam-

pling heuristic to decrease the number of paths from n to 2.

Table 1 shows the comparison.
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3.5. Progressive early stop

One potential problem in sample-based differentiable

NAS is that empirically, the entropy of architecture distri-

bution does not converge to zero, even though comparing

to attention-based NAS [14] they are reported [27] to con-

verge with smaller entropy. The non-zero entropy keeps the

sampling going on until the end, regardless of the fact that

sampling at that uncertainty level does not bring significant

gains. To the opposite, it may even hinder the learning on

other edges.

To avoid this side-effect of architecture sampling,

DSNAS applies a progressive early stop strategy. Sampling

and optimization stop at layers/edges in a progressive man-

ner. Specifically, a threshold h is set for the stopping condi-

tion:

min{αk
i,j − αm

i,j , ∀m 6= k||αk
i,j = max{αi,j}} ≥ h. (8)

Once this condition is satisfied on any edge/layer, we di-

rectly select the operation choice with the highest proba-

bility there, stop its sampling and architecture parameters

update in the following training.

3.6. Comparison with oneshot NAS

Different from all differentiable NAS methods, one-shot

NAS only do architecture optimization in one-shot, be-

fore which they obtain a rough estimation of the graph

through either pretraining [1, 7] or an auxiliary hypernet-

work [2]. All of them are two-stage methods. The ad-

vantage of DSNAS is that it optimizes architecture along-

side with parameters, which is expected to save some re-

sources in the pretraining stage. Intuitively, DSNAS rules

out non-promising architectures in an adaptive manner by

directly optimizing the objective in an end-to-end manner.

Although one-shot methods can also have an end-to-end re-

alization, by investing more resources in pretraining, it may

take them more epochs to achieve comparable performance

as DSNAS. They can also do finetuning, but still parame-

ters of the optimal networks are updated less frequently than

DSNAS. Ones can expect better performance from DSNAS

given equivalent training epochs.

4. Experimental Results

In this section, we first demonstrate why the proposed

task-specific end-to-end is an open problem for NAS, by in-

vestigating the performance correlation between searching

stage and evaluation stage of the two-stage NAS. We then

validate the effectiveness and efficiency of DSNAS under

the proposed task-specific end-to-end metric on the same

search space as SPOS [7]. We further provide a breakup of

time consumption to illustrate the computational efficiency

of DSNAS.

4.1. Accuracy correlation of twostage NAS

Since the validity of the searching in two-stage NAS re-

lies on a high correlation in the performance of searching

stage and evaluation stage, we check this assumption with

a ranking correlation measure, Kendall Tau metric τ [10].

τ =
2(Nconcordant −Ndisconcordant)

N(N − 1)
, (9)

where N is the total number of pairs (xi, yi) from

the searching stage and evaluation stage consisting of

Nconcordant concordant ranking pairs (x1 > x2, y1 > y2
or x1 < x2, y1 < y2) and Ndisconcordant disconcordant

ranking pairs (x1 > x2, y1 < y2 or x1 < x2, y1 > y2).

Kendall Tau metric ranges from -1 to 1, which means the

ranking order changes from reversed to identical. τ being

close to 0 indicates the absence of correlation.

We measure the ranking correlation by calculating

Kendall Tau metric from two perspectives: (1) The τinter
is calculated based on the top-k model performance of the

searching and evaluation stage in one single searching pro-

cess; (2) The Kendal Tau metric τintra is calculated by run-

ning the two-stage NAS methods several times with dif-

ferent random seeds using the top-1 model performance in

each searching process. As shown in Table 2, the perfor-

mance correlation between the searching stage and evalu-

ation stage in both SPOS and ProxylessNAS is fairly low.

This indicates the necessity of task-specific end-to-end NAS

problem formulation. Fairly low correlation may also imply

reproducibility problems.

Model τinter τintra

Single Path One-Shot[7] 0.33 -0.07

ProxylessNas [3] - -0.33
Table 2. Kendall Tau metric τ calculated with the top-k model per-

formance in the searching and evaluation stage. τinter measures

the correlation of top-k model performance of the searching and

evaluation stage in one single searching process while τintra mea-

sures the correlation of top-1 model performance from different

searching processes.

4.2. Singlepath architecture search

Motivation To compare the efficiency and accuracy of

derived networks from DSNAS versus existing two-stage

methods, we conduct experiment in single-path setting. Re-

sults are compared in the task-specific end-to-end metrics.

Dataset All our experiments are conducted in a mobile

setting on the ImageNet Classification task [18] with a re-

source constraint FLOPS ≤ 330M . This dataset consists

of around 1.28×106 training images and 5×104 validation

images. Data transformation is achieved by the standard

pre-processing techniques described in the supplementary

material.
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Figure 3. Searching process of two-stage SPOS and single-stage SPOS/DSNAS. SPOSsearch120retrain240 and

SPOSsearch240retrain240 search for 120/240 epochs then retrain the derived architecture for 240 epochs. Instead of re-

training, SPOSsearch120tune120 finetunes the result for 120 epochs. DSNASsearch240 and SPOSsearch240 utilize one-stage

training for 240 epochs. DSNASsearch240 applies progressive early stop, SPOSsearch240 applies one-shot EA at 120th epoch.

Search Space The basic building block design is inspired

by ShuffleNet v2 [15]. There are 4 candidates for each

choice block in the parent network, i.e., choice 3, choice 5,

choice 7, and choice x. These candidates differ in the ker-

nel size and the number of depthwise convolutions, span-

ning a search space with 420 single path models. The over-

all architecture of the parent network and building blocks

are shown in the supplementary material.

Training Settings We follow the same setting as SPOS

[7] except that we do not have an evaluation stage in our

searching process. We adopt a SGD optimizer with a mo-

mentum of 0.9 [22] to update the parent network weight

parameters. A cosine learning rate scheduler with an initial

learning rate of 0.5 is applied. Moreover, an L2 weight de-

cay (4 × 10e−5) is used to regularize the training process.

The architecture parameters are updated using the Adam

optimizer with an initial learning rate of 0.001. All our ex-

periments are done on 8 NVIDIA TITAN X GPUs.

Searching Process To demonstrate the efficiency of

DSNAS, we compare the whole process needed to accom-

plish task-specific end-to-end NAS in ImageNet classifica-

tion with two-stage NAS methods. Among all existing two-

stage methods, SPOS [7] is the one with state-of-the-art ac-

curacy and efficiency. SPOS can be regarded as a weight-

sharing version of random search, where the search is con-

ducted with one-shot evolution algorithm after training the

uniformly sampled parent network.

Figure 3 shows DSNAS’s advantage over several dif-

ferent configurations of SPOS. We purposefully present

curves in terms of both epoch number and time to il-

lustrate that even though DSNAS updates architecture

in an iteration-basis, almost no extra computation time

is introduced. Among the four configurations of SPOS,

SPOSsearch120retrain240 is the original one as

in Guo et al. [7], using the two-stage paradigm. Ob-

viously, DSNAS achieves comparable accuracy in an

end-to-end manner, with roughly 34% less computa-

tional resources. As SPOSsearch120retrain240

updates block parameters for only 120 epochs2,

we run the SPOSsearch120tune120 and

SPOSsearch240retrain240 configurations for

fair comparison. At the end of the 240th epoch, the

accuracy of SPOS models is around 1.4% and 4% lower

than DSNAS’s respectively.

In addition, for the ablation study of DSNAS’s progres-

sive early stop strategy, we call the EA algorithm of SPOS at

the 120th epoch in the one-stage DSNASsearch240 con-

figuration. Continuing the parameter training, the selected

models experience a leap in accuracy and converge with ac-

curacy 1.3% lower than DSNAS’s. However, seeking this

EA point is fairly ad hoc and prone to random noise.

Searching Results The experimental results are reported in

Table 3. Comparing with all existing two-stage NAS meth-

ods, DSNAS shows comparable performance using at least

1/3 less computational resources. More importantly, the

standard deviation in DSNAS’s accuracy is lower than those

from both searching and evaluation stage from EA-based

SPOS (0.22 vs 0.38/0.36). This exhibits as a differentiable

NAS framework, DSNAS is a more robust method in the

task-specific end-to-end metric.

4.3. Time consumption breakup

In last subsection, we show DSNAS can achieve compa-

rable performance under the task-specific end-to-end met-

2Same learning rate scheduler is used in DSNAS and SPOS.
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Model FLOPS

Search Retrain
No

proxy

Time (GPU hour)

Top-1

acc(%)

Top-5

acc(%)

Top-1

acc(%)

Top-5

acc(%)
Search Retrain

MobileNet V1 (0.75x)[8] 325M Manual 68.4 - Manual

MobileNet V2 (1.0x)[19] 300M Manual 72.0 91.00 Manual

ShuffleNet V2 (1.5x)[15] 299M Manual 72.6 90.60 Manual

NASNET-A(4@1056)[29] 564M - - 74.0 91.60 False 48000 -

PNASNET[13] 588M - - 74.2 91.90 False 5400 -

MnasNet-A1[23] 312M - - 75.2 92.50 False 40000§ -

DARTS[14] 574M - - 73.3 91.30 False 24 288

SNAS[27] 522M - - 72.7 90.80 False 36 288

Proxyless-R (mobile)[3] 320M 62.6* 84.7* 74.6 92.20 True 300‡ ≥384

Single Path One-Shot[7] 319M 68.7† - 74.3 - True 250 384

Single Path One-Shot* 323M 68.2±0.38 88.28 74.3±0.36 91.79 True 250 384

Random Search ≤330M ≤68.2 ≤88.31 ≤73.9 ≤91.8 True 250 384

DSNAS 324M 74.4±0.22 91.54 74.3±0.27 91.90 True 420
Table 3. Results of choice block search. The time is measured based on NVIDIA TITAN X and accuracy is calculated on the validation

set. * is our implementation with the original paper setting. 40000§ is the GPU hour converted from 6912 TPUv2 hours with a ratio of

roughly 1:6. 300‡ is the GPU hour converted from V100 GPU with a ratio of 1:1.5. 68.7† is the accuracy on the search set.

ric with much less computation than one-shot NAS meth-

ods. In this subsection, we further break up the time con-

sumption of DSNAS into several specific parts, i.e. for-

ward, backward, optimization and test3, and conduct a con-

trolled comparison with other differentiable NAS methods.

We also hope such a detailed breakup can help readers gain

insight into further optimizing our implementation.

We first compare the computation time of SNAS and

DSNAS on CIFAR-10 dataset. The average time of each

splited part4 is shown in Table 4. Under the same setting,

our DSANS is almost five folds faster than SNAS and con-

sumes only 1/n of GPU memory as SNAS (n is the total

number of candidate operations in each edge).

Method
Train

Test
Forward Backward Opt

SNAS 0.26s 0.46s 0.14s 0.18s

DSNAS 0.05s 0.07s 0.13s 0.04s
Table 4. Computation time of SNAS and DSNAS

We further compare the average time of each splited part

between DSNAS and ProxylessNAS in a mobile setting on

the ImageNet Classification task. As shown in Table 5, the

average time 5 is calculated on the same search space of

ProxylessNAS [3] with a total batch size of 512. With a

fair comparison, DSNAS is roughly two folds faster than

3To clarify, we also do evaluation on testing set, retraining parameters

is what we do not do.
4The average time of each splited part in one batch is calculated on one

NVIDIA TITAN X GPU with the same setting (batchsize 64) as in [27].
5As shown in Table 1 that Proxyless NAS takes 2 times GPU memory

as DSNAS, we use 8 TITAN X GPUs for ProxylessNAS and 4 for DSNAS

to calculate the time.

ProxylessNAS.

Method
Train

Test
Forward Backward Opt

ProxylessNAS 3.3s 2.3s 3.6s 1.2s

DSNAS 1.9s 1.3s 2.6s 0.9s
Table 5. Computation time of ProxylessNAS and DSNAS

5. Summary and future work

In this work, we first define a task-specific end-to-end

NAS problem, under the evaluation metrics of which we

scrutinize the efficiency of two-stage NAS methods. We

then propose an efficient differentiable NAS framework,

DSNAS, which optimizes architecture and parameters in

the same round of back-propagation. Subnetworks derived

from DSNAS are ready-to-deploy. One competitive coun-

terpart would be EfficientNet[24], which tries to bridge two

stages with extra grid search on network scale after NAS.

However, its total cost is larger than DSNAS. More accu-

racy gain can be achieved in DSNAS if scales are searched

similarly. As a framework, DSNAS is orthogonal to the

random wiring solution, which focuses on graph topology

search [26]. We look forward to their combination for a

joint search of topology, operations, and parameters.
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