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Abstract

We present TDNet, a temporally distributed network

designed for fast and accurate video semantic segmenta-

tion. We observe that features extracted from a certain

high-level layer of a deep CNN can be approximated by

composing features extracted from several shallower sub-

networks. Leveraging the inherent temporal continuity in

videos, we distribute these sub-networks over sequential

frames. Therefore, at each time step, we only need to per-

form a lightweight computation to extract a sub-features

group from a single sub-network. The full features used for

segmentation are then recomposed by the application of a

novel attention propagation module that compensates for

geometry deformation between frames. A grouped knowl-

edge distillation loss is also introduced to further improve

the representation power at both full and sub-feature lev-

els. Experiments on Cityscapes, CamVid, and NYUD-v2

demonstrate that our method achieves state-of-the-art ac-

curacy with significantly faster speed and lower latency.

1. Introduction

Video semantic segmentation aims to assign pixel-wise

semantic labels to video frames. As an important task for

visual understanding, it has attracted more and more atten-

tion from the research community [19, 27, 34, 39]. The re-

cent successes in dense labeling tasks [4, 20, 25, 28, 50, 54,

56, 59] have revealed that strong feature representations are

critical for accurate segmentation results. However, com-

puting strong features typically require deep networks with

high computation cost, thus making it challenging for real-

world applications like self-driving cars, robot sensing, and

augmented-reality, which require both high accuracy and

low latency.

The most straightforward strategy for video semantic

segmentation is to apply a deep image segmentation model

to each frame independently, but this strategy does not

leverage temporal information provided in the video dy-

namic scenes. One solution, is to apply the same model to

all frames and add additional layers on top to model tempo-

ral context to extract better features [10, 19, 23, 34]. How-

NetWarp

PEARL

ACCEL
GRFP(5)

ClockNet

DFF

ICNet

GUNet

LadderNet

LVS-LL2

TD2-PSP50

TD4-PSP18TD2-Bise34

TD4-Bise18

BiseNet101

PSPNet101

(ms/f)

Figure 1. Performance on Cityscapes. Our proposed TDNet vari-

ants (denoted as and ) linked to their corresponding deep image

segmentation backbones (denoted as ) with similar number of

parameters. Compared with video semantic segmentation meth-

ods NetWarp [10], PEARL [19], ACCEL [18], LVS-LLS [27],

GRFP [34], ClockNet [39], DFF [58], and real-time segmentation

models LadderNet [21], GUNet [32], and ICNet [55], our TDNet

achieves a better balance of accuracy and speed.

ever, such methods do not help improve efficiency as all

features must be recomputed at each frame. To reduce re-

dundant computation, a reasonable approach is to apply a

strong image segmentation model only at keyframes, and

reuse the high-level feature for other frames [18, 27, 31, 58].

However, the spatial misalignment of other frames with re-

spect to the keyframes is challenging to compensate for and

often leads to decreased accuracy comparing to the baseline

image segmentation models as reported in [18, 27, 31, 58].

Additionally, these methods have different computational

loads between keyframes and non-keyframes, which results

in high maximum latency and unbalanced occupation of

computation resources that may decrease system efficiency.

To address these challenges, we propose a novel deep

learning model for high-accuracy and low-latency seman-

tic video segmentation named Temporally Distributed Net-

work (TDNet). Our model is inspired by Group Convolu-

tion [17, 22], which shows that extracting features with sep-

arated filter groups not only allows for model paralleliza-

tion, but also helps learn better representations. Given a
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deep image segmentation network like PSPNet [56], we di-

vide the features extracted by the deep model into N (e.g.

N=2 or 4) groups, and use N distinct shallow sub-networks

to approximate each group of feature channels. By forcing

each sub-network to cover a separate feature subspace, a

strong feature representation can be produced by reassem-

bling the output of these sub-networks. For balanced and

efficient computation over time, we let the N sub-networks

share the same shallow architecture, which is set to be 1
N

of the original deep model’s size to preserve a similar total

model capacity [42, 50, 53].

When segmenting video streams, the N sub-networks

are sequentially and circularly assigned to frames over time,

such that complementary sub-feature groups are alterna-

tively extracted over time and only one new sub-feature

group needs to be computed at each time step. To com-

pensate for spatial misalignment caused by motion across

frames, we propose an attention propagation module for re-

assembling features from different time steps. To further en-

hance the network’s representational power, we also present

a grouped distillation loss to transfer knowledge from a

full deep model to our distributed feature network at both

full and sub-feature group levels. With this new model,

we only need to run a light-weight forward propagation

at each frame, and can aggregate full features by reusing

sub-features extracted in previous frames. As shown in

Fig 1, our method outperforms state-of-the-art methods

while maintaining lower latency. We validate our approach

through extensive experiments over multiple benchmarks.

In summary, our contributions include: i) a tempo-

rally distributed network architecture and grouped knowl-

edge distillation loss that accelerates state-of-the-art seman-

tic segmentation models for videos with more than 2×
lower latency at comparable accuracy; ii) an attention prop-

agation module to efficiently aggregate distributed feature

groups over time with robustness to geometry variation

across frames; iii) better accuracy and latency than previous

state-of-the-art video semantic segmentation methods on

three challenging datasets including Cityscapes, Camvid,

and NYUD-v2.

2. Related Work

Image semantic segmentation is an active area of re-

search that has witnessed significant improvements in per-

formance with the success of deep learning [12, 16, 28,

41]. As a pioneer work, the Fully Convolutional Net-

work (FCN) [30] replaced the last fully connected layer

for classification with convolutional layers, thus allowing

for dense label prediction. Based on this formulation,

follow-up methods have been proposed for efficient seg-

mentation [24, 36, 37, 52, 55] or high-quality segmenta-

tion [4, 7, 11, 26, 38, 40, 43, 44, 45].

Semantic segmentation has also been widely applied to

videos [14, 23, 31, 46], with different approaches employed

to balance the trade-off between quality and speed. A num-

ber of methods leverage temporal context in a video by re-

peatedly applying the same deep model to each frame and

temporally aggregating features with additional network

layers [10, 19, 34]. Although these methods improve ac-

curacy over single frame approaches, they incur additional

computation over a per-frame model.

Another group of methods target efficient video seg-

mentation by utilizing temporal continuity to propagate and

reuse the high-level features extracted at key frames [18, 27,

39, 58]. The challenge of these methods is how to robustly

propagate pixel-level information over time, which might

be misaligned due to motion between frames. To address

this, Shelhamer et al. [39] and Carreira et al. [2] directly

reuse high-level features extracted from deep layers at a low

resolution, which they show are relatively stable over time.

Another approach, employed by Zhu et al. [58] is to adopt

optical flow to warp high-level features at keyframes to non

keyframes. Jain et al. [18] further updates the flow warped

feature maps with shallow features extracted at the current

frame. However, using optical flow incurs significant com-

putation cost and can fail with large motion, disocclusions,

and non-textured regions. To avoid using optical flow, Li et

al. [27] instead proposes to use spatially variant convolu-

tion to adaptively aggregate features within a local window,

which however is still limited by motion beyond that of the

predefined window. As indicated in [18, 27, 58], though

the overall computation is reduced compared to their im-

age segmentation baselines, the accuracy is also decreased.

In addition, due to the extraction of high-level features

at keyframes, these methods exhibit inconsistency speeds,

with the maximum latency equivalent to that of the single-

frame deep model. In contrast to these, our approach does

not use keyframe features, and substitutes optical-flow with

an attention propagation module, which we show improves

both efficiency and robustness to motion.

3. Temporally Distributed Network

In this section, we describe the architecture of a Tem-

porally Distributed Network (TDNet), with an overview in

Fig 2. In Sec. 3.1 we introduce the main idea of distributing

sub-networks to extract feature groups from different tem-

poral frames. In Sec 3.2, we present our attention propaga-

tion module designed for effective aggregation of spatially

misaligned feature groups.

3.1. Distributed Networks

Inspired by the recent success of Group Convolution [17,

22] which show that adopting separate convolutional paths

can increase a model’s effectiveness by enhancing the spar-

sity of filter relationships, we propose to divide features

from a deep neural network into a group of sub-features and
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Figure 2. As opposed to applying a single deep model to segment

each frame independently (a), in TDNet (b) we distribute feature

extraction evenly across sequential frames to reduce redundant

computation, and then aggregate them using the Attention Prop-

agation Module (APM), to achieve strong features for accurate

segmentation.

approximate them using a set of shallow sub-networks each

of which only covers a subspace of the original model’s fea-

ture representation.

In addition, we observe that the full feature map is

large, and dimension reduction (Fig 2(a)) is costly. In PSP-

Net50 [56], the feature map has 4096 channels and dimen-

sion reduction takes about a third of the total computation.

To further improve efficiency, based on block matrix multi-

plication [9], we convert the convolutional layer for dimen-

sion reduction to the summation of series of convolution op-

erations at the subspace level, which enables us to distribute

these subspace-level convolution operations to their respec-

tive subnetworks. As a result, the output of the dimension

reduction layers is recomposed simply by addition, before

being used in the prediction head of the network. Keeping a

similar total model size to the original deep model, we show

that aggregating multiple shallow network paths can have a

similarly strong representational power as the original deep

model [42, 48, 50, 53].

In the context of single image segmentation, the advan-

tage of such an approach is that it allows for faster com-

putation by extracting feature paths in parallel on multiple

devices. However, in the context of segmenting video se-

quences, we can take advantage of their inherent temporal

continuity and distribute the computation along the tempo-

ral dimension. We apply this distributed feature extraction

method to video by applying the sub-networks to sequential

frames, and refer to the new architecture as Temporally Dis-

tributed Network (TDNet). As shown in Fig 2(b), TDNet

avoids redundant sub-features computation by reusing the

sub-feature groups computed at previous time steps. The

full feature representation at each frame is then produced

by aggregating previously computed feature groups with the

current one.

3.2. Feature Aggregation

A big challenge of aggregating feature groups extracted

at different time steps is the spatial misalignment caused

by motion between frames. Optical flow-based warping is

a popular tool to correct for such changes [10, 18, 34, 58],

but it is expensive to compute, prone to errors, and restricted

to a single match per pixel. To tackle such challenges, we

propose an Attention Propagation Module (APM), which is

based on the non-local attention mechanism [47, 49, 57],

but extended to deal with spatio-temporal variations for the

video semantic segmentation task. We now define how we

integrate the APM into TDNet.

As shown in Fig. 3, TDNet is composed of two phases,

the Encoding Phase and Segmentation Phase. The encod-

ing phase extracts alternating sub-feature maps over time.

Rather than just generating the Value feature maps which

contain the path-specific sub-feature groups, we also let the

sub-networks produce Query and Key maps for building

correlations between pixels across frames. Formally, the

feature path-i produces a sub-feature map Xi ∈ RC×H×W .

Then, as in prior work [47], the corresponding encoding

module “Encoding-i” converts Xi into a value map Vi ∈
RC×H×W , as well as lower dimensional query and key

maps Qi ∈ RC

8
×H×W , Ki ∈ RC

8
×H×W with three 1×1

convolutional layers.

In the segmentation phase, the goal is to produce seg-

mentation results based on the full features recomposed

from the outputs of sub-networks from previous frames.

Assuming we have m (m=4 in Fig. 3) independent feature

paths derived from video frames, and would like to build a

full feature representation for frame t by combining the out-

puts of the previous m-1 frames with the current frame. We

achieve this with spatio-temporal attention [35, 49], where

we independently compute the Affinity between pixels of

the current frame t and the previous m-1 frames.

Affp = Softmax(
QtK

⊤
p√

dk
) (1)

where p indicates a previous frame and dk is the dimension

of the Query and Key. Then, the sub-feature maps at the

current frame and previous m-1 frames are merged as,

V ′

t = Vt +

t−1
∑

p=t−m+1

φ(AffpVp) (2)

With this attention mechanism, we effectively capture the

non-local correlation between pixels across frames, with

time complexity of O((m − 1)dkH
2W 2) for the affinity

in Eq. 1. However, features for semantic segmentation are

high resolution and Eq 2 incurs a high computation cost. To
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Figure 3. Illustration of TDNet with four sub-networks. Since we circularly distribute sub-networks over sequential frames, any four-frame

temporal window will cover a full set of the sub-networks. In order to segment frame t, we apply the attention propagation module to

propagate and merge sub-feature maps previously extracted from (t-3, t-2, t-1) with the sub-feature map from t. For the next frame t+1, a

full feature representation is aggregated by similarly reusing the sub-features extract at frames (t-2, t-1, t).

improve efficiency, we downsample the attention maps and

propagate them over time.

Attention Downsampling. We adopt a simple yet effec-

tive strategy, which is to downsample the reference data as

indicated by the “Downsampling” module in Fig. 3. For-

mally, when segmenting a frame T , we apply a spatial

pooling operation γn(·) with stride n to the previous m-1

frames’ Query, Key, and Value maps,

qi = γn(Qi), ki = γn(Ki), vi = γn(Vi) (3)

With these downsampled maps, the complexity for Eq. 2

decreases to O( (m−1)dkH
2W 2)

n2 ). We conduct experiments

and find that n=4 works well to preserve necessary spatial

information while greatly decreasing the computational cost

(see Sec 5.3).

Attention Propagation. Next, we propose a propagation

approach, where instead of computing the attention between

the current frame and all previous ones, we restrict compu-

tation to neighboring frames, and propagate it through the

window. This allows us not only to reduce the number of

attention maps we have to compute, but also to also restrict

attention computation to subsequent frames, where mo-

tion is smaller. Given a time window composed of frames

from t−m+ 1 to t together their respective downsampled

Query, Key, and Value maps, then for an intermediate frame

p ∈ (t−m+ 1, t), the attention is propagated as,

v′p = φ

(

Softmax(
qpk

⊤
p−1√
dk

)v′p−1

)

+ vp (4)

where v′t−m+1 = γn(Vt−m+1), q, k, and v are the down-

sampled maps as in Eq. 3, dk is the number of dimensions

for Query and Key, and φp is a 1×1 convolutional layer. The

final feature representation at frame t is then computed as,

V ′

t = φ

(

Softmax(
Qtk

⊤
t−1√
dk

)v′t−1

)

+ Vt (5)

and segmentation maps are generated by: Sm = πm(V ′
m),

where πm is the final prediction layer associated with sub-

network m.

With this proposed framework, the time complexity is re-

duced to O( (m−2)·dkH
2W 2)

n4 + dkH
2W 2)
n2 ) ≈ O(dkH

2W 2)
n2 ).

Since the attention is extracted from neighboring frames

only, the resulting feature are also more robust to scene mo-

tion. We notice that recent work [60] also adopt pooling

operation to achieve efficient attention models, but this is

in the context of image semantic segmentation, while our

model extends this strategy to deal with video data.
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Figure 4. The knowledge distillation. In the “Overall KD”, we

align the full outputs between the teacher model (e.g. PSPNet101)

and the student model (e.g. out TDNet). In the “Grouped KD”, we

match the outputs based on only one sub-network to the teacher

model’s output conditioned on the respective feature subspace.

4. Grouped Knowledge Distillation

During training, we further enhance the complementar-

ity of sub-feature maps in the full feature space by intro-

ducing a knowledge distillation [15] strategy, using a strong

deep model designed for single images as the teacher net-

work. In addition to transferring knowledge in the full-

feature space [13, 15, 29], we propose a grouped knowl-

edge distillation loss to further transfer knowledge at the

subspace level in order to make the information extracted

from different paths more complementary to one another.

The idea of a grouped distillation loss is illustrated in

Fig. 4. We take a deep baseline model like PSPNet101 as

the teacher, and take our TDNet with m sub-networks as the

student network. The goal is to not only align the output dis-

tributions at the whole-model level, but also at a subfeature

group level. Based on block matrix multiplication [9], we

evenly separate the teacher model’s feature reduction layer

into m independent sub-convolution groups, which output a

set of sub-feature groups {fi|i = 1, ...,m}. Thus, the orig-

inal segmentation result is πT (
∑

f), and the contribution

of the i-th feature group is πT (fi), given πT (·) being the

teacher model’s segmentation layer. In TDNet, the target

frame’s Value map Vm is combined with propagated pre-

vious information to be V ′
m, thus the full model output is

πS(V
′
m) and the m-th feature path’s contribution is πS(Vm),

given πS(·) is the final segmentation layers. Based on these,

our final loss function is,

Loss =CE(πS(V
′

i , gt)) + α ·KL(πS(V
′

i )||πT (
∑

f))

+ β ·KL(πS(Vi)||πT (fi)) (6)

where CE is the cross entropy loss, and KL means the KL-

divergence. The first term is the supervised training with

ground truth. The second term distills knowledge at the

whole-model level. The third term transfers knowledge at

feature group level. We set α and β to be 0.5 in our paper.

5. Experiments

We evaluate our method on Cityscapes [5] and

Camvid [1] for street views, and NYUDv2 [33] for indoor

scenes. On all of these datasets, our method achieves state-

of-the-art accuracy with a much faster speed and lower and

evenly distributed latency.

5.1. Setup and Implementation

Datasets & Evaluation Metrics. Cityscapes [5] contains

2,975/500/1,525 snippets for training/validation/testing.

The 20th frame of each snippet is annotated with 19 classes

for semantic segmentation. Camvid [1] consists of 4

videos with 11-class pixelwise annotations at 1Hz. The

annotated frames are grouped into 467/100/233 for train-

ing/validation/testing. NYUDv2 [33] contains 518 indoor

videos with 795 training frames and 654 testing frames

being rectified and annotated with 40-class semantic la-

bels. Based on these labeled frames, we create rectified

video snippets from the raw Kinetic videos, which we

will release for testing. Following the practice in previous

works [10, 14, 19, 27], we evaluate mean Intersection-over-

Union (mIoU) on Cityscapes, and mean accuracy and mIoU

on Camvid and NYUDv2.

Models & Baselines. We demonstrate the effectiveness

of TDNet on different backbones. We select two state-

of-the-art image segmentation models for our experiments:

PSPNet [56], and BiseNet∗ [52]. The latter is a modi-

fied/improved version of [52] with the Spatial Path being

replaced with the output of ResBlock-2, which we found

to have higher efficiency and better training convergence.

We extend these image models with temporally distributed

framework to boost the performance, yielding the models:

TD2-PSP50, TD4-PSP18: the former consists of two

PSPNet-50 [56] backbones with halved output channels

as sub-networks, whereas TD4-PSP18 is made of four

PSPNet-18 sub-networks. The model capacity of the tem-

porally distributed models is comparable to the image seg-

mentation network they are based on (PSPNet-101).

TD2-Bise34, TD4-Bise18. Similarly, we build TD2-Bise34

with two BiseNet∗-34 as sub-networks, and TD4-Bise18

with four BiseNet∗-18 as sub-networks for the real-time

applications. Like in PSPNet case, the model capacity of

the temporally distributed networks is comparable to the

BiseNet∗-101.

Speed Measurement & Comparison. All testing exper-

iments are conducted with a batch-size of one on a single

Titan Xp in the Pytorch framework. We found that previ-

ous methods are implemented with different deep-learning

frameworks and evaluated on different types of devices, so

for consistent comparisons, we report the speed/latency for
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Method mIoU(%) Speed Max Latency

val test (ms/f) (ms)

CLK [39] 64.4 - 158 198

DFF [58] 69.2 - 156 575

GRFP(5) [34] 73.6 72.9 255 255

LVS-LLS [27] 75.9 - 119 119

PEARL [19] 76.5 75.2 800 800

LVS [27] 76.8 - 171 380

PSPNet18 [56] 75.5 - 91 91

PSPNet50 [56] 78.1 - 238 238

PSPNet101 [56] 79.7 79.2 360 360

TD4-PSP18 76.8 - 85 85

TD2-PSP50 79.9 79.4 178 178

Table 1. Evaluation on the Cityscapes dataset. The “Speed” and

“Max Latency” represent the average and maximum per-frame

time cost respectively.

these previous methods based on benchmark-based conver-

sions1 and our reimplementations.

Training & Testing Details. Both our models and base-

lines are initialized with Imagenet [6] pretrained parameters

and then trained to convergence to achieve the best perfor-

mance. To train TDNet with m subnetworks, each training

sample is composed of m consecutive frames and the su-

pervision is the ground truth from the last one. We perform

random cropping, random scaling and flipping for data aug-

mentation. Networks are trained by stochastic gradient de-

scent with momentum 0.9 and weight decay 5e-4 for 80k it-

erations. The learning rate is initialized as 0.01 and decayed

by (1 − iter
max−iter

)0.9. During testing, we resize the output

to the input’s original resolution for evaluation. On datasets

like Cityscapes and NYUDv2 which have temporally sparse

annotations, we compute the accuracy for all possible orders

of sub-networks and average them as final results. We found

that different orders of sub-networks achieve very similar

mIoU values, which indicates that TDNet is stable with re-

spect to sub-feature paths (see supplementary materials).

5.2. Results

Cityscapes Dataset. We compare our method with the re-

cent state-of-the-art models for semantic video segmenta-

tion in Table 1. Compared with LVS [27], TD4-PSP18,

achieves similar performance with only a half the average

time cost, and TD2-PSP50 further improves accuracy by 3

percent in terms of mIoU. Unlike keyframe-based methods

like LVS [27], ClockNet [39], DFF [58] that have fluctu-

ating latency between keyframes and non-key frames (e.g.

575ms v.s. 156ms for DFF [58]), our method runs with a

balanced computation load over time. With a similar to-

tal number of parameters as PSPNet101 [56], TD2-PSP50

reduces the per-frame time cost by half from 360ms to

1http://goo.gl/N6ukTz/, http://goo.gl/BaopYQ/

Method mIoU(%) Speed (ms/f)

val test

DVSNet [51] 63.2 - 33

ICNet [55] 67.7 69.5 20

LadderNet [21] 72.8 - 33

SwiftNet [36] 75.4 - 23

BiseNet∗18 [52] 73.8 73.5 20

BiseNet∗34 [52] 76.0 - 27

BiseNet∗101 [52] 76.5 - 72

TD4-Bise18 75.0 74.9 21

TD2-Bise34 76.4 - 26

Table 2. Evaluation of high-efficiency approaches on the

Cityscapes dataset.

178ms while improving accuracy. The sub-networks in

TD2-PSP50 are adapted from PSPNet50, so we also com-

pare their performance, and can see that TD2-PSP50 out-

performs PSPNet50 by 1.8% mIoU with a faster average

latency. As shown in the last row, TD4-PSP18 can further

reduce the latency to a quarter, but due to the shallow sub-

networks (based on a PSPNet18 model), the performance

drops comparing to PSPNet101. However, it still achieves

state-of-the-art accuracy and outperforms previous methods

by a large gap in terms of latency. Some qualitative results

are shown in Fig. 5(a)

To validate our method’s effectiveness for more realis-

tic tasks, we evaluate our real-time models TD2-Bise34 and

TD4-Bise18 (Table 2). As we can see, TD2-Bise34 outper-

forms all the previous real-time methods like ICNet [55],

LadderNet [21], and SwiftNet [36] by a large gap, at a com-

parable, real-time speed. With a similar total model size

to BiseNet∗101, TD2-Bise34 achieves better performance

while being roughly three times faster. TD4-Bise18 drops

the accuracy but further improves the speed to nearly 50

FPS. Both TD2-Bise34 and TD4-Bise18 improve over their

single path baselines at a similar time cost, which validates

the effectiveness of our TDNet for real-time tasks.

Camvid Dataset. We also report the evaluation of

Camvid dataset in Table 3. We can see that TD2-PSP50 out-

performs the previous state-of-the-art method Netwarp [10]

by about 9% mIoU while being roughly four times faster.

Comparing to the PSPNet101 baselines with a similar

model capacity, TD2-PSP50 reduces about half of the com-

putation cost with comparable accuracy. The four-path ver-

sion further reduces the latency by half but also decreases

the accuracy. This again shows that a proper depth is neces-

sary for feature path, although even so, TD4-PSP18 still out-

performs previous methods with a large gap both in terms

of mIoU and speed.

NYUDv2 Dataset. To show that our method is not lim-

ited to street-view like scenes, we also reorganize the in-

door NYUDepth-v2 dataset to make it suitable for seman-
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Method mIoU(%) Mean Acc.(%) Speed(ms/f)

LVS [27] - 82.9 84

PEARL [19] - 83.2 300

GRFP(5) [34] 66.1 - 230

ACCEL [18] 66.7 - 132

Netwarp [10] 67.1 - 363

PSPNet18 [56] 71.0 78.7 40

PSPNet50 [56] 74.7 81.5 100

PSPNet101 [56] 76.2 83.6 175

TD4-PSP18 72.6 80.2 40

TD2-PSP50 76.0 83.4 90

Table 3. Evaluation on the Camvid dataset.

Method mIoU(%) Mean Acc.(%) Speed(ms/f)

STD2P [14] 40.1 53.8 >100

FCN [30] 34.0 46.1 56

DeepLab [3] 39.4 49.6 78

PSPNet18 [56] 35.9 46.9 19

PSPNet50 [56] 41.8 52.8 47

PSPNet101 [56] 43.2 55.0 72

TD4-PSP18 37.4 48.1 19

TD2-PSP50 43.5 55.2 35

Table 4. Evaluation on the NYUDepth dataset.

Overall-KD Grouped-KD Cityscapes NYUDv2

76.4 36.2

X 76.5 (+0.1) 36.7 (+0.5)

X X 76.8 (+0.4) 37.4 (+1.2)

Table 5. The mIoU (%) for different components in our knowledge

distillation loss (Eq. 6) for TD4-PSP18.

tic video segmentation task. As most previous methods

for video semantic segmentation do not evaluate on this

dataset, we only find one related work to compare against;

STD2P [14]. As shown in Table 4, TD2-PSP50 outper-

forms STD2P in terms of both accuracy and speed. TD4-

PSP18 achieves a worse accuracy but is more than 5×
faster. TD2-PSP50 again successfully halves the latency

but keeps the accuracy of the baseline PSPNet101, and also

achieves about 1.6% improvement in mIoU comparing to

PSPNet18 without increasing the latency.

5.3. Method Analysis

Grouped Knowledge Distillation. The knowledge distil-

lation based training loss (Eq. 6) consistently helps to im-

prove performance on the three datasets. In order to investi-

gate the effect of different components in the loss, we train

TD4-PSP18 with different settings and show the results in

Table 5. The overall knowledge distillation [15] works by

providing extra information about intra-class similarity and

inter-class diversity. Thereby, it is less effective to improve

a fully trained base model on Cityscapes due to the highly-

structured contents and relatively fewer categories. How-

ever, when combined with our grouped knowledge distilla-

tion, the performance can be still boosted with nearly a half

percent in terms of mIoU. This shows the effectiveness of

Model n=1 2 4 8 16 32

TD2-PSP50
mIoU (%) 80.0 80.0 79.9 79.8 79.6 79.1

latency (ms) 251 205 178 175 170 169

TD4-PSP18
mIoU (%) 76.9 76.8 76.8 76.5 76.1 75.7

latency (ms) 268 103 85 81 75 75

TD4-Bise18
mIoU (%) 75.0 75.0 75.0 74.8 74.7 74.4

latency (ms) 140 31 21 19 18 18

Table 6. Effect of different downsampling stride n on Cityscapes.

Framework Single Path Baseline Shared Independent

TD2-PSP50 78.2 78.5 79.9

TD4-PSP18 75.5 75.7 76.8

Table 7. Comparisons on Cityscapes for using a shared sub-

network or independent sub-networks. The last column shows the

baseline model corresponding to TDNet’s sub-network.

our grouped knowledge distillation to provide extra regu-

larization. On the NYUD-v2 dataset which contains more

diverse scenes and more categories, our method achieves

significant improvements with an 1.2% absolute improve-

ment in mIoU.

Attention Propagation Module. Here, we compare our

attention propagation module (APM) with other aggrega-

tion methods such as: no motion compensation, e.g., just

adding feature groups (Add), optical-flow based warping

(OFW) and the vanilla Spatio-Temporal Attention (STA)

mechanism [35, 49]. As shown in Fig. 6(a), without con-

sidering the spatial misalignment (Add) leads to the worst

accuracy. Our APM outperforms OFW and STA in both ac-

curacy and latency. In Fig. 6(b), we evaluate our method’s

robustness to motion between frames by varying the tempo-

ral step in input frames sampling. As shown in the figure,

APM shows the best robustness, even with a sampling gap

of 6 frames where flow based methods fail, our APM drops

very slightly in contrast to other methods.

Attention Downsampling. In the downsampling opera-

tion used to improve the efficiency of computing attention,

we apply spatial max pooling with a stride n. We show the

influence of n in Table 6. By increasing n from 1 to 4, the

computation is decreased drastically, while the accuracy is

fairly stable. This indicates that the downsampling strategy

is effective in extracting spatial information in a sparse way.

However, while further increasing n to 32, the accuracy de-

creases due to the information being too sparse.

Shared Subnetworks v.s. Independent Subnetworks.

When processing a video, the effectiveness of TDNet may

come from two aspects: the enlarged representation ca-

pacity by distributed subnetworks and the temporal con-

text information provided by neighboring frames. In Ta-

ble 7, we analyze the contributions of each by using a sin-

gle subnetwork used for each path, or a group of indepen-

dent subnetworks. As we can see, aggregating features ex-
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frame t

frame t-1

frame t-2

frame t-3

Target Frame

TD2-PSP50

TD4-PSP18

Ground Truth

(a) Qualitative Results (b) Attention Visualization
Figure 5. Qualitative results of our method on Cityscapes and NYUD-v2 (a), and a visualization of the attention map in our attentive

propagation network (b). Given a pixel in frame t (denoted as a green cross), we back-propagate the correlation scores with the affinity

matrices, and then visualize the normalized soft weights as heat map over the other frames in the window.

(a) mIoU v.s . Speed (b) Robustness to temporal 
variations

0 1 2 3 4 5 6

OFWSTAAPM

75

76

77

m
Io

U
 (

%
)

Temporal Gap

Method
mIoU
(%)

APM 85

STA 76.5 95

OFW 76.1 97

Add 64.8

Speed
(ms/f)

76.8

73

Figure 6. TD4-PSP18 with different temporal aggregation meth-

ods on Cityscapes dataset. “APM” denotes our attention propaga-

tion module. “STA” represents spatio-temporal attention [35, 49].

“OFW” is the optical-flow [8] based fusion. “Add” means simply

adding feature maps.

P1 P2 P3 P4 Cityscapes NYUDepth-V2

X X X X 76.8 38.2

X X X 76.5 38.0

X X 76.0 37.2

X 74.3 34.4

Table 8. Ablation study on TD4-PSP18 showing how performance

decreases with progressively fewer sub-features accumulated.

tracted via a shared single subnetwork can improve the per-

formance of image segmentation baseline, and independent

sub-networks can further improve mIoU by 1% without in-

creasing computation cost. This shows that TDNet does not

only benefit from the temporal context information but is

also effectively enlarging the representation capacity by the

temporally distributing distinct subnetworks.

Effect of Sub-networks. As shown in the last part, TD-

Net benefits from enforcing different sub-networks extract

complementary feature groups. Here, we provide de-

tailed ablation studies about the contributions of these sub-

networks. Table 8 shows the analysis for TD4-PSP18,

where P4 represents the sub-network at the target frame,

and P1∼P3 are the sub-networks applied on the previous

frames. As we can see, by removing feature paths from

the first frame, the accuracy consistently decreases for both

datasets, which proves the effectiveness of feature distribu-

tion. To show how these paths are aggregated, in Fig 5(b)

we visualize the attention maps of the attention propaga-

tion module in TD4-PSP18. As shown in the figure, given

a pixel (denoted as green crosses) in the target frame t, pix-

els of the corresponding semantic category in the previous

frame t-1 are matched. However, in the previous frames t-2

and t-3, background pixels are collected. It should be noted

that in the attention propagation module, there are layers φ

(in Eq. 4 and Eq. 5) which process the aggregated features.

Thus frames t-2 and t-3 provide contextual information, and

frames t-1 and t provide local object information, which are

combined together to form strong and robust features for

segmentation.

6. Conclusion

We presented a novel temporally distributed network for

fast semantic video segmentation. By computing the fea-

ture maps across different frames and merging them with

a novel attention propagation module, our method retains

high accuracy while significantly improving the latency of

processing video frames. We show that using a grouped

knowledge distillation loss, further boost the performance.

TDNet consistently outperforms previous methods in both

accuracy and efficiency.
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