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Abstract

Although significant progress has been made in pedes-

trian detection recently, pedestrian detection in crowded

scenes is still challenging. The heavy occlusion between

pedestrians imposes great challenges to the standard Non-

Maximum Suppression (NMS). A relative low threshold of

intersection over union (IoU) leads to missing highly over-

lapped pedestrians, while a higher one brings in plenty of

false positives. To avoid such a dilemma, this paper pro-

poses a novel Representative Region NMS (R2NMS) ap-

proach leveraging the less occluded visible parts, effectively

removing the redundant boxes without bringing in many

false positives. To acquire the visible parts, a novel Paired-

Box Model (PBM) is proposed to simultaneously predict

the full and visible boxes of a pedestrian. The full and

visible boxes constitute a pair serving as the sample unit

of the model, thus guaranteeing a strong correspondence

between the two boxes throughout the detection pipeline.

Moreover, convenient feature integration of the two boxes is

allowed for the better performance on both full and visible

pedestrian detection tasks. Experiments on the challenging

CrowdHuman [20] and CityPersons [24] benchmarks suffi-

ciently validate the effectiveness of the proposed approach

on pedestrian detection in the crowded situation.

1. Introduction

Pedestrian detection is a critical component of various

real-world applications such as self-driving cars, and intelli-

gent video surveillance. In recent years, the performance of

pedestrian detectors has been rapidly improved with the rise

of deep convolutional neural networks (CNNs) [21, 7, 8].

However, pedestrian detection in the occluded situation re-

mains challenging. Occlusion can be usually categorized

into inter-class occlusion and intra-class occlusion. In inter-

class occlusion, part of the human body is shielded by back-

ground objects such as pillar, car, trash box, and others. The

∗Both authors contributed equally to this work.

Figure 1. Illustration of R2NMS. The image on the left shows two

detected results before NMS. Red BBoxes are full body predic-

tions and green BBoxes are visible body predictions. Two small

images on the right show the final results which is processed by

original NMS and R2NMS. The red solid BBox represents the pre-

served BBoxes while red dotted BBox indicates the reduced true

positive BBox. Arrows represent the IoU calculation. The IoU

of their full body prediction is 0.63 while the IoU of their visible

body is only 0.18. Thus, original NMS will reduce the red dotted

BBox but R2NMS is able to keep it.

feature of background objects confuses the model, leading

to a high missing rate in this situation. A common solution

to alleviate the inter-class occlusion is modeling based on

instance parts [14, 27, 15]. Visible parts can provide more

discriminative and confident cues to guide the full-body de-

tector. In intra-class occlusion, pedestrians have large over-

laps with each other, so features of different instances will

make detectors difficult to discriminate instance boundaries.

As a result, detectors may give a lot of positives in over-

lapped area mistakenly. To solve this problem, Repulsion

Loss [23] and AggLoss [25] propose additional penalties to

the BBoxes which appear in the middle of the two persons.

The proposals are forced to locate firmly and compactly to

the ground-truth objects.

However, even though the detectors succeed in iden-

tifying different human instances in a crowd, the highly

overlapped results may also be suppressed by the post-

processing of non-maximum suppression (NMS). This

makes the current pedestrian detectors trapped in a

dilemma: a lower threshold of intersection over union (IoU)

resulting in the miss of highly overlapped pedestrians while
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a higher IoU threshold naturally brings in more false pos-

itives. To solve this problem, several modified versions of

NMS have been proposed. Instead of directly discarding

the highly overlapped BBoxes, soft-NMS [1] lowers detec-

tion scores of less confident BBoxes according to their over-

laps with the most confident one. However, it still intro-

duces lots of false positives of highly overlapped BBoxes.

Adaptive NMS [12] proposed a dynamic thresholding ver-

sion of NMS. It predicts a density map, and sets adaptive

IoU thresholds in NMS for different BBoxes according to

the predicted density. However, density estimation itself re-

mains a difficult task, and the exact matching from density

to the optimal IoU threshold is also hard to decide. More-

over, the inaccurate BBox prediction often leads to the in-

consistency between the ground-truth density and the IoU

of the predicted BBoxes, as shown in Fig. 2. This makes

AdaptiveNMS still a sub-optimal solution.

In this paper, we propose a novel NMS algorithm to over-

come the issues of existing NMS approaches called NMS

by representative region (R2NMS). R2NMS leverages the

visible parts of the pedestrians in NMS, which effectively

averts the troubles brought by the difficult NMS on highly

overlapped full bodies. Since the visible parts of pedestrians

usually suffer much less from occlusion, a relative low IoU

threshold sufficiently removes the redundant BBoxes locat-

ing the same pedestrian, and meanwhile avoids the large

number of false positives. An illustration of R2NMS is

showing in Fig. 1.

To obtain the visible part of a pedestrian, we propose

a novel Paired-Box Model (PBM) based on the standard

Faster R-CNN. PBM simultaneously predicts the full box

and the visible box of a pedestrian in both RPN and the

R-CNN module (i.e., from RoI sampling to the final post-

classification and BBox regression layers). Specifically, a

pair constituted by a full and a visible boxes is defined as

the sample unit of both RPN and the R-CNN module. Such

a pairing strategy guarantees a strong correspondence be-

tween the full and visible boxes throughout the detection

pipeline. Moreover, the pairing solution allows the effective

feature integration of the two boxes which benefits both the

full and visible pedestrian detection tasks.

Experiments on the extremely crowded benchmark

CrowdHuman [20] and the CityPersons [24] show that the

proposed approach can achieve the state-of-the-arts results,

strongly validating the superiority of the method.

To summarize, the contributions of this work are three-

fold: (1) a novel NMS method – R2NMS, to overcome

the weakness of original NMS; (2) a Paired-Box Model

(PBM) which simultaneously predicts both the full and vis-

ible boxes of a single pedestrian, and performs convenient

feature integration of the two boxes; (3) the state-of-the-art

results on the challenging CrowdHuman and CityPersons

benchmarks.

Figure 2. Illustration of the weakness of AdaptiveNMS [12].

Green BBoxes are the full body annotations. Red dotted BBoxes

are detected BBoxes which are not exactly match to ground truths.

Overlap between the detected BBoxes is different from the overlap

between ground truth BBoxes. If applying AdaptiveNMS in this

situation. One detected BBox will be reduced.

2. Related Works

Generic Object Detection. With the rapid development

of convolutional neural networks (CNNs) [21, 7, 8], great

progress has been made in the object detection field. CNN

based object detectors are usually categorized into one-

stage and two-stage detectors. One-stage approaches [13,

17, 10, 18] aim to accelerate the inference process of detec-

tors, to meet the requirement of time efficiency in various

real world applications. In contrast to one-stage approaches,

two stage detectors [4, 19, 5] aim to pursue the cutting edge

performance by adding a post classification and regression

module to refine the detection results. To this end, Faster R-

CNN [19] together with its variants e.g. FPN [9] and Mask

R-CNN [6] builds a powerful baseline for the task of generic

object detection.

Occlusion Handling for Pedestrian Detection. Occlusion

leads to two issues in pedestrian detection: mis-classifying

occluded pedestrian and mis-placing detected results in a

crowd. A common solution to the former problem is the

part-based approaches [27, 25, 22] which elaborate series

of body-part detectors to handle the specific visual pattern

of occluded instances. Except aforementioned methods, a

few of recent works focus on utilizing annotations of visi-

ble body as extra supervisions to improve the performance

of pedestrian detection. Zhou et al. [28] is the first one

who regresses full and visible body of a pedestrian at the

same time. Zhang et al. [26] utilizes the annotations of vis-

ible parts as external guidance for better recognition per-

formance on occluded instances. [16] incorporates attention

mechanism into pedestrian detection to force the detectors
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Figure 3. Structure of our Paried-Box Model. Gray arrow represents the information flow. Pair RPN generates a pair of proposals from

the same anchor. After that, pair proposal feature extractor aggregates the pair of proposal features and sends it to P-RCNN. P-RCNN

predicts pairs of BBoxes. Finally, R2NMS serves as our post-processing method to filter out false positives. Two paired BBoxes examples

are shown in brown dotted box.

to focus more on visible regions of a pedestrian. Pedes-

trian detection in crowded scenes also raises a lot of atten-

tion. [23] and [25] both impose additional penalty terms on

the BBoxes that appear in the middle of two persons. Adap-

tive NMS [12] predicts a density map to perform a modified

version of NMS with dynamic thresholds. Different from

all the existing works, our method utilizes the visible re-

gion information to assist the NMS, and forces the model to

learn full and visible boxes together throughout the pipeline

for the strong correspondence between the two boxes.

3. Method

In this section, we first analyze the weakness of the stan-

dard NMS and AdaptiveNMS [12] when handling crowd

situation. Next, we introduce the proposed R2NMS. Finally,

we describe the Paired-Box Model (PBM) in detail.

3.1. Analysis on original NMS and Adaptive NMS

In object detection, multiple object proposals locating

the same object may be highly scored by the model. In

this case, NMS is necessary to filter out the less confident

ones according to the predicted scores. However, in the

crowded situation, the ground-truth pedestrians are highly

overlapped. Naturally, the detection boxes locating differ-

ent pedestrians can also have high overlaps with each other.

Therefore, when using a relative low IoU threshold as in the

MS COCO benchmark [11] during NMS, e.g., 0.5, many

true positives of different instances may be suppressed. This

significantly reduces the recall of all the instances, thus

hurting the final detection performance. Take the CrowdHu-

man dataset as an example, for each of the 99,481 ground-

truth instances in the validation set, we assume the detec-

tor can produce an exact BBox (i.e., the BBox is scored

1.0 and the IoU between the BBox and the ground-truth in-

stance is also 1.0). However, after performing the standard

NMS with IoU threshold 0.5, only 90,232 exact BBoxes

are remained.1 Nearly 10% of the ground-truth instances

are missed in detection. This indicates that even a perfect

pedestrian detector fails to detect all the ground-truth in-

stances, after the NMS using a relative low IoU threshold.

On the contrary, setting a higher IoU threshold in NMS pre-

serves more true positives, while significantly increase the

false positives. Similarly, in the validation set of Crowd-

Human, assuming all the ground-truth instances have ex-

act predicted BBoxes, the missing rate will be reduced to

1% when setting the IoU threshold of NMS as 0.7. How-

ever, the higher IoU threshold inevitably brings in more

false positives in practice. For example, in the validation

set of CrowdHuman, a well-trained Faster R-CNN based on

ResNet-101 produces about 15,000 detection boxes whose

score exceeds 0.5, after the NMS with the IoU threshold 0.7.

Notice that the ground-truth instance number is 99,481, thus

about 50,000 predicted boxes are redundant or false posi-

tives. Therefore, the dilemma of the standard NMS in the

crowded situation is difficult to resolve.

To overcome the shortcoming of the standard NMS,

AdaptiveNMS [12] is proposed. AdaptiveNMS [12] is a dy-

namic thresholding version of NMS. It incorporates a sub-

1All the BBoxes are in a random order as their scores are all 1.0.

Slightly different results are possible due to the random order in NMS.
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Figure 4. Illustration of P-RCNN. Red BBoxes represent the full

body annotations. Green BBoxes stand for the visible annotations.

Orange BBoxes are anchors. (a) P-RCNN regresses a pair of pro-

posal from the same anchor. (b) The orange anchor is assigned to

the man because it aligns well with the man’s full and visible body.

(c) Orange dotted anchor has large IoU with full body annotation,

however, it is bad for visible body.

network to predict the density for each location, and sets

adaptive IoU thresholds in NMS for different BBoxes ac-

cording to the predicted density. However, density estima-

tion itself remains a difficult task. Besides, the matching

from the density to the optimal IoU threshold is still hand-

crafted in AdaptiveNMS, and thus the exact matching is dif-

ficult to acquire. Moreover, the inaccurate BBox prediction

often leads to the inconsistency between the ground-truth

density and the IoU of the predicted BBoxes. The phe-

nomenon is illustrated in Fig. 2. All these make the Adap-

tiveNMS still a sub-optimal solution.

3.2. NMS by Representative Region

To overcome the above issues of the standard NMS and

AdaptiveNMS [12] , we propose a novel NMS by rep-

resentative region (R2NMS). The key difference between

R2NMS and the standard NMS lies in the IoU calculation.

Specifically, instead of directly calculating the IoU of two

full-body boxes as their “overlap degree”, the IoU between

the visible regions of the two boxes are used to determine

whether the two full-body boxes are overlapped. Such a

visible region based overlap determination is based on the

following observations. BBoxes locating different pedes-

trians usually have low IoU between their visible regions,

even if the IoU between the two full boxes is large. In con-

trast, both the full and visible regions would have large IoUs

when two BBoxes locate a same pedestrian. Therefore, the

IoU between the visible regions of two boxes is a better indi-

cator showing whether the two full-body boxes to belong to

a same pedestrian. As a result, based on the visible regions,

a relative low IoU threshold sufficiently removes the redun-

dant BBoxes locating the same pedestrian, and meanwhile

avoids the large number of false positives. The detailed al-

gorithm of R2NMS is described in Algorithm 1.

3.3. Paired­BBox Faster R­CNN

To obtain the visible part of a pedestrian, we propose a

novel Paired-Box Model (PBM) which simultaneously pre-

Algorithm 1 R2NMS

Input:

Score : S = {s1, s2, ..., sn}
Full body BBoxes : Bf = {bf1 , bf2 , ..., bfn}
Visible body BBoxes : Bv = {bv1, bv2, ..., bvn}
NMS threshold: Ω

Output:

Pairs of result : R

1: R← {}
2: Removed BBoxes index list : I ← {}
3: According to S, rank Bf and Bv in descending order.

4: for bvi ∈ Bv do

5: if i ∈ I or i = n then

6: pass

7: else

8: j ← i+ 1
9: for bvj ∈ Bv do

10: overlap← IoU(bvi , b
v
j )

11: if overlap > Ω then

12: Add j to I

13: for (bfi , b
v
i ) ∈ (Bf , Bv) do

14: if i /∈ I then

15: Add (bfi , b
v
i ) to R

16: return R

dicts the full and visible boxes of a pedestrian. To this

end, the PBM is based on a standard Faster R-CNN with

the following three modifications, i.e., Paired Region Pro-

posal Network (P-RPN), Paired Proposal Feature Extrac-

tor (PPFE) and Pair R-CNN (P-RCNN). Specifically, the P-

RPN first generates a set of full/visible proposal pairs, each

of which corresponds to the full and visible regions of a

pedestrian. PPFE then extracts the feature of each proposal

pair, and fuses the features of the full and visible boxes to

provide an integrated representation for each pair. Finally,

the integrated representations are fed into P-RCNN to per-

form pair-wise classification and further refinement for the

predicted full and visible BBoxes. In this manner, BBoxes

of both full and visible body with strong correspondence

can be obtained, facilitating the use of R2NMS.

Paired Region Proposal Network. The duty of Paired Re-

gion Proposal Network (P-RPN) is generating paired full-

body and visible-body proposals. Since the full and visi-

ble regions of a pedestrian usually have high overlaps, it

is feasible to regress a pair of full-body and visible-body

proposals from a same anchor. Moreover, regressing the

two proposals from a same anchor provides inherent cor-

respondence between the predicted full-body and visible-

body proposals.

The annotated full-body box F and the corresponding

visible-body box V constitute a pair Q = (F,V), serving
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Figure 5. Illustration of our proposed PPFE module.

as the ground-truth unit of the model. We refer to the pro-

posal matching method in [28] to assign ground-truth label

to the anchors during training P-RPN. More specifically, the

ground-truth assignment strategy in Faster R-CNN [19] is

modified by adding one more restriction. For a certain an-

chor, we consider both its IoU w.r.t. the full-body ground-

truth boxes and its IoF w.r.t. the visible ground-truth boxes.

Formally, an anchor A is viewed as positive matched to the

ground-truth pair Q = (F,V), if the following requirements

are satisfied.

IoU(A,F) ≥ α1 and IoF(A,V) ≥ β1

IoU(A,F) =
Area(A ∩ F)

Area(A ∪ F)

IoF(A,V) =
Area(A ∩V)

Area(V)

Here α1 and β1 are positive thresholds for the full body and

visible body, respectively. According to our experiments,

PBM performs the best when α1 = 0.7 and β1 = 0.7.

The detailed architecture of P-RPN follows the RPN in

Faster R-CNN [19]. The only difference lies in the output

layer. Apart from the locations of the paired proposals, P-

RPN also predicts a score for each pair showing whether

confidence of the pair matching to a pedestrian. Therefore,

for each dense anchor, P-RPN produces a 10-d result (Rf ,

Rv, S). Here Rf and Rv are 4-d BBox regression vectors

(fx,fy ,fw,fh) and (vx,vy ,vw,vh), towards the full-body and

visible-body ground-truths, respectively. S is a 2-d confi-

dence vector (S+, S
−

) after softmax normalization. The

loss functions used in training are the same as that in the

standard RPN.

Paired Proposal Feature Extractor. The pairing strategy

in R-RPN allows an inherent correspondence between the

full and visible proposals. We thus propose a Paired Pro-

posal Feature Extractor (PPFE) to effectively integrate in-

formation from both proposals, facilitating the detection of

both full and visible pedestrian detection tasks.

Figure 5 shows two proposed ways of feature integration.

A straightforward one is to directly concatenate the feature

vectors of the full and visible proposals Ff and Fv after RoI

Align. Because only fc layers are used in P-RCNN, spatial

alignment of the features of the two proposals are not neces-

sary. Experimental results show that such a simple feature

fusion method increases the performance a lot.

The second way of feature integration is based on the

attention mechanism which highlights the more informative

visible regions. Specifically, for each pair of proposals, we

generate a visible body attention mask showing whether to

be inside the visible proposal for each pixel in the full-body

proposal. If a pixel is also inside the visible proposal, we

assign the value 1 to this pixel in the attention mask. Pixels

outside the visible proposal are all set as 0 in the attention

mask. The attention mask is then resized to the same size

as the proposal feature after RoI Align, i.e., 7×7. We then

multiply the full-body proposal feature Ff with the mask in

an element-wise manner, to get the visible mask attention

feature Fm. Finally, We concatenate Fv and Fm to obtain

the final integrated feature for the pair.

Paired R-CNN. The integrated feature produced by PPFE

serves as the input of the Paired R-CNN (P-RCNN). P-

RCNN is used to perform both full and visible pedestrian

detection, based on the proposal pairs. The detailed archi-

tecture of P-RCNN is based on the R-CNN module in Faster

R-CNN [19], with the following modifications. After re-

ceiving the pair feature, P-RCNN contains two bifurcated

branches following two shared fc layers for the full and vis-

ible BBoxes prediction, respectively. Each of the branches

has the exact same architecture and output as that in the

standard Faster R-CNN.

Similar to P-RPN, the essential problem in P-RCNN is

how to assign the proposals to the ground-truths. We use

a strategy which is quite similar to the anchor assignment

method in P-RPN. To be more specific, for a pair of annota-

tion Q = (F,V), a pair of proposal X = (Pf ,Pv) is positive

if it satisfies:

IoU(Pf ,F) ≥ α2 and IoU(Pv,V) ≥ β2

According to our experimental results, the best number for

α2, β2 is 0.5 and 0.5. The loss functions used in training are

also the same as that in the standard Faster R-CNN.

As discussed above, the major modifications of PBM

from Faster R-CNN introduce little extra computation,

while brings a huge amount of performance gains. Experi-

mental results in the next section verify the effectiveness of

our model.

4. Experiments

To evaluate our proposed methods, we conduct several

experiments on two crowd pedestrian datasets: CrowdHu-

man [20] and CityPersons [24].
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Table 1. Main results. * stands for our re-implemented results. MR and AP are abbreviations of the Log-Average Missing Rate and the

Average Precision, respectively. MR, AP, Recall stand for the results for full body. MR-V stands for the MR for visible body. For MR,

lower is better. For AP and Recall, higher is better. ∆ MR-V and ∆ MR-V indicate the absolute gain on visible and full body comparing

to our re-implemented baseline. The best results are written in bold.

Method P-RPN P-RCNN PPFE R2NMS MR-V MR AP Recall ∆ MR-V ∆MR

Baseline [20] - - - - 55.94 50.42 84.95 90.24 - -

Baseline* - - - - 55.57 46.28 84.91 88.25 - -

NPM
√ √

- - 54.18 45.43 85.59 88.92 +1.39 +0.85

PBM
√ √

mask - 52.70 44.20 85.60 88.61 +2.87 +2.08

PBM
√ √

mask
√

52.70 43.35 89.29 93.33 +2.87 +2.93

PBM
√ √

concat - 52.19 44.32 85.50 88.28 +3.38 +1.96

PBM
√ √

concat
√

52.19 43.57 89.28 93.10 +3.38 +2.71

Table 2. Influence of varying β1 and β2. NPM is the abbreviation

of Naive Pair Model. The value of MR-V+MR reflects the model’s

performance on two of the annotation categories.

Method β1 β2 MR-V MR MR-V+MR

Baseline - - 55.57 46.28 101.85

NPM 0.8 0.5 54.81 46.34 101.15

NPM 0.6 0.5 54.65 45.42 100.07

NPM 0.7 0.5 54.18 45.30 99.48

NPM 0.7 0.6 54.35 47.23 101.58

NPM 0.7 0.4 55.80 44.53 100.33

4.1. Datasets and Evaluation Metric

CrowdHuman Dataset. Recently, CrowdHuman [20]

dataset, a human detection benchmark, has been released

to better evaluate pedestrian detectors in crowded scenar-

ios. There are 15000, 4370 and 5000 images in training set,

validation set, and test set respectively. The average of the

number of persons in an image is 22.6. CrowdHuman [20]

provides three categories of bounding boxes annotations for

each human instance: head bounding-box, human visible-

region bounding-box and human full-body bounding-box.

All of our experiments are conducted under the settings of

full body and visible body. The models are trained on the

training set and evaluated on validation set.

CityPersons Dataset. The CityPersons [24] dataset is a

subset of Cityscapes [2] which only consists of person an-

notations. There are 2975 images for training, 500 and 1575

images for validation and testing. The average of the num-

ber of pedestrians in an image is 7. The visible-region and

full-body annotations are provided. We evaluate our pro-

posed methods under the full-body setting. Following to

the evaluation protocol in CityPersons [24], objects whose

height are less than 50 pixels are ignored. The validation set

is further divided into several subsets according to visibility:

(1) Reasonable (R): Visibility ∈ [0.65,∞)
(2) Heavy Occlusion (HO): Visibility ∈ [0.2, 0.65)
We show our results across these two subsets.

Evaluation Metric. For evaluation, we follow the standard

Caltech [3] evaluation metric – MR, which stands for the

Log-Average Missing Rate over false positives per image

(FPPI) ranging in [10−2, 100]. To better evaluate our meth-

ods, Average Precision (AP) and Recall are also provided.

Table 3. Impact of PPFE.

Method PPFE MR-V MR AP Recall

NPM - 54.18 45.43 85.59 88.92

PBM concat 52.19 44.32 85.50 88.28

PBM mask 52.70 44.20 85.50 88.61

4.2. Implementation Details

For CrowdHuman [20] dataset, we adopt Feature Pyra-

mid Network (FPN) [9] with ResNet-50 [7] as our base-

line. To extract more precise features, we adopt RoI Align

[6] instead of RoI Pooling [19] for feature extraction. The

anchor aspect ratios for full body and visible body are set

to [0.5,1,2]. Because images in CrowdHuman dataset have

various shapes, we resize them so that the short edge is 800

pixels while the long edge is smaller than 1400 pixels. We

train our model on 8 GPUs with totally 16 images per mini-

batch. We use SGD with momentum of 0.9 as our optimizer

and set the initial learning rate as 0.02. We train 20 epochs

in total and decrease the learning rate by 0.1 at 16th and

19th epochs.

For CityPersons dataset, we follow the settings in

adapted Faster R-CNN framework [24]. Specifically, the

backbone of our detector is VGG-16 [21]. To detect small

objects, we remove the fourth max-pooling layer in VGG-

16. The aspect ratio for anchor is set to 2.44. The anchor

sizes are the same as in [24]. We also adopt Adam as our

optimizer. We train our model 12 epochs in total on 8 GPUs

with a total of 16 images per mini-batch. The initial learning

rate is set to 0.0008. We decrease the learning rate by 0.1 at

the 8th and 11th epochs. We do not upsample the input im-

ages and only use the reasonable subset of pedestrians for

training.

4.3. Detection Results on CrowdHuman

Main results. To thoroughly evaluate the performance of

our proposed methods, we conduct plenty of experiments

on CrowdHuman [20] dataset and evaluate the performance

under three evaluation metrics. MR is chosen as the main

metric. Table 1 shows the performance of baseline and our

proposed methods on CrowdHuman [20] validation sub-

sets. For fair comparison, all the models listed in Table

1 share the same settings on hyper-parameters. As can
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Table 4. Ablation study of R2NMS. R2 is the abbreviation of

R2NMS. PBM here utilizes the concat version of PPFE.
Method β1 β2 MR-V MR AP Recall

NPM 0.7 0.4 55.80 44.53 85.62 88.74

NPM+R2 0.7 0.4 - 45.91 88.21 93.27

NPM 0.7 0.5 54.18 45.30 85.59 88.69

NPM+R2 0.7 0.5 - 45.87 88.39 93.76

PBM 0.7 0.5 51.92 44.79 85.62 88.12

PBM+R2 0.7 0.5 - 43.57 89.28 93.10

be seen in Table 1, our re-implemented FPN [9] baseline

achieves 46.28% MR on full body detection and 55.57%

MR on visible body detection, which outperform the base-

line in CrowdHuman [20] by 4.14% and 0.37%, respec-

tively. Therefore, our baseline is strong enough to vali-

date the effectiveness of our proposed methods. Based on

our strong baseline, our methods can further bring the no-

table 2.71%, 4.37% and 4.85% improvements on MR, AP

and Recall, respectively, which significantly demonstrate

the ability of our methods. To analyze the contribution

of our proposed modules individually, we progressively re-

place the components in the baseline model with our mod-

ules. The relevant ablation studies and analysis are illus-

trated in the following paragraphs.

Influence of different hyper-parameter settings in pair-

based sample unit. To evaluate the efficacy of our pair-

based sample unit in the whole pipeline, we build a naive

version of paired model which simply replace the RPN and

R-CNN in Faster R-CNN by P-RPN and P-RCNN. In NPM,

full and visible proposals from RPN are fed into two sepa-

rate R-CNN modules. These two separate R-CNN modules

are responsible for the full and visible body detection, re-

spectively. Each R-CNN module has the same architecture

as the standard one in Faster R-CNN. We conduct a group

of experiments on NPM to find out the most reasonable

hyper-parameter settings. To make the NPM have consis-

tent hyper-parameter setting with the baseline, α1 and α2

are fixed, i.e., 0.7 and 0.5, separately. The influence of the

varying β1 and β2 is comprehensively studied and the re-

sults are shown in Table 2. We can see that NPM works

reasonably well with β1 = 0.7 and β2 = 0.5. When α1

and α2 are fixed, β1 and β2 control the balance between

visible body and full body in our pair-based sample unit for

training. When β1 and β2 are small, more low quality vis-

ible proposals are counted, which hurts the performance of

NPM on visible detection results. A large β1 and β2 ex-

clude poorly aligned visible proposals, meanwhile, such a

setting rejects some well aligned full body positive training

examples, which leads to a poor full body detection result.

As can be seen in the third row of Table 2, β1 = 0.7 and

β2 = 0.5 achieve a good trade-off between the two anno-

tation categories. Therefore, we use α1 = 0.7, α2 = 0.5,

β1 = 0.7 and β2 = 0.5 in the whole experiments unless

otherwise mentioned.

Table 5. State of the art comparison on CrowdHuman. * stands for

our re-implemented results. The PBM here is equipped with mask

version of PPFE.
Method MR AP Recall

Baseline (CrowdHuman) 50.42 84.95 90.24

Baseline* 46.28 84.91 88.25

AdaptiveNMS 49.73 84.71 91.27

Repulsion Loss* 45.69 85.64 88.42

PBM 43.35 89.29 93.33

Impact of PPFE. When equipping NPM with the PPFE

module, it becomes the PBM. We compare PBM with NPM

in Table 3. From Table 3, we can tell that both proposed

feature integration methods in Section 3 bring remarkable

improvements on MR-V and MR. The simpler one – di-

rect concatenating the features of full and visible propos-

als improves MR-V and MR by 1.99% and 1.11%, respec-

tively, while PPFE with attention mechanism shows even

better performance. Such a large gap between PBM and

NPM totally proves that our proposed PPFE module could

extract and integrate features from pair-based sample unit

efficiently and successfully. Moreover, from Table 4, we

can learn that PPFE makes R2NMS to perform better by

improving the model’s performance on visible body, illus-

trating the necessity of PPFE module.

The relation between MR-V and R2NMS. To demonstrate

the effectiveness of R2NMS, we replace the original NMS

with the proposed R2NMS. Table 4 shows three groups of

experimental results. We can conclude that R2NMS can

boost performance on AP and Recall under all settings,

while R2NMS makes MR worse when NPM is applied. To

understand why R2NMS weakens the MR of the NPM, we

would like to introduce the relation between MR-V and

R2NMS. It is natural to believe that the quality of visi-

ble body predictions is crucial because R2NMS uses the

IoU between the visible regions of two BBoxes to deter-

mine whether two full-body BBoxes are overlapped. How-

ever, we argue that compared to absolute localization qual-

ity of predicted visible BBoxes, relative localization qual-

ity which captures overlap degree between two human in-

stances is more important. A straightforward example can

verify our point – suppose all visible body predictions are

the exactly same as full body predictions, in this case, MR-

V will be poor. However, using such visible body predic-

tions during R2NMS leads to the exactly same results for

full body detection as original NMS, which is not as poor

as MR-V. This example explicitly shows that a poor MR-V

does not necessarily lead to poor MR for full body predic-

tions during R2NMS.

To be more concrete, although a lower MR-V can possi-

bly better model the overlaps between each instance pair,

which will further benefit full body detection, as stated

above, the absolute value of MR-V is not the decisive factor

to the performance of full body detection. Our experimen-

tal results in Table 4 also demonstrate this point. With the
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Table 6. Comparison between our PBM and baseline on the

CityPersons [24]. Log-Average Missing Rates (MR) on validation

subsets is reported. R refers to reasonable set while HO refers to

heavy occlusion set.

Method PPFE R2NMS R HO

Baseline - - 13.8 59.0

PBM concat - 12.5 57.3

PBM concat
√

12.1 57.0

PBM mask - 12.3 54.9

PBM mask
√

11.1 53.3

decrease of MR-V, the performance of R2NMS gets better

and a MR-V under 54% is good enough to bring positive

effects on full body detection via R2NMS.

Further Analysis on R2NMS. The experimental results in

Table 1 show that R2NMS can significantly improve AP and

Recall, while it only improves MR by less than 1 percent.

Such a phenomenon is caused by the difference between

MR and AP, which we would like to deeply discuss.

The main difference between MR and AP lies in the

range of interested predicted scores. MR only cares about

the predicted BBoxes whose scores are higher than the high-

est scored false positive. In contrast, AP takes all the detec-

tion results scored between 0 to 1 into consideration. There-

fore, only a small fraction of predicted results will affect

MR. As discussed in Section 1 and Section 3 , in crowded

situation, detectors tend to generate a lot of highly scored

false positives which are difficult to remove via NMS. Thus,

we claim that a large number of highly scored false positives

in the results make FPPI reach one quickly. To demonstrate

this, we calculate the average score of the highest scored

false positive across all testing images. It turns out that

such value is extremely high, and sometimes is even beyond

0.9. Such a phenomenon indicates that only BBoxes whose

scores are higher than 0.9 can affect MR. Therefore, MR

reflects the performance of the highly scored fraction of the

detection results, while AP measures the performance of all

detected BBoxes. This difference leads to the huge discrep-

ancy between the gain on MR and AP from R2NMS.

In conclusion, although R2NMS does not bring large

improvements on MR, it greatly boosts AP. The huge im-

provement on AP strongly validates that R2NMS can not

only preserve more true positives comparing to the original

NMS, but also introduce less false positives.

4.4. State­of­the­art Comparison on CrowdHuman

We compare our method with AdaptiveNMS [12] and

Repulsion Loss [23] on the CrowdHuman validation set in

Table 5. It clearly shows that PBM with R2NMS outper-

forms these two published methods. Our method signifi-

cantly reduces MR from 49.73% to 43.35% and boosts AP

from 84.71% to 89.29%. Such a large gap demonstrates the

superiority of our PBM and R2NMS.

Table 7. State of the art comparison on CityPersons. Adap-

tiveNMS+ refers to AdaptiveNMS with AggLoss. * represents

our implementation.

Method Backbone R HO

Baseline* VGG-16 13.8 59.0

Baseline (MGAN)[16] VGG-16 13.8 57.0

Adapted FasterRCNN[24] VGG-16 15.8 -

ATT-part[26] VGG-16 16.0 56.7

Repulsion Loss[23] ResNet-50 13.2 56.9

OR-CNN[25] VGG-16 12.8 55.7

AdaptiveNMS[12] VGG-16 12.9 56.4

AdaptiveNMS+[12] VGG-16 11.9 55.2

MGAN[16] VGG-16 11.5 51.7

Ours VGG-16 11.1 53.3

4.5. Detection Results on CityPersons

To prove the generalization ability of our methods,

we also conduct several experiments on CityPersons [24].

Comparisons results are shown in Table 6. To clearly

demonstrate the effectiveness of our proposed new compo-

nents, we also show the performance of out method with

different settings in different rows. No matter under what

kind of setting, PBM with R2NMS performs better than

baseline. The best results are boldfaced and shown in the

final row. Compared to the baseline, our detector signif-

icantly reduces the MR from 13.8% to 11.1% on the rea-

sonable set. On the heavy occlusion set, it outperforms the

baseline by 5.7%. Such a large gain provides a convincing

proof to the effectiveness of our detector.

We compare our method with the recent state-of-the-

art methods including Adapted FasterRCNN [24], ATT-part

[26], Repulsion Loss [23], OR-CNN [25], AdaptiveNMS

[12] and MGAN [16] on the CityPersons validation set.

We list the performance of previous works on reasonable

subsets with the original input size in Table 7. We eval-

uate our methods under the same settings. The proposed

PBM with R2NMS outperforms all published methods on

reasonable validation subsets. Our method reduces the MR

of state-of-the-art result from 11.5% to 11.1%. Notice that

our method performs slightly worse than MGAN due to the

weaker baseline result of our model.

5. Conclusion

In this paper, we propose R2NMS to effectively remove

the redundant boxes without brings in many false positives

in crowded situation. The R2NMS uses the IoU between the

visible regions of the two boxes to determine whether the

two full-body boxes are overlapped. To support this idea,

we propose a novel Paired-Box Model (PBM) to simultane-

ously predicts the full box and the visible box of a pedes-

trian. Experiments on the extremely crowded benchmark

CrowdHuman [20] and the CityPersons [24] show that the

proposed approach can achieve the state-of-the-arts results,

strongly validating the superiority of the method.
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