
Controllable Orthogonalization in Training DNNs

Lei Huang1 Li Liu1 Fan Zhu1 Diwen Wan1,2 Zehuan Yuan3 Bo Li4 Ling Shao1

1Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, UAE
2University of Electronic Science and Technology of China, Chengdu, China

3ByteDance AI Lab, Beijing, China
4University of Illinois at Urbana-Champaign Illinois, USA

Abstract

Orthogonality is widely used for training deep neural

networks (DNNs) due to its ability to maintain all singular

values of the Jacobian close to 1 and reduce redundancy

in representation. This paper proposes a computationally

efficient and numerically stable orthogonalization method

using Newton’s iteration (ONI), to learn a layer-wise or-

thogonal weight matrix in DNNs. ONI works by iteratively

stretching the singular values of a weight matrix towards

1. This property enables it to control the orthogonality of

a weight matrix by its number of iterations. We show that

our method improves the performance of image classifica-

tion networks by effectively controlling the orthogonality to

provide an optimal tradeoff between optimization benefits

and representational capacity reduction. We also show that

ONI stabilizes the training of generative adversarial net-

works (GANs) by maintaining the Lipschitz continuity of a

network, similar to spectral normalization (SN), and further

outperforms SN by providing controllable orthogonality.

1. Introduction

Training deep neural networks (DNNs) is often difficult

due to the occurrence of vanishing/exploding gradients [7,

14, 47]. Preliminary research [36, 14] has suggested that

weight initialization techniques are essential for avoiding

these issues. As such, various works have tried to tackle

the problem by designing weight matrices that can provide

nearly equal variance to activations from different layers [14,

18]. Such a property can be further amplified by orthogonal

weight initialization [54, 42, 58], which shows excellent

theoretical results in convergence due to its ability to obtain

a DNN’s dynamical isometry [54, 49, 67], i.e. all singular

values of the input-output Jacobian are concentrated near

1. The improved performance of orthogonal initialization is

empirically observed in [54, 42, 49, 65] and it makes training

even 10,000-layer DNNs possible [65]. However, the initial

orthogonality can be broken down and is not necessarily

sustained throughout training [66].

Spectrum of a weight matrix

1 1 1

…

𝛿
T=0 T=1 T=N

Orthogonality

…
Figure 1. ONI controls a weight matrix’ magnitude of orthogonality

(measured as δ = �WWT − I�F), by iteratively stretching its

singular values towards 1.

Previous works have tried to maintain the orthogonal

weight matrix by imposing an additional orthogonality

penalty on the objective function, which can be viewed

as a ‘soft orthogonal constraint’ [47, 61, 66, 5, 3]. These

methods show improved performance in image classification

[66, 71, 37, 5], resisting attacks from adversarial examples

[12], neural photo editing [11] and training generative adver-

sarial networks (GAN) [10, 43]. However, the introduced

penalty works like a pure regularization, and whether or

not the orthogonality is truly maintained or training ben-

efited is unclear. Other methods have been developed to

directly solve the ‘hard orthogonal constraint’ [61, 5], ei-

ther by Riemannian optimization [46, 17] or by orthogonal

weight normalization [62, 24]. However, Riemannian op-

timization often suffers from training instability [17, 24],

while orthogonal weight normalization [24] requires compu-

tationally expensive eigen decomposition, and the necessary

back-propagation through this eigen decomposition may suf-

fer from numerical instability, as shown in [30, 40].

We propose to perform orthogonalization by Newton’s it-

eration (ONI) [41, 8, 26] to learn an exact orthogonal weight

matrix, which is computationally efficient and numerically

stable. To further speed up the convergence of Newton’s

iteration, we propose two techniques: 1) we perform center-

ing to improve the conditioning of the proxy matrix; 2) we

explore a more compact spectral bounding method to make

the initial singular value of the proxy matrix closer to 1.

6429

We provide an insightful analysis and show that ONI

works by iteratively stretching the singular values of the

weight matrix towards 1 (Figure 1). This property makes

ONI work well even if the weight matrix is singular (with

multiple zero singular values), under which the eigen de-

composition based method [24] often suffers from numerical

instability [30, 40]. Moreover, we show that controlling

orthogonality is necessary to balance the increase in opti-

mization and reduction in representational capacity, and ONI

can elegantly achieve this through its iteration number (Fig-

ure 1). Besides, ONI provides a unified solution for the

row/column orthogonality, regardless of whether the weight

matrix’s output dimension is smaller or larger than the input.

We also address practical strategies for effectively learn-

ing orthogonal weight matrices in DNNs. We introduce

a constant of
√
2 to initially scale the orthonormal weight

matrix so that the dynamical isometry [54] can be well main-

tained for deep ReLU networks [45]. We conduct extensive

experiments on multilayer perceptrons (MLPs) and convo-

lutional neural networks (CNNs). Our proposed method

benefits the training and improves the test performance over

multiple datasets, including ImageNet [51]. We also show

that our method stabilizes the training of GANs and achieves

improved performance on unsupervised image generation,

compared to the widely used spectral normalization [43].

2. Related Work

Orthogonal filters have been extensively explored in sig-

nal processing since they are capable of preserving activation

energy and reducing redundancy in representation [72]. Saxe

et al. [54] introduced an orthogonal weight matrix for DNNs

and showed that it achieves approximate dynamical isometry

[54] for deep linear neural networks, therefore significantly

improving the optimization efficiency [42, 58]. Pennington

et al. [49] further found that the nonlinear sigmoid network

can also obtain dynamical isometry when combined with

orthogonal weight initialization [49, 65, 67].

Research has also been conducted into using orthogonal

matrices to avoid the gradient vanishing/explosion problems

in recurrent neural networks (RNNs). These methods mainly

focus on constructing square orthogonal matrices/unitary

matrices for the hidden-to-hidden transformations in RNNs

[4, 62, 13, 61, 27, 32, 21]. This is done by either construct-

ing a decomposed unitary weight matrix with a restricted [4]

or full representational capability [62, 21], or by using soft

constraints [61]. Different from these methods requiring a

square weight matrix and limited to hidden-to-hidden trans-

formations in RNNs, our method is more general and can

adapt to situations where the weight matrix is not square.

Our method is related to the methods that impose orthog-

onal penalties on the loss functions [47, 61, 5]. Most works

propose to use soft orthogonality regularization under the

standard Frobenius norm [47, 61, 5], though other alterna-

tive orthogonal penalties were explored in [5]. There are

also methods that propose to bound the singular values with

periodical projection [31]. Our method targets at solving the

‘hard constraint’ and providing controllable orthogonality.

One way to obtain exact orthogonality is through Rie-

mannian optimization methods [46, 17]. These methods

usually require a retract operation [2] to project the updated

weight back to the Stiefel manifold [46, 17], which may

result in training instability for DNNs [17, 24]. Our method

avoids this by employing re-parameterization to construct

the orthogonal matrix [24]. Our work is closely related

to orthogonal weight normalization [24], which also uses

re-parameterization to design an orthogonal transformation.

However, [24] solves the problem by computationally expen-

sive eigen decomposition and may result in numeric insta-

bility [30, 40]. We use Newton’s iteration [41, 8], which is

more computationally efficient and numerically stable. We

further argue that fully orthogonalizing the weight matrix

limits the network’s learning capacity, which may result in

degenerated performance [43, 10]. Another related work is

spectral normalization [43], which uses reparametrization to

bound only the maximum eigenvalue as 1. Our method can

effectively interpolate between spectral normalization and

full orthogonalization, by altering the iteration number.

Newton’s iteration has also been employed in DNNs

for constructing bilinear/second-order pooling [40, 38], or

whitening the activations [26]. [40] and [38] focused on cal-

culating the square root of the covariance matrix, while our

method computes the square root inverse of the covariance

matrix, like the work in [26]. However, our work has several

main differences from [26]: 1) In [26], they aimed to whiten

the activation [25] over batch data using Newton’s iteration,

while our work seeks to learn the orthogonal weight matrix,

which is an entirely different research problem [29, 52, 25];

2) We further improve the convergence speed compared to

the Newton’s iteration proposed in [26] by providing more

compact bounds; 3) Our method can maintain the Lipschitz

continuity of the network and thus has potential in stabilizing

the training of GANs [43, 10]. It is unclear whether or not the

work in [26] has such a property, since it is data-dependent

normalization [29, 43, 10].

3. Proposed Method

Given the dataset D = {(xi,yi)}
M
i=1 composed of an

input xi ∈ R
d and its corresponding labels yi ∈ R

c, we rep-

resent a standard feed-forward neural network as a function

f(x; θ) parameterized by θ. f(x; θ) is a composition of L
simple nonlinear functions. Each of these consists of a linear

transformation ĥl = Wlhl−1 + bl with learnable weights

Wl ∈ R
nl×dl and biases bl ∈ R

nl , followed by an element-

wise nonlinearity: hl = ϕ(ĥl). Here l ∈ {1, 2, ..., L} in-

dexes the layers. We denote the learnable parameters as

θ = {Wl,bl|l = 1, 2, . . . , L}. Training neural networks

involves minimizing the discrepancy between the desired

output y and the predicted output f(x; θ), described by a

loss function L(y, f(x; θ)). Thus, the optimization objective

is: θ∗ = argminθ E(x,y)∈D[L(y, f(x; θ))].

6430

Algorithm 1 Orthogonalization by Newton’s Iteration (ONI).

1: Input: proxy parameters Z ∈ R
n×d and iteration numbers T .

2: Bounding Z’s singular values: V = Z

�Z�F
.

3: Calculate covariance matrix: S = VVT .

4: B0 = I.

5: for t = 1 to T do

6: Bt =
3
2
Bt−1 − 1

2
B3

t−1S.

7: end for

8: W = BTV

9: Output: orthogonalized weight matrix: W ∈ R
n×d.

0 2 4 6 8 10

Iterations

0

2

4

6

8

|W
W

T
-I

| F

ONI

(a)

0 20 40 60

Index of eigenvalue

10
-2

10
0

E
ig

e
n
v
a
lu

e

T1 T3 T5 T7 T9

(b)

Figure 2. Convergence behaviors of the proposed Orthogonalization

by Newton’s Iteration. The entries of proxy matrix Z ∈ R
64×256

are sampled from the Gaussian distribution N(3, 1). We show (a)

the magnitude of the orthogonality, measured as δ = �WWT −
I�F , with respect to the iterations and (b) the distribution (log scale)

of the eigenvalues of WWT with different iterations.

3.1. Preliminaries

This paper starts with learning orthogonal filter banks
(row orthogonalization of a weight matrix) for deep neural
networks (DNNs). We assume n ≤ d for simplicity, and
will discuss the situation where n > d in Section 3.4. This
problem is formulated in [24] as an optimization with layer-
wise orthogonal constraints, as follows:

θ
∗ = argminθ E(x,y)∈D [L (y, f (x; θ))]

s.t. Wl(Wl)T = I, l = 1, 2, ..., L. (1)

To solve this problem directly, Huang et al. [24] proposed
to use the proxy parameters V and construct the orthogonal
weight matrix W by minimizing them in a Frobenius norm
over the feasible transformation sets, where the objective is:

minφ(V) tr
�

(W −V) (W −V)T
�

s.t. W = φ(V) and WWT = I. (2)

They solved this in a closed-form, with the orthogonal trans-
formation as:

W = φ(V) = DΛ
−1/2

D
T
V, (3)

where Λ = {λ1, ...,λn} and D are the eigenvalues and corre-

sponding eigenvectors of the covariance matrix S = VVT .

Given the gradient ∂L

∂W
, back-propagation must pass through

the orthogonal transformation to calculate ∂L

∂V
for updating

V. The closed formulation is concise; however, it encoun-

ters the following problems in practice: 1) Eigen decom-

position is required, which is computationally expensive,

especially on GPU devices [40]; 2) The back-propagation

through the eigen decomposition requires the element-wise

multiplication of a matrix K [24], whose elements are given

Algorithm 2 ONI with Acceleration.

1: Input: proxy parameters Z ∈ R
n×d and iteration numbers N .

2: Centering: Zc = Z− 1
d
Z11T .

3: Bounding Z’s singular values: V = Zc√
�ZcZ

T
c �F

.

4: Execute Step. 3 to 8 in Algorithm 1.

5: Output: orthogonalized weight matrix: W ∈ R
n×d.

by Ki,j =
1

(λi−λj)
, where i �= j. This may cause numerical

instability when there exists equal eigenvalues of S, which

is discussed in [30, 40] and observed in our preliminary

experiments, especially for high-dimensional space.

We observe that the solution of Eqn. 2 can be represented

as W = S− 1

2V, where S− 1

2 can be computed by Newton’s

iteration [41, 8, 26], which avoids eigen decomposition in

the forward pass and potential numerical instability during

the back-propagation.

3.2. Orthogonalization by Newton’s Iteration

Newton’s iteration calculates S− 1

2 as follows:
�

B0 = I

Bt =
1
2
(3Bt−1 −B3

t−1S), t = 1, 2, ..., T,
(4)

where T is the number of iterations. Under the condition

that �I− S�2 < 1, BT will converge to S− 1

2 [8, 26].

V in Eqn. 2 can be initialized to ensure that S = VVT

initially satisfies the convergence condition, e.g. ensuring

0 ≤ σ(V) ≤ 1, where σ(V) are the singular values of V.

However, the condition is very likely to be violated when

training DNNs, since V varies.

To address this problem, we propose to maintain an-
other proxy parameter Z and conduct a transformation
V = φN (Z), such that 0 ≤ σ(V) ≤ 1, inspired by the
re-parameterization method [53, 24]. One straightforward
way to ensure 0 ≤ σ(V) ≤ 1 is to divide the spectral norm
of Z, like the spectral normalization method does [43]. How-
ever, it is computationally expensive to accurately calculate
the spectral norm, since singular value decomposition is re-
quired. We thus propose to divide the Frobenius norm of Z
to perform spectral bounding:

V = φN (Z) =
Z

�Z�F
. (5)

It’s easy to demonstrate that Eqn. 5 satisfies the convergence

condition of Newton’s iteration and we show that this method

is equivalent to the Newton’s iteration proposed in [26] (See

the supplementary materials (SM) for details). Algorithm 1

describes the proposed method, referred to as Orthogonal-

ization by Newton’s Iteration (ONI), and its corresponding

back-propagation is shown in the SM. We find that Algo-

rithm 1 converges well (Figure 2). However, the concern is

the speed of convergence, since 10 iterations are required in

order to obtain a good orthogonalization. We thus further

explore methods to speed up the convergence of ONI.

6431

0 2 4 6 8 10

Iterations

0

2

4

6

8

|W
W

T
-I

| F

ONI

ONI+Center

ONI+Center+CSB

(a)

0 20 40 60

Index of eigenvalue

10
-2

10
0

E
ig

e
n
v
a
lu

e

ONI

ONI+Center

ONI+Center+CSB

(b)

Figure 3. Analysis of speeding up Newton’s iteration. The entries

of proxy matrix Z ∈ R
64×256 are sampled from the Gaussian dis-

tribution N(3, 1). (a) Comparison of convergence; (b) Comparison

of the distribution of the eigenvalues of WWT at iteration t = 1.

3.3. Speeding up Convergence of Newton’s Iteration

Our Newton’s iteration proposed for obtaining orthogo-

nal matrix W works by iteratively stretching the singular

values of V towards 1, as shown in Figure 2 (b). The speed

of convergence depends on how close the singular values

of V initially are to 1 [8]. We observe that the following

factors benefit the convergence of Newton’s iteration: 1) The

singular values of Z have a balanced distribution, which can

be evaluated by the condition number of the matrix Z; 2)

The singular values of V should be as close to 1 as possible

after spectral bounding (Eqn. 5).

Centering To achieve more balanced distributions for the
eigenvalues of Z, we perform a centering operation over the
proxy parameters Z, as follows

Zc = Z− 1

d
Z11

T
. (6)

The orthogonal transformation is then performed over the

centered parameters Zc. As shown in [36, 55], the covari-

ance matrix of centered matrix Zc is better conditioned than

Z. We also experimentally observe that orthogonalization

over centered parameters Zc (indicated as ‘ONI+Center’)

produces larger singular values on average at the initial stage

(Figure 3 (b)), and thus converges faster than the original

ONI (Figure 3 (a)).

Compact Spectral Bounding To achieve larger singular
values of V after spectral bounding, we seek a more com-
pact spectral bounding factor f(Z) such that f(Z) > �Z�F
and V satisfies the convergence condition. We find that

f(Z) =
�

�ZZT �F satisfies the requirements, which is
demonstrated in the SM. We thus perform spectral bounding
based on the following formulation:

V = φN (Z) =
Z

�

�ZZT �F
. (7)

More compact spectral bounding (CSB) is achieved using

Eqn. 7, compared to Eqn. 5. For example, assuming that Z

has g equivalent singular values, the initial singular values

of V after spectral bounding will be 1
4
√
n

when using Eqn.

7, while 1√
n

when using Eqn. 5. We also experimentally

observe that using Eqn. 7 (denoted with ‘+CSB’ in Figure 3)

results in a significantly faster convergence.

Algorithm 2 describes the accelerated ONI method with

centering and more compact spectral bounding (Eqn. 7).

0 2 4 6 8 10

Iterations

0

5

10
/

Row

/
Column

(a)

0 20 40 60

Index of eigenvalue

0

0.5

1

E
ig

e
n
v
a
lu

e

T1

T3

T5

T7

(b)

Figure 4. Unified row and column orthogonalization. The entries

of proxy matrix Z ∈ R
64×32 are sampled from the Gaussian

distribution N(0, 1). (a) Orthogonalization comparison between

δRow = �WWT −I�F and δColumn = �WTW−I�F ; (b) The

distribution of the eigenvalues of WWT with different iterations.

3.4. Unified Row and Column Orthogonalization

In previous sections, we assume n ≤ d, and obtain an

orthogonalization solution. One question that remains is how

to handle the situation when n > d. When n > d, the rows

of W cannot be orthogonal, because the rank of W is less

than/equal to d. Under this situation, full orthogonalization

using the eigenvalue decomposition based solution (Eqn. 3)

may cause numerical instability, since there exists at least

n − d zero eigenvalues for the covariance matrix. These

zero eigenvalues specifically lead to numerical instability

during back-propagation (when element-wisely multiplying

the scaling matrix K, as discussed in Section 3.1).

Our orthogonalization solution by Newton’s iteration can

avoid such problems, since there are no operations relating to

dividing the eigenvalues of the covariance matrix. Therefore,

our ONI can solve Eqn. 2 under the situation n > d. More

interestingly, our method can achieve column orthogonality

for the weight matrix W (that is, WTW = I) by solving

Eqn. 2 directly under n > d. Figure 4 shows the conver-

gence behaviors of the row and column orthogonalizations.

We observe ONI stretches the non-zero eigenvalues of the co-

variance matrix S towards 1 in an iterative manner, and thus

equivalently stretches the singular values of the weight ma-

trix V towards 1. Therefore, it ensures column orthogonality

under the situation n > d. Our method unifies the row and

column orthogonalizations, and we further show in Section

3.5 that they both benefit in preserving the norm/distribution

of the activation/gradient when training DNNs.

Note that, for n > d, Huang et al. [24] proposed the

group based methods by dividing the weights {wi}
n
i=1 into

groups of size NG ≤ d and performing orthogonalization

over each group, such that the weights in each group are

row orthogonal. However, such a method cannot ensure the

whole matrix W to be either row or column orthogonal (See

the SM for details).

3.5. Controlling Orthogonality

One remarkable property of the orthogonal matrix is that
it can preserve the norm and distribution of the activation
for a linear transformation, given appropriate assumptions.
Such properties are described in the following theorem.

Theorem 1. Let ĥ = Wx, where WWT = I and W ∈ R
n×d.

6432

Assume: (1) Ex(x) = 0, cov(x) = σ2
1I, and (2) E ∂L

∂ĥ

(∂L
∂ĥ

) = 0,

cov(∂L
∂ĥ

) = σ2
2I. If n = d, we have the following properties: (1)

�ĥ� = �x�; (2) Eĥ(ĥ) = 0, cov(ĥ) = σ2
1I; (3) � ∂L

∂x
� = � ∂L

∂ĥ
�;

(4) E ∂L

∂x

(∂L
∂x

) = 0, cov(∂L
∂x

) = σ2
2I. In particular, if n < d,

property (2) and (3) hold; if n > d, property (1) and (4) hold.

The proof is provided in the SM. Theorem 1 shows the

benefits of orthogonality in preventing gradients from ex-

ploding/vanishing, from an optimization perspective. Be-

sides, the orthonormal weight matrix can be viewed as the

embedded Stiefel manifold On×d with a degree of freedom

nd− n(n+ 1)/2 [1, 24], which regularizes the neural net-

works and can improve the model’s generalization [1, 24].

However, this regularization may harm the representa-

tional capacity and result in degenerated performance, as

shown in [24] and observed in our experiments. Therefore,

controlling orthogonality is necessary to balance the increase

in optimization benefit and reduction in representational ca-

pacity, when training DNNs. Our ONI can effectively control

orthogonality using different numbers of iterations.

3.6. Learning Orthogonal Weight Matrices in DNNs

Based on Algorithm 2 and its corresponding backward

pass, we can wrap our method in linear modules [53, 24],

to learn filters/weights with orthogonality constraints for

DNNs. After training, we calculate the weight matrix W

and save it for inference, as in the standard module.

Layer-wise Dynamical Isometry Theorem 1 shows that
the orthogonal matrix has remarkable properties for preserv-
ing the norm/distributions of activations during the forward
and backward passes, for linear transformations. However,
in practice, we need to consider the nonlinearity function as
well. Here, we show that we can use an additional constant
to scale the magnitude of the weight matrix for ReLU non-
linearity [45], such that the output-input Jacobian matrix of
each layer has dynamical isometry.

Theorem 2. Let h = max(0,Wx), where WWT = σ2I and

W ∈ R
n×d. Assume x is a normal distribution with Ex(x) = 0,

cov(x) = I. Denote the Jacobian matrix as J = ∂h
∂x

. If σ2 = 2,

we have Ex(JJ
T) = I.

The proof is shown in the SM. We propose to multiply

the orthogonal weight matrix W by a factor of
√
2 for net-

works with ReLU activation. We experimentally show this

improves the training efficiency in Section 4.1. Note that

Theorems 1 and 2 are based on the assumption that the

layer-wise input is Gaussian. Such a property can be ap-

proximately satisfied using batch normalization (BN) [29].

Besides, if we apply BN before the linear transformation,

there is no need to apply it again after the linear module,

since the normalized property of BN is preserved according

to Theorem 1. We experimentally show that such a process

improves performance in Section 4.1.3.

Learnable Scalar Following [24], we relax the constraint

of orthonormal to orthogonal, with WTW = Λ, where Λ is

the diagonal matrix. This can be viewed as the orthogonal

0 20 40 60 80

Epochs

0

50

100

E
rr

o
rs

plain

OrthInit

ONI

(a)

0 100 200

Index of eigenvalue

0

0.5

1

1.5

E
ig

e
n
v
a
lu

e

plain

OrthInit

ONI

(b)

Figure 5. Effects of maintaining orthogonality. Experiments are

performed on a 10-layer MLP. (a) The training (solid lines) and

testing (dashed lines) errors with respect to the training epochs; (b)

The distribution of eigenvalues of the weight matrix W of the 5th

layer, at the 200 iteration.

0 20 40 60 80

Epochs

0

50

100

E
rr

o
rs

plain

OLM-NS

OLM

ONI-NS

ONI

(a) 6-layer MLP

0 20 40 60 80

Epochs

0

50

100

E
rr

o
rs

plain

OLM-NS

OLM

ONI-NS

ONI

(b) 20-layer MLP

Figure 6. Effects of scaling the orthogonal weights. ‘-NS’ indicates

orthogonalization without scaling by
√
2. We evaluate the training

(solid lines) and testing (dashed lines) errors on (a) a 6-layer MLP

and (b) a 20-layer MLP.

filters having different contributions to the activations. To

achieve this, we propose to use a learnable scalar parameter

g to fine-tune the norm of each filter [53, 24].

Convolutional Layer With regards to the convolutional

layer parameterized by weights WC ∈ R
n×d×Fh×Fw ,

where Fh and Fw are the height and width of the filter, we

reshape WC as W ∈ R
n×p, where p = d · Fh · Fw, and

the orthogonalization is executed over the unrolled weight

matrix W ∈ R
n×(d·Fh·Fw).

Computational Complexity Consider a convolutional

layer with filters W ∈ R
n×d×Fh×Fw , and m mini-batch

data {xi ∈ R
d×h×w}mi=1. The computational cost of our

method, coming mainly from the Lines 3, 6 and 8 in Al-

gorithm 1, is 2n2dFhFw + 3Nn3 for each iteration during

training. The relative cost of ONI over the constitutional

layer is 2n
mhw

+ 3Nn2

mdhwFhFw
. During inference, we use the

orthogonalized weight matrix W, and thus do not introduce

additional computational or memory costs. We provide the

wall-clock times in the SM.

4. Experiments

4.1. Image Classification

We evaluate our ONI on the Fashion-MNIST [64],

CIFAR-10 [34] and ImageNet [51] datasets. We provide

an ablation study on the iteration number T of ONI in Sec-

tion 4.1.4. Due to space limitations, we only provide es-

sential components of the experimental setup; for more

details, please refer to the SM. The code is available at

https://github.com/huangleiBuaa/ONI.

6433

methods g=2,k=1 g=2,k=2 g=2,k=3 g=3,k=1 g=3,k=2 g=3,k=3 g=4,k=1 g=4,k=2 g=4,k=3

plain 11.34 9.84 9.47 10.32 8.73 8.55 10.66 9.00 8.43

WN 11.19 9.55 9.49 10.26 9.26 8.19 9.90 9.33 8.90

OrthInit 10.57 9.49 9.33 10.34 8.94 8.28 10.35 10.6 9.39

OrthReg 12.01 10.33 10.31 9.78 8.69 8.61 9.39 7.92 7.24

OLM-1 [24] 10.65 8.98 8.32 9.23 8.05 7.23 9.38 7.45 7.04

OLM-
√
2 10.15 8.32 7.80 8.74 7.23 6.87 8.02 6.79 6.56

ONI 9.95 8.20 7.73 8.64 7.16 6.70 8.27 6.72 6.52

Table 1. Test errors (%) on VGG-style networks for CIFAR-10 classification. The results are averaged over three independent runs.

4.1.1 MLPs on Fashion-MNIST

We use an MLP with a ReLU activation [45], and vary the

depth. The number of neurons in each layer is 256. We

employ stochastic gradient descent (SGD) optimization with

a batch size of 256, and the learning rates are selected based

on the validation set (5, 000 samples from the training set)

from {0.05, 0.1, 0.5, 1}.

Maintaining Orthogonality We first show that maintain-

ing orthogonality can improve the training performance. We

compare two baselines: 1) ‘plain’, the original network; and

2) ‘OrthInit’, in which the orthogonal initialization [54] is

used. The training performances are shown in Figure 5 (a).

We observe orthogonal initialization can improve the training

efficiency in the initial phase (comparing with ‘plain’), after

which the benefits of orthogonality degenerate (comparing

with ‘ONI’) due to the updating of weights (Figure 5 (b)).

Effects of Scaling We experimentally show the effects of

initially scaling the orthogonal weight matrix by a factor of√
2. We also apply this technique to the ‘OLM’ method [24],

in which the orthogonalization is solved by eigen decomposi-

tion. We refer to ‘OLM-NS’/‘ONI-NS’ as the ‘OLM’/‘ONI’

without scaling by
√
2. The results are shown in Figure

6. We observe that the scaling technique has no significant

effect on shallow neural networks, e.g., the 6-layer MLP.

However, for deeper neural networks, it produces significant

performance boosts. For example, for the 20-layer MLP, nei-

ther ‘OLM’ nor ‘ONI’ can converge without the additional

scaling factors, because the activation and gradient exponen-

tially vanish (see the SM). Besides, our ‘ONI’ has a nearly

identical performance compared to ‘OLM’, which indicates

the effectiveness of our approximate orthogonalization with

few iterations (e.g. 5).

4.1.2 CNNs on CIFAR-10

VGG-Style Networks Here, we evaluate ONI on VGG-

style neural networks with 3× 3 convolutional layers. The

network starts with a convolutional layer of 32k filters, where

k is the varying width based on different configurations. We

then sequentially stack three blocks, each of which has g
convolutional layers with filter numbers of 32k, 64k and

128k, respectively. We vary the depth with g in {2, 3, 4} and

the width with k in {1, 2, 3}. We use SGD with a momen-

tum of 0.9 and batch size of 128. The best initial learning

rate is chosen from {0.01, 0.02, 0.05} over the validation set

of 5,000 samples from the training set, and we divide the

BatchSize=128 BatchSize=2

w/BN* [68] 6.61 –

Xavier Init* [24] 7.78 –

Fixup-init* [69] 7.24 –

w/BN 6.82 7.24

Xavier Init 8.43 9.74

GroupNorm 7.33 7.36

ONI 6.56 6.67

Table 2. Test errors (%) comparison on 110-layer residual network

[19] without BN [29] under CIFAR-10. ’w/BN’ indicates with BN.

We report the median of five independent runs. The methods with

‘*’ indicate the results reported in the cited paper.

learning rate by 5 at 80 and 120 epochs, ending the training

at 160 epochs. We compare our ‘ONI’ to several baselines,

including orthogonal initialization [54] (‘OrthInit’), using

soft orthogonal constraints as the penalty term [66] (‘Or-

thReg’), weight normalization [53] (‘WN’), ‘OLM’ [24] and

the ‘plain’ network. Note that OLM [24] originally uses a

scale of 1 (indicated as ‘OLM-1’), and we also apply the

proposed scaling by
√
2 (indicated as ‘OLM-

√
2’).

Table 1 shows the results. ‘ONI’ and ‘OLM-
√
2’ have

significantly better performance under all network configura-

tions (different depths and widths), which demonstrates the

beneficial effects of maintaining orthogonality during train-

ing. We also observe ‘ONI’ and ‘OLM-
√
2’ converge faster

than other baselines, in terms of training epochs (See the SM).

Besides, our proposed ‘ONI’ achieves slightly better perfor-

mance than ‘OLM-
√
2’ on average, over all configurations.

Note that we train ‘OLM-
√
2’ with a group size of G = 64,

as suggested in [24]. We also try full orthogonalization

for ‘OLM-
√
2’. However, we observe either performance

degeneration or numerical instability (e.g., the eigen decom-

position cannot converge). We argue that the main reason

for this is that full orthogonalization solved by OLM over-

constrains the weight matrix, which harms the performance.

Moreover, eigen decomposition based methods are more

likely to result in numerical instability in high-dimensional

space, due to the element-wise multiplication of a matrix K

during back-propagation [40], as discussed in Section 3.1.

Residual Network without Batch Normalization Batch

normalization (BN) is essential for stabilizing and accel-

erating the training [29] of DNNs [19, 23, 20, 59]. It is a

standard configuration in residual networks [19]. However, it

sometimes suffers from the small batch size problem [28, 63]

and introduces too much stochasticity [60] when debugging

6434

Top-1 (%) Top-5 (%) Time (min./epoch)

plain 27.47 9.08 97

WN 27.33 9.07 98

OrthInit 27.75 9.21 97

OrthReg 27.22 8.94 98

ONI 26.31 8.38 104

Table 3. Test errors (%) on ImageNet validation set (single model

and single crop test) evaluated with VGG-16 [57]. The time cost

for each epoch is averaged over the training epochs.

ResNet w/o BN ResNet ResNetVar

Method Train Test Train Test Train Test

plain 31.76 33.84 29.33 29.64 28.82 29.56

ONI 27.05 31.17 29.28 29.57 28.12 28.92

Table 4. Ablation study on ImageNet with an 18-layer ResNet. We

evaluate the top-1 training and test errors (%).

Test error (%) Time (min./epoch)

Method 50 101 50 101

ResNet 23.85 22.40 66 78

ResNet + ONI 23.55 22.17 74 92

ResNetVar 23.94 22.76 66 78

ResNetVar + ONI 23.30 21.89 74 92

Table 5. Results on ImageNet with the 50- and 101-layer ResNets.

neural networks. Several studies have tried to train deep

residual networks without BN [56, 69]. Here, we show that,

when using our ONI, the residual network without BN can

also be well trained.

The experiments are executed on a 110-layer residual

network (Res-110). We follow the same experimental setup

as in [19], except that we run the experiments on one GPU.

We also compare against the Xavier Init [14, 9], and group

normalization (GN) [63]. ONI can be trained with a large

learning rate of 0.1 and converge faster than BN, in terms

of training epochs (see the SM). We observe that ONI has

slightly better test performance than BN (Table 2). Finally,

we also test the performance on a small batch size of 2. We

find ONI continues to have better performance than BN in

this case, and is not sensitive to the batch size, like GN [63].

4.1.3 Large-scale ImageNet Classification

To further validate the effectiveness of our ONI on a large-

scale dataset, we evaluate it on the ImageNet-2012 dataset.

We keep almost all the experimental settings the same as the

publicly available PyTorch implementation [48]: We apply

SGD with a momentum of 0.9, and a weight decay of 0.0001.

We train for 100 epochs in total and set the initial learning

rate to 0.1, lowering it by a factor of 10 at epochs 30, 60

and 90. For more details on the slight differences among

different architectures and methods, see the SM.

VGG Network Table 3 shows the results on the 16-layer

VGG [57]. Our ‘ONI’ outperforms ‘plain’, ‘WN’, ‘OrthInit’

and ‘OrthReg’ by a significant margin. Besides, ‘ONI’ can

be trained with a large learning rate of 0.1, while the other

methods cannot (the results are reported for an initial learn-

0 2 4 6 8

T

8

10

12

14

16

T
e

s
t

e
rr

o
rs

 (
%

)

(a)

0 1 2 3 4 5 6

T

7

8

9

T
e

s
t

e
rr

o
rs

 (
%

)

(b)

0 1 2 3 4 5

T

30

31

32

33

T
e

s
t

e
rr

o
rs

 (
%

)

(c)

Figure 7. Effects of the iteration number T of the proposed ONI.

(a) 6-layer MLP for Fashion-MNIST; (b) VGG-Style network with

(g = 2, k = 3) for CIFAR-10; (c) 18-layer ResNet for ImageNet.

ing rate of 0.01). We also provide the running times in Table

3. The additional cost introduced by ‘ONI’ compared to

‘plain’ is negligible (7.2%).

Residual Network We first perform an ablation study on

an 18-layer residual network (ResNet) [19], applying our

ONI. We use the original ResNet and the ResNet without

BN [29]. We also consider the architecture with BN inserted

after the nonlinearity, which we refer to as ‘ResNetVar’. We

observe that our ONI improves the performance over all

three architectures, as shown in Table 4. One interesting ob-

servation is that ONI achieves the lowest training error on the

ResNet without BN, which demonstrates its ability to facili-

tate optimization for large-scale datasets. We also observe

that ONI has no significant difference in performance com-

pared to ‘plain’ on ResNet. One possible reason is that the

BN module and residual connection are well-suited for infor-

mation propagation, causing ONI to have a lower net gain for

such a large-scale classification task. However, we observe

that, on ResNetVar, ONI obtains obviously better perfor-

mance than ‘plain’. We argue that this boost is attributed

to the orthogonal matrix’s ability to achieve approximate

dynamical isometry, as described in Theorem 2.

We also apply our ONI on a 50- and 101-layer residual

network. The results are shown in Table 5. We again observe

that ONI can improve the performance, without introducing

significant computational cost.

4.1.4 Ablation Study on Iteration Number

ONI controls the spectrum of the weight matrix by the it-

eration number T , as discussed before. Here, we explore

the effect of T on the performance of ONI over different

datasets and architectures. We consider three configurations:

1) the 6-layer MLP for Fashion-MNIST; 2) the VGG-Style

network with (g = 2, k = 3) for CIFAR-10; and 3) the

18-layer ResNet without BN for ImageNet. The correspond-

ing experimental setups are the same as described before.

We vary T and show the results in Figure 7. Our primary

observation is that using either a small or large T degrades

performance. This indicates that we need to control the mag-

nitude of orthogonality to balance the increased optimization

benefit and diminished representational capacity. Our em-

pirical observation is that T = 5 usually works the best for

networks without residual connections, whereas T = 2 usu-

ally works better for residual networks. We argue that the

residual network itself already has good optimization [19],

which reduces the optimization benefits of orthogonality.

6435

0 50 100 150 200

Epochs

20

25

30

35

40

45

F
ID

SN

ONI
T0

ONI
T1

ONI
T2

ONI
T3

ONI
T5

(a)

A B C D E F
16

18

20

22

24

26

28

30

F
ID

SN ONI

(b)
Figure 8. Comparison of SN and ONI on DCGAN. (a) The FID

with respect to training epochs. (b) Stability experiments on six

configurations, described in [43].

Besides, we also observe that larger T s have nearly equiv-

alent performance for simple datasets, e.g. Fashion-MNIST,

as shown in 7 (a). This suggests that amplifying the eigen-

basis corresponding to a small singular value cannot help

more, even though the network with a fully orthogonalized

weight matrix can well fit the dataset. We further show the

distributions of the singular values of the orthogonalized

weight matrix in the SM.

4.2. Stabilizing Training of GANs

How to stabilize GAN training is an open research prob-

lem [15, 52, 16]. One pioneering work is spectral normaliza-

tion (SN) [43], which can maintain the Lipschitz continuity

of a network by bounding the maximum eigenvalue of it’s

weight matrices as 1. This technique has been extensively

used in current GAN architectures [44, 70, 10, 35]. As stated

before, our method is not only capable of bounding the max-

imum eigenvalue as 1, but can also control the orthogonality

to amplify other eigenbasis with increased iterations, mean-

while orthogonal regularization is also a good technique for

training GANs [10]. Here, we conduct a series of experi-

ments for unsupervised image generation on CIFAR-10, and

compare our method against the widely used SN [43].

Experimental Setup We strictly follow the network archi-

tecture and training protocol reported in the SN paper [43].

We use both DCGAN [50] and ResNet [19, 16] architectures.

We provide implementation details in the SM. We replace

all the SN modules in the corresponding network with our

ONI. Our main metric for evaluating the quality of gener-

ated samples is the Fréchet Inception Distance (FID) [22]

(the lower the better). We also provide the corresponding

Inception Score (IS) [52] in the SM.

DCGAN We use the standard non-saturating function as

the adversarial loss [15, 35] in the DCGAN architecture, fol-

lowing [43]. For optimization, we use the Adam optimizer

[33] with the default hyper-parameters, as in [43]: learning

rate α = 0.0002, first momentum β1 = 0, second momen-

tum β2 = 0.9, and the number of discriminator updates

per generator update ndis = 5. We train the network over

200 epochs with a batch size of 64 (nearly 200k generator

updates) to determine whether it suffers from training in-

stability. Figure 8 (a) shows the FID of SN and ONI when

varying Newton’s iteration number T from 0 to 5. One in-

teresting observation is that the ONI with only the initial

spectral bounding described in Formula 7 (T = 0) can also

stabilize training, even though it has downgraded perfor-

0 50 100 150 200

Epochs

20

25

30

35

40

F
ID

SN

ONI

(a)

0 50 100 150 200

Epochs

20

25

30

35

40

F
ID

SN

ONI

(b)
Figure 9. Comparison of SN and ONI on ResNet GAN. We show

the FID with respect to training epochs when using (a) the non-

saturating loss and (b) the hinge loss.

mance compared to SN. When T = 1, ONI achieves better

performance than SN. This is because, based on what we ob-

served, ONI stretches the maximum eigenvalue to nearly 1,

while simultaneously amplifying other eigenvalues. Finally,

we find that ONI achieves the best performance when T = 2,

yielding an FID = 20.75, compared to SN’s FID = 23.31.

Further increasing T harms the training, possibly because

too strong an orthogonalization downgrades the capacity of

a network, as discussed in [43, 10].

We also conduct experiments to validate the stability of

our proposed ONI under different experimental configura-

tions: we use six configurations, following [43], by varying

α,β1,β2 and ndis (denoted by A-F, for more details please

see the SM). Figure 8 (b) shows the results of SN and ONI

(with T=2) under these six configurations. We observe that

our ONI is consistently better than SN.

ResNet GAN For experiments on the ResNet architecture,

we use the same setup as the DCGAN. Besides the standard

non-saturating loss [15], we also evaluate the recently pop-

ularized hinge loss [39, 43, 10]. Figure 9 shows the results.

We again observe that our ONI achieves better performance

than SN under the ResNet architecture, both when using the

non-saturating loss and hinge loss.

5. Conclusion

In this paper, we proposed an efficient and stable orthog-

onalization method by Newton’s iteration (ONI) to learn

layer-wise orthogonal weight matrices in DNNs. We pro-

vided insightful analysis for ONI and demonstrated its abil-

ity to control orthogonality, which is a desirable property in

training DNNs. ONI can be implemented as a linear layer

and used to learn an orthogonal weight matrix, by simply

substituting it for the standard linear module.

ONI can effectively bound the spectrum of a weight ma-

trix in (σmin, σmax) during the course of training. This

property makes ONI a potential tool for validating some

theoretical results relating to DNN’s generalization (e.g.,

the margin bounds shown in [6]) and resisting attacks from

adversarial examples [12]. Furthermore, the advantage of

ONI in stabilizing training w/o BN (BN usually disturbs the

theoretical analysis since it depends on the sampled mini-

batch input with stochasticity [29, 26]) makes it possible to

validate these theoretical arguments under real scenarios.

Acknowledgement We thank Anna Hennig and Ying Hu for

their help with proofreading.

6436

References

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization

Algorithms on Matrix Manifolds. Princeton University Press,

Princeton, NJ, 2008. 5

[2] Pierre-Antoine Absil and Jerome Malick. Projection-like re-

tractions on matrix manifolds. SIAM Journal on Optimization,

22(1):135–158, 2012. 2

[3] Jaweria Amjad, Zhaoyan Lyu, and Miguel RD Rodrigues.

Deep learning for inverse problems: Bounds and regularizers.

arXiv preprint arXiv:1901.11352, 2019. 1

[4] Martı́n Arjovsky, Amar Shah, and Yoshua Bengio. Unitary

evolution recurrent neural networks. In ICML, 2016. 2

[5] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we

gain more from orthogonality regularizations in training deep

cnns? In NeurIPS, 2018. 1, 2

[6] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky.

Spectrally-normalized margin bounds for neural networks.

In NeurIPS. 2017. 8

[7] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term

dependencies with gradient descent is difficult. Trans. Neur.

Netw., 5(2):157–166, Mar. 1994. 1

[8] Dario A. Bini, Nicholas J. Higham, and Beatrice Meini. Al-

gorithms for the matrix pth root. Numerical Algorithms,

39(4):349–378, Aug 2005. 1, 2, 3, 4

[9] Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q

Weinberger. Understanding batch normalization. In NeurIPS.

2018. 7

[10] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale GAN training for high fidelity natural image synthesis.

In ICLR, 2019. 1, 2, 8

[11] Andrew Brock, Theodore Lim, James M. Ritchie, and Nick

Weston. Neural photo editing with introspective adversarial

networks. In ICLR, 2017. 1

[12] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann

Dauphin, and Nicolas Usunier. Parseval networks: Improving

robustness to adversarial examples. In ICML, 2017. 1, 8

[13] Victor Dorobantu, Per Andre Stromhaug, and Jess Renteria.

Dizzyrnn: Reparameterizing recurrent neural networks for

norm-preserving backpropagation. CoRR, abs/1612.04035,

2016. 2

[14] Xavier Glorot and Yoshua Bengio. Understanding the dif-

ficulty of training deep feedforward neural networks. In

AISTATS, 2010. 1, 7

[15] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NeurIPS.

2014. 8

[16] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent

Dumoulin, and Aaron C Courville. Improved training of

wasserstein gans. In NeurIPS. 2017. 8

[17] Mehrtash Harandi and Basura Fernando. Generalized

backpropagation, etude de cas: Orthogonality. CoRR,

abs/1611.05927, 2016. 1, 2

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In ICCV, 2015. 1

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, 2016.

6, 7, 8

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In ECCV, 2016.

6

[21] Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal

recurrent neural networks with scaled Cayley transform. In

ICML, 2018. 2

[22] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-

hard Nessler, and Sepp Hochreiter. Gans trained by a two

time-scale update rule converge to a local nash equilibrium.

In NeurIPS. 2017. 8

[23] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely

connected convolutional networks. In CVPR, 2017. 6

[24] Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu,

Yongliang Wang, and Bo Li. Orthogonal weight normal-

ization: Solution to optimization over multiple dependent

stiefel manifolds in deep neural networks. In AAAI, 2018. 1,

2, 3, 4, 5, 6

[25] Lei Huang, Dawei Yang, Bo Lang, and Jia Deng. Decorrelated

batch normalization. In CVPR, 2018. 2

[26] Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Itera-

tive normalization: Beyond standardization towards efficient

whitening. In CVPR, 2019. 1, 2, 3, 8

[27] Stephanie Hyland and Gunnar Rätsch. Learning unitary oper-

ators with help from u(n). In AAAI, 2017. 2

[28] Sergey Ioffe. Batch renormalization: Towards reducing mini-

batch dependence in batch-normalized models. In NeurIPS,

2017. 6

[29] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015. 2, 5, 6, 7, 8

[30] Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu.

Training deep networks with structured layers by matrix back-

propagation. In ICCV, 2015. 1, 2, 3

[31] Kui Jia. Improving training of deep neural networks via

singular value bounding. In CVPR, 2017. 2

[32] Li Jing, Çaglar Gülçehre, John Peurifoy, Yichen Shen, Max

Tegmark, Marin Soljacic, and Yoshua Bengio. Gated or-

thogonal recurrent units: On learning to forget. CoRR,

abs/1706.02761, 2017. 2

[33] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In ICLR, 2015. 8

[34] Alex Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, 2009. 5

[35] Karol Kurach, Mario Lučić, Xiaohua Zhai, Marcin Michalski,

and Sylvain Gelly. A large-scale study on regularization and

normalization in GANs. In ICML, 2019. 8

[36] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-

Robert Müller. Effiicient backprop. In Neural Networks:

Tricks of the Trade, 1998. 1, 4

[37] José Lezama, Qiang Qiu, Pablo Musé, and Guillermo Sapiro.

OlÉ: Orthogonal low-rank embedding - a plug and play geo-

metric loss for deep learning. In CVPR, June 2018. 1

[38] Peihua Li, Jiangtao Xie, Qilong Wang, and Zilin Gao. To-

wards faster training of global covariance pooling networks

by iterative matrix square root normalization. In CVPR, 2018.

2

[39] Jae Hyun Lim and Jong Chul Ye. Geometric gan. CoRR,

abs/1705.02894, 2017. 8

6437

[40] Tsung-Yu Lin and Subhransu Maji. Improved bilinear pooling

with cnns. In BMVC, 2017. 1, 2, 3, 6

[41] Per-Olov Löwdin. On the non-orthogonality problem con-

nected with the use of atomic wave functions in the theory

of molecules and crystals. The Journal of Chemical Physics,

18(3):365–375, 1950. 1, 2, 3

[42] Dmytro Mishkin and Jiri Matas. All you need is a good init.

In ICLR, 2016. 1, 2

[43] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and

Yuichi Yoshida. Spectral normalization for generative adver-

sarial networks. In ICLR, 2018. 1, 2, 3, 8

[44] Takeru Miyato and Masanori Koyama. cgans with projection

discriminator. In ICLR, 2018. 8

[45] Vinod Nair and Geoffrey E. Hinton. Rectified linear units

improve restricted boltzmann machines. In ICML, 2010. 2, 5,

6

[46] Mete Ozay and Takayuki Okatani. Optimization on submani-

folds of convolution kernels in cnns. CoRR, abs/1610.07008,

2016. 1, 2

[47] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On

the difficulty of training recurrent neural networks. In ICML,

2013. 1, 2

[48] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in PyTorch. In NeurIPS Autodiff Workshop,

2017. 7

[49] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli.

Resurrecting the sigmoid in deep learning through dynamical

isometry: theory and practice. In NeurIPS. 2017. 1, 2

[50] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-

vised representation learning with deep convolutional genera-

tive adversarial networks. In ICLR, 2016. 8

[51] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li

Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision (IJCV), 115(3):211–

252, 2015. 2, 5

[52] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki

Cheung, Alec Radford, Xi Chen, and Xi Chen. Improved

techniques for training gans. In NeurIPS, 2016. 2, 8

[53] Tim Salimans and Diederik P. Kingma. Weight normalization:

A simple reparameterization to accelerate training of deep

neural networks. In NeurIPS, 2016. 3, 5, 6

[54] Andrew M. Saxe, James L. McClelland, and Surya Ganguli.

Exact solutions to the nonlinear dynamics of learning in deep

linear neural networks. CoRR, abs/1312.6120, 2013. 1, 2, 6

[55] Nicol N. Schraudolph. Accelerated gradient descent by factor-

centering decomposition. Technical report, 1998. 4

[56] Wenling Shang, Justin Chiu, and Kihyuk Sohn. Exploring

normalization in deep residual networks with concatenated

rectified linear units. In AAAI, 2017. 7

[57] Karen Simonyan and Andrew Zisserman. Very deep convolu-

tional networks for large-scale image recognition. In ICLR,

2015. 7

[58] Piotr A. Sokol and Il Memming Park. Information ge-

ometry of orthogonal initializations and training. CoRR,

abs/1810.03785, 2018. 1, 2

[59] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke.

Inception-v4, inception-resnet and the impact of residual con-

nections on learning. CoRR, abs/1602.07261, 2016. 6

[60] Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian

uncertainty estimation for batch normalized deep networks.

In ICML, 2018. 6

[61] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and

Chris Pal. On orthogonality and learning recurrent networks

with long term dependencies. In ICML, 2017. 1, 2

[62] Scott Wisdom, Thomas Powers, John Hershey, Jonathan

Le Roux, and Les Atlas. Full-capacity unitary recurrent neural

networks. In NeurIPS. 2016. 1, 2

[63] Yuxin Wu and Kaiming He. Group normalization. In ECCV,

2018. 6, 7

[64] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist:

a novel image dataset for benchmarking machine learning

algorithms. CoRR, abs/1708.07747, 2017. 5

[65] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel

S.Schoenholz, and Jeffrey Pennington. Dynamical isometry

and a mean field theory of cnns: How to train 10,000-layer

vanilla convolutional neural networks. In ICML, 2018. 1, 2

[66] Di Xie, Jiang Xiong, and Shiliang Pu. All you need is beyond

a good init: Exploring better solution for training extremely

deep convolutional neural networks with orthonormality and

modulation. In CVPR, 2017. 1, 6

[67] Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-

Dickstein, and Samuel S. Schoenholz. A mean field theory of

batch normalization. In ICLR, 2019. 1, 2

[68] Sergey Zagoruyko and Nikos Komodakis. Wide residual

networks. In BMVC, 2016. 6

[69] Hongyi Zhang, Yann N. Dauphin, and Tengyu Ma. Fixup

initialization: Residual learning without normalization. In

ICLR, 2019. 6, 7

[70] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus

Odena. Self-attention generative adversarial networks. In

ICML, 2019. 8

[71] Liheng Zhang, Marzieh Edraki, and Guo-Jun Qi. Cappronet:

Deep feature learning via orthogonal projections onto capsule

subspaces. In NeurIPS. 2018. 1

[72] Jianping Zhou, Minh N. Do, and Jelena Kovacevic. Spe-

cial paraunitary matrices, cayley transform, and multidimen-

sional orthogonal filter banks. IEEE Trans. Image Processing,

15(2):511–519, 2006. 2

6438

