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Abstract

Domain adaptive image retrieval includes single-domain

retrieval and cross-domain retrieval. Most of the existing

image retrieval methods only focus on single-domain re-

trieval, which assumes that the distributions of retrieval

databases and queries are similar. However, in practical

application, the discrepancies between retrieval databases

often taken in ideal illumination/pose/background/camera

conditions and queries usually obtained in uncontrolled

conditions are very large. In this paper, considering

the practical application, we focus on challenging cross-

domain retrieval. To address the problem, we propose an

effective method named Probability Weighted Compact Fea-

ture Learning (PWCF), which provides inter-domain cor-

relation guidance to promote cross-domain retrieval accu-

racy and learns a series of compact binary codes to im-

prove the retrieval speed. First, we derive our loss func-

tion through the Maximum A Posteriori Estimation (MAP):

Bayesian Perspective (BP) induced focal-triplet loss, BP in-

duced quantization loss and BP induced classification loss.

Second, we propose a common manifold structure between

domains to explore the potential correlation across domain-

s. Considering the original feature representation is biased

due to the inter-domain discrepancy, the manifold struc-

ture is difficult to be constructed. Therefore, we propose

a new feature named Histogram Feature of Neighbors (H-

FON) from the sample statistics perspective. Extensive ex-

periments on various benchmark databases validate that

our method outperforms many state-of-the-art image re-

trieval methods for domain adaptive image retrieval. The

source code is available at https://github.com/

fuxianghuang1/PWCF.

1. Introduction

The problem of domain adaptive image retrieval includ-

ing single-domain retrieval and cross-domain retrieval is

an important task for many practical applications. Single-

Database Query Returned

...

Single-domain retrieval

Cross-domain retrieval

Figure 1. Illustration of our motivation. Many advanced methods

have achieved excellent performance in solving the single-domain

retrieval problem, but the performance drops significantly when

they are used in cross-domain retrieval. In practice, queries and

databases usually come from different domains, so it is necessary

to solve the problem of cross-domain retrieval.

domain retrieval refers to a sort of image retrieval problem

that the queries and databases are both from the same do-

main. On the contrary, cross-domain retrieval means the

queries and databases permitting to come from different do-

mains, which is more flexible and applicable in real-world

applications. In practice, retrieval databases have often tak-

en in ideal illumination/pose/background/camera condition-

s and queries usually obtained in uncontrolled conditions,

which leads to the large discrepancy between the databases

and queries. For example, mobile product image search [5]

aims at identifying a product, or retrieving similar products

from the online shopping domain based on a photo captured

in unconstrained scenarios by a mobile phone camera.

However, as shown in Fig. 1, most of the existing meth-

ods only focus on single-domain retrieval and the perfor-

mance deteriorates rapidly in handling cross-domain re-

trieval. Few people have proposed solutions to cross-

domain retrieval problems. DARN [10] simultaneously in-

tegrates the attributes and visual similarity constraint into

the retrieval feature learning to solve the cross-domain re-

trieval problem. However, attributes are usually insufficient

and sorting high-dimensional features requires a lot of com-

putation, resulting in slow retrieval.

Recently, due to the low storage and high computation

efficiency of binary codes, the hashing algorithm has been
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Figure 2. Diagram of PWCF, which includes four parts: 1) BP induced focal-triplet loss, 2) BP induced classification loss, 3) BP induced

quantification loss and 4) manifold loss based on Histogram Feature of Neighbors.

widely used for many applications [6, 8, 13, 15, 24, 26, 30,

33, 36]. Hashing aims to map high-dimensional content fea-

tures of samples into Hamming space (binary space) and

generate a set of low-dimensional binary codes to represent

samples. In consequence, the cost of data storage can be

largely reduced, thus the retrieval speed can be improved

with the Hamming distance using binary operation (XOR).

However, most of the existing hashing methods [14, 16,

18, 19, 21, 23, 29, 34] assume that the distributions of re-

trieval databases and queries are similar while ignoring the

inter-domain discrepancy, which makes them difficult to ac-

curately capture correlations between cross-domain sam-

ples. Consequently, although most of the existing hashing

methods have achieved significant performance for single-

domain retrieval, they perform poorly when queries and

databases come from different domains.

To address the above problem, we propose an effective

domain adaptive image retrieval method named Probabil-

ity Weighted Compact Feature Learning (PWCT), which

takes into account the similarity/dissimilarity relation be-

tween the samples from different domains to learn compact

binary feature representations. Inspired by transfer learning

(TL) [27], we transfer knowledge across different domains

to leverage knowledge between different domains and ex-

plore cross-domain sample correlations. Our goal is to use

the available labeled data as a source domain to help us

learn the projection matrix and get more discriminant binary

codes. Instead of simply adding source domain data to ex-

pand the training set for better retrieval in the target domain,

different from existing transfer hashing methods [37, 20],

we focus on exploring the correlation of samples and data

distribution discrepancy between domains to achieve good

performance on cross-domain retrieval. To improve the per-

formance of cross-domain retrieval, we propose our loss

functions from a Bayesian Perspective. Specifically, we

derive our loss functions: BP induced focal-triplet loss,

BP induced quantization loss and BP induced classification

loss by seeking for the Maximum A Posteriori Estimation

(MAP) solution to promote the correlation between sam-

ples from different domains in Hamming space, ensure the

discrimination of binary codes, and reduce the information

error causing by quantification.

Besides, considering that the underlying manifold struc-

ture across different domains is extremely helpful to cap-

ture meaningful nearest neighbors correlation of differen-

t domains, we propose a common manifold to capture the

inherent neighborhood structure in the source domain and

target domain to further ensure that the correlation of dif-

ferent domains is preserved in Hamming space. However,

the similarity between the samples from different domains

is difficult to measure in terms of original content features.

The same class samples from different domains may not be

close, caused by inter-domain discrepancy. To handle such

a problem, we consider the distribution characteristics of

k nearest neighbors for each sample in respective domains

and propose a new statistical feature called Histogram Fea-

ture of Neighbors (HFON) from the perspective of sample

statistics to reduce the influence of data distribution discrep-

ancy between domains. The main contributions and novel-

ties of this paper are summarized as follows:

• In this paper, we propose an effective domain adaptive

image retrieval method named Probability Weighted

Compact Feature Learning (PWCF) to achieve fast and

accurate retrieval. Fig. 2 shows the framework of our

PWCF. To the best of our knowledge, we are the first

to propose a new and practical adaptive cross-domain

retrieval problem.

• We propose loss functions named BP induced focal-

triplet loss, BP induced quantization loss, and BP in-

duced classification loss which seeks for the Maximum

A Posteriori Estimation (MAP) solution to explore the

similarity/dissimilarity between samples from differ-

ent domains, ensure the discrimination, and reduce the

information error.

• In our PWCF, we propose a Histogram Feature of

Neighbors (HFON) from the perspective of statistics

to reduce the influence of the domain disparity and a
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common manifold structure based on HFON to further

preserve the correlation between samples from differ-

ent domains.

• Extensive experiments on various benchmark databas-

es have been conducted. The experimental results ver-

ify that our method outperforms many state-of-the-

art image retrieval methods for both cross-domain re-

trieval and single domain retrieval.

2. Probability Weighted Compact Feature

Learning

2.1. Notations and Definitions

Suppose that we have nt target samples unlabeled Xt =
{xti}

nt

i=1 ∈ R
d×nt and ns source samples labeled Xs =

{xsi}
ns

i=1 ∈ R
d×ns . Ys = {ysi}

ns

i=1 ∈ R
c×ns , where

ysi ∈ R
c×1 is the label vector, of which the maximum

item indicates the assigned class of xsi . We denote X =
[Xt,Xs] and n = nt + ns. We aim to learn a set of

compact binary codes Bt = {bti}
nt

i=1 ∈ {−1, 1}r×nt and

Bs = {bsi}
ns

i=1 ∈ {−1, 1}r×ns to represent the samples,

where bti is the corresponding binary codes of xti and bsi

is the corresponding binary codes of xsi . d and r represent

the original content feature dimension of each sample and

the length of binary codes, respectively. In PWCF, both the

data of the source domain and the target domain are used

to learn a projection W ∈ R
d×r. Then, the r-dimensional

feature ( i.e., the continuous real values of binary codes) is

denoted as fi = W⊤xi. The binary codes are quantified

as bi = sgn(fi) ∈ {−1, 1}r×1. Here sgn(v) is the sign

function, which returns 1 if v ≥ 0 and −1 otherwise. In this

paper, ‖ · ‖ is the ℓ2 norm for vectors and Frobenius norm

for matrices.

2.2. Compactness: A Bayesian Perspective

In order to achieve higher accuracy, we hope to ex-

plore the correlation of different samples. Given a triplet

(xi,xj ,xk) ∈ X, let sij represent the pair-wise similarity

between xi and xj . sij = 1 means they have the same label.

Instead, sij = 0 means they have different labels.

Without loss of generality, let p (fi, fj , fk|sij , sik) be

the posterior probability of feature representation fi, fj , fk
for triplet sample set xi, xj , xk. Here we suppose that fi,

fj , fk are the r-dimensional features of samples xi,xj ,xk,

respectively. With the assumption of conditional indepen-

dence of each pair and Bayesian formulation, the joint pos-

terior probability density function of the triplet training set

can be generally represented as:
∏

i,j,k∈X

p (fi, fj , fk|sij , sik) ⇔

∏

i,j,k∈X

p (sij , sik|fi, fj , fk) p (fi) p (fj) p (fk)
(1)

where p (sij , sik|fi, fj , fk) is the likelihood probability and

p (fi), p (fj) and p (fk) are the prior probability of r-

dimensional feature. We suppose that the likelihood proba-

bility density function to be exponential distribution, con-

sidering that the exponential distribution has shown fast

convergence to a stable state. Let dij = ‖fi − fj‖
2

and

dik = ‖fi − fk‖
2
. Considering the sample pair similarity,

the likelihood probability density function is expressed as:

p (sij , sik|fi, fj , fk) =
⎧

⎪

⎪

⎨

⎪

⎪

⎩

e−|dij−dik+m|, if sij = 1, sik = 0
e−|−dij+dik+m|, if sij = 0, sik = 1
e−|dij+dik|, if sij = 1, sik = 1
e−|−dij−dik|, if sij = 0, sik = 0

= e−|(−1)sij dij+(−1)sikdik+α·m|

(2)

where sij = −sij , α = sij ⊕ sik and ⊕ is the XOR op-

eration. m is the margin. The purpose of this setting is to

make the samples of the same class closer and the samples

of different classes farther.

We aim to seek the solution of Maximum A Posteri-

ori Estimation (MAP) of Eq. (1) from the Bayesian per-

spective. To mitigate the influence of the likelihood proba-

bility of hard pairs on the posterior probability maximiza-

tion, we add a modulating factor ωijk to the likelihood

probability where ωijk = (1− p (sij , sik|fi, fj , fk))
γ

and

γ ≥ 0. In other words, the modulating factor reduces the

contribution of easy pairs and penalizes more on those hard

pairs. For convenience, the same (different) labeled sam-

ples which have a large (small) distance are named as hard

pairs, and the same (different) labeled samples that have a

small (large) distance are named as easy pairs.

Besides, considering the quantization loss and discrim-

ination of binary code, the prior probability is written as

p (fi) = e−θd(bi,fi) · e−λ1d(yi,C
⊤bi) · e−λ2‖C‖2

, where θ,

λ1 and λ2 are hyper-parameters. C is a classifier and we

will discuss the detail later in classification loss. By taking

the natural logarithm, our objective function is written as:

max
∑

i,j,k∈X

ωijk log p (sij , sik|fi, fj , fk)+

∑

i∈X

log p (fi) +
∑

j∈X

log p (fj) +
∑

k∈X

log p (fk)
(3)

In optimization, we consider the case that positive pairs and

negative pairs both exist. In order to construct triplets, we

can set xi as the anchor, xj is similar to the anchor, and xk

is dissimilar to the anchor. Then Eq. (3) is

min
∑

i,j,k∈X

(1− e[dij−dik+m]+)[dij − dik +m]+

+ θ
∑

i∈X

d(bi, fi) + λ1

∑

i∈X

d(yi,C
⊤bi) + λ2‖C‖2

(4)
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where [x]+ denotes the operator of max(x, 0), which makes

sure p (sij , sik|fi, fj , fk) ∈ (0, 1] and improves the con-

vergence. Clearly, if without max(x, 0), the probability of

the exponential probability in Eq.(2) may be larger than 1.

So, in Eq.(4), the max(x, 0) is naturally resulted with clear

probabilistic interpretation.

BP induced Focal-triplet loss. The first term in Eq. (3)

is a variant of standard triplet loss named BP induced focal-

triplet loss. If we enumerate all the sample pairs, it will

take a lot of time for training. So we will just pick some

cross-domain triplets, which are more effective at promot-

ing inter-domain correlations. In other words, we construct

cross-domain triplets before training. Specifically, for each

sample, if it comes from the source domain, we select a

positive sample and a negative sample from the target do-

main. Otherwise, if it is from the target domain, we select

a positive sample and a negative sample from the source

domain. Since there is no label in the target domain, we

first use the source domain data to predict the pseudo-label

of the target domain by the KNN algorithm. We can get

n cross-domain triplets. For ease of understanding, let’s

(xg
i ,x

g
i,p,x

g
i,n), i ∈ [1, n] represent all selected triplets,

where g and g come from different domain. If g ∈ Xs,

then g ∈ Xt. Otherwise, if g ∈ Xt, then g ∈ Xs. Then, the

BP induced focal-triplet loss can be written as:

T ri =
∑

i,j,k∈X

(1− e[dij−dik+m]+)[dij − dik +m]+ =

N
∑

i=1

ωi

[

∥

∥

∥
W⊤x

g
i −W⊤x

g
i,p

∥

∥

∥

2

−
∥

∥

∥
W⊤x

g
i −W⊤x

g
i,n

∥

∥

∥

2

+m

]

+

(5)

where ωi is the weight of ith group selected triplet and ωi =
(

1− e
−
(

‖W⊤x
g

i
−W⊤x

g

i,p‖
2
−‖W⊤x

g

i
−W⊤x

g

i,n‖
2
+m

)
)γ

.

As shown in Fig. 3, the focal-triplet loss, which is a variant

of standard triplet loss, imposes different importance

for different triplets by down-weighting easy pairs and

up-weighting hard pairs. In the training phase, we choose

the hard triplets that satisfy the maximization of intra-class

distance and the minimization of inter-class distance to im-

prove the training speed. Considering the data distribution

discrepancy in different domains, the Euclidean distance

of the original content feature extracted from different

domains may not measure the similarity of samples. So

we use the Histogram Feature of Neighbors rather than

the original content feature to calculate the distance of

different samples across domains. The Histogram Feature

of Neighbors will be explained in detail in the next section.

BP induced quantization loss. The second term in E-

q. (4) is named BP induced quantization loss, which aim-

s to reduce quantization error between binary codes and

low-dimensional feature representation obtained by map-

Standard triplet Focal-triplet

anchor

positive

m
m

negative

anchor

positive

negative

=0.8

Figure 3. Illustration of the proposed BP induced focal-triplet loss:

Standard triplet makes the positive sample closer to the anchor

and the negative sample further away from the anchor by the same

force (weight). However, positive samples and negative samples

may not be separated for hard pairs in this case, which results in

training instability. To address it, our BP induced focal-triplet loss

can down-weight easy pairs and up-weight hard pairs so as to the

distance to the cross-domain positives can be minimized and the

distance to the cross-domain negatives can be maximized.

ping (i.e., the continuous real values of binary codes). The

BP induced quantization loss can be formulated as:

Q =
∑

i∈X

d(bi, fi) =
n
∑

i=1

∥

∥bi −W⊤xi

∥

∥

2

=
∥

∥Bt −W⊤Xt

∥

∥

2
+

∥

∥Bs −W⊤Xs

∥

∥

2

(6)

BP induced classification loss. The third term in Eq.

(4) is named BP induced classification loss. Inspired by

SDH [28], we consider that good binary codes should be

with good discrimination. We take advantage of the label

information to train a classifier C and C⊤bi represent the

predicted label of the ith sample. We want to use binary

codes to predict labels that are as authentic as possible. In

this paper, to avoid the negative impact of pseudo labels, we

only use the source domain sample when we calculate the

classification loss. The BP induced classification loss can

be formulated as:

C =
∑

i∈X

d(yi,C
⊤bi) =

n
∑

i=1

∥

∥yi −C⊤bi

∥

∥

2

≈
∥

∥Ys −C⊤Bs

∥

∥

2

(7)

The regularization ‖C‖2, i.e., the last term in Eq. (3), is

used to avoid trivial solution and overfitting.

2.3. Manifold Loss Based on Histogram Feature of
Neighbors

We argue that the nearest-neighbor relationship of sam-

ples in a single domain is regular. In other words, if two

samples from different domains are similar, the classes of

their neighbors in their respective domains should be simi-

lar. Based on this assumption, we propose a statistical fea-

ture named Histogram Feature of Neighbors (HFON) to re-

duce the domain disparity. Specifically, we use hi ∈ R
c×1
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Figure 4. Illustration of the proposed Histogram Feature of Neigh-

bors (HFON): We use different shapes to represent samples of d-

ifferent classes, The samples from the source domain and target

domain are represented by solid and hollow shapes, respective-

ly. i and j belong to the same class, but the distance is far. To

measure the similarity of cross-domain samples more accurately,

we proposed a Histogram Feature of Neighbors according to the

neighbor relationship in a domain. For example, we find 6 nearest

neighbors of i and j in their respective domains and calculate the

probability of each class of these nearest-neighbor samples. H-

FON vector is made up of these probabilities. Then the HFON

distances of similar samples in different domains are close.

to represent the HFON vector of xi and c is the number

of classes. We find k nearest neighbors of each sample

in their respective domains and calculate the probability of

each class of these nearest-neighbor samples. The ath el-

ement of the HFON can be written as hia =
nia

k
where

a ∈ [1, c], nia represents the total number of samples be-

longing to class c in the k nearest neighbors of the ith sam-

ple. Fig. 4 shows the details of the Histogram Feature of

Neighbors.

The underlying manifold structure across different do-

mains, which is extremely helpful to capture meaningful n-

earest neighbors of different domains. Therefore, we want

to keep the common manifold structure by taking advantage

of local similarities. To minimize the representation error

of the low-dimensional features between different neighbor

samples, the manifold loss can be written as:

M =
∑

i,j∈X

‖fi − fj‖
2Zij

=

n
∑

i=1

n
∑

j=1

∥

∥W⊤xi −W⊤xj

∥

∥

2
Zij

= W⊤XLX⊤W

(8)

Similar to LPP [9], L = D−Z is the Laplacian matrix and

Dii =
∑

j Zij =
∑

i Zij . Here Z is a sparse symmetric n×
n matrix with Zij having the weight of the edge connecting

xi and xj , and 0 if there is no such connection. To reduce

the domain disparity, let Zij = e−
‖xi−xj‖

2

σ2 when xi and xj

come from the same domain. Otherwise, Zij = e−
‖hi−hj‖

2

σ2

when xi and xj come from different domains where hi and

hj denote the HFON with respect to xi and xj , respectively.

Overall objective function. Finally, the overall objec-

tive function is rewritten as:

min
W,C,Bt,Bs

T ri+ θQ+ λ1C + λ2‖C‖2 + λ3M

s.t.W⊤W = I,Bt= sgn(W⊤Xt),Bs= sgn(W⊤Xs)
(9)

where the constraint, W⊤W = I, is used to make W be

orthogonal projections in order to guarantee the discrimina-

tion of binary codes.

2.4. Optimization

In this paper, we adopt an alternating optimization pro-

cedure to iteratively optimize W, C, Bt and Bs. As the

non-convex sgn(·) function makes Eq. (8) a NP-hard prob-

lem, we relax the sgn(x) function as its signed magnitude

x [20].

W-Step. Given C, Bt and Bs, updating W is a typical

optimization problem with orthogonality constraints. Let

G be the partial derivative of the objective function Eq. (9)

with respect to W and G is represented as:

G=2
∑

i∈T +

ωi((x
g
i−x

g
i,p)(x

g
i−x

g
i,p)

⊤−(xg
i−x

g
i,n)(x

g
i−x

g
i,n)

⊤)W

+ 2θ(XtX
⊤
t W −XtB

⊤
t +XsX

⊤
s W −XsB

⊤
s )

+ 2λ3XLX⊤W

(10)

where T + contains all selected cross-domain triplets and
∥

∥

∥
W⊤x

g
i −W⊤x

g
i,p

∥

∥

∥

2

−
∥

∥

∥
W⊤x

g
i −W⊤x

g
i,n

∥

∥

∥

2

+m ≥ 0.

Based on the orthogonal constraint optimization procedure

in [35], we can define a skew-symmetric matrix [1] as

A = GW⊤ − WG⊤. Then, we adopt Crank Nicolson

like scheme to update the orthogonal matrix W

W(t+1) = W(t) −
τ

2
A

(

W(t) +W(t+1)
)

(11)

where τ denotes the step size. We empirically set τ = 0.1.

By solving Eq. (11), we can get

W(t+1) = QW(t) (12)

and Q = (I + τ
2A)−1(I − τ

2A). We iteratively update W

several times based on Eq. (12) with the Barzilai-Borwein

(BB) method [35]. In addition, please note that when itera-

tively optimizing W, the initial W is set to be the updated

one in the last round. For the first round, W is initialized

by PCA.

C-Step. Given W, Bt and Bs, taking the partial devia-

tion of the objective function with respect to C to be zero,

we derive

C =
(

λ1BsB
⊤
s + λ2I

)−1
λ1BsY

⊤
s (13)

Bt-Step. Given W, C and Bs, by relaxing the sign

function sgn(.) , the solution can be obtained

Bt = sgn(W⊤Xt) (14)
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Bs-Step. Given W, C and Bt, we obtain the approxi-

mate solution for hash codes by relaxing the sign function.

Bs = sgn
(

(θI+ λ1CC⊤)−1(θW⊤Xs + λ1CYs)
)

(15)

The details of the proposed algorithm are described in Al-

gorithm 1.

Algorithm 1 PWCF learning

Input: Training samples X = [Xt,Xs] and source labels

Ys; code length r; maximum iteration times T ; number

of neighbors k; parameters θ, λ1, λ2 and λ3

Output: W, C, Bt and Bs

1: Obtain the pseudo-labels of target domain by KNN

trained with (Xs,Ys).

2: Calculate the HFON of target domain and source do-

main, respectively.

3: Construct cross-domain triples: (xg
i ,x

g
i,p,x

g
i,n), i ∈

[1, N ].
4: Initialize W as the top r eigenvectors of XX⊤ by PCA.

Bt and Bs are random binary matrices, respectively.

5: Loop until converge or reach maximum iterations:

W-Step. update W by solving Eq. (12);

C-Step. update C by solving Eq. (13);

Bt-Step. update Bt by solving Eq. (14);

Bs-Step. update Bs by solving Eq. (15).

Computation Complexity: Since the hard triplets and

the Laplacian matrix can be pre-computed, the total com-

putation cost of our PWCF in Algorithm 1 is O(T (n(d2r+
dr)+ 3d2r+nsr

2c+ntdr+ns(r
2c2 + r2cd))) and linear

to the number of samples, where n = ns + nt. In practice,

T , d, r and c will be much less than n. Hence, the binary

codes learning is efficient.

3. Experiment

3.1. Experimental Settings

Datasets: We perform the experiments on four groups

benchmark datasets:

• The MNIST [17] and USPS [11] are two famous digi-

tal datasets sharing ten handwritten digits from 0 to 9.

According to [25], each image is resized to 16 × 16.

We use the MNIST as the source domain and USPS is

used as the target domain in the MNIST&USPS dataset.

• The VLCS [31] dataset aggregates photos from Cal-

tech101, LabelMe, Pascal VOC2007 and SUN09,

which provides a 5-way multi-class benchmark on five

common classes: bird, car, chair, dog and person. In

our experiments, every image is represented by a 4096-

d CNN feature vector [4]. We use VOC2007 dataset

including 3376 images as the source domain and Cal-

tech101 dataset containing 1415 images is used as the

target domain in the VOC2007&Caltech101 dataset.

• The Cross-dataset Testbed [3] is a Decaf7 based

cross-dataset image classification dataset, which con-

tains 40 categories of images from 3 domains: 3,847

images in Caltech256, 4,000 images in ImageNet, and

2,626 images for SUN. In our experiments, each im-

age is represented by a 4096-d CNN feature vec-

tor [4]. Caltech256 is used as the source domain and

ImageNet is used as the target domain in the Cal-

tech256&ImageNet dataset.

• The Office-Home dataset [32] consists of images from

4 different domains: Artistic images (i.e., paintings,

sketches and/or artistic depictions), Clip Art images,

Product images without background and Real-World

images (i.e., regular images captured with a camera).

For each domain, the dataset contains images of 65 ob-

ject categories found typically in Office and Home set-

tings. In our experiments, each image is represented as

a 4096-d feature by VGG-16. Each domain is used as

the source domain and the target domain, respectively.

Implementation details: We choose eleven state-of-

the-art hashing methods, including SH [34], ITQ [7],

DSH [14], LSH [2], SGH [12], OCH [19], GTH [20],

ITQ+ [37], LapITQ+ [37], KSH [22] and SDH [28] as base-

lines. We use the public codes and suggested parameters of

these methods from the corresponding authors. For our P-

WCF, we empirically set θ to 1e2, λ1 to 1, λ2 to 1e3 and λ3

to 1e4. For unsupervised methods, we use all the training

samples including source domain and target domain in the

training phase. For a fair comparison, we introduce a NoTL

method that only uses the target domain to train the ITQ

model. For supervised methods, we use the training sam-

ples and labels of source domain to train. All of the meth-

ods use identical training sets and testing sets. Specifically,

for each dataset, we randomly select 500 images of the tar-

get domain images as a testing set (queries) and rest images

as a training set. In the testing phase, class labels are used

to determine whether a sample returned for a given query is

considered a true positive. Moreover, the widely used crite-

rion, i.e., mean average precision (MAP), is used as the per-

formance metric. To remove the randomness for sampling,

we repeat each algorithm 10 times and report their mean of

MAP. We also show the precision and recall curves.

To verify the performance of our method in the scenarios

of domain adaptive retrieval, we report the retrieval perfor-

mance including cross-domain retrieval and single-domain

retrieval on MNIST&USPS, VOC2007&Caltech101, and

Caltech256&ImageNet databases when the code length is

set as 16, 32, 48, 64, 96 and 128, respectively. For cross-

domain retrieval, the training samples from the source do-
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Table 1. The MAP scores (%) on MNIST&USPS, VOC2007&Caltech101, and Caltech256&ImageNet databases with varying code length

from 16 to 128 for cross-domain retrieval.
MNIST&USPS VOC2007&Caltech101 Caltech256&ImageNet

Bit 16 32 48 64 96 128 16 32 48 64 96 128 16 32 48 64 96 128

NoTL 28.13 30.05 28.24 30.34 31.76 31.72 35.95 37.86 38.28 38.49 38.67 38.97 15.10 19.77 22.80 24.39 26.07 27.28

SH 15.71 13.85 12.05 11.78 11.38 11.78 29.94 30.26 32.51 33.76 32.59 33.03 10.37 11.67 12.17 11.88 12.67 12.89

ITQ 27.38 30.92 31.44 32.25 33.12 33.44 40.13 39.63 39.45 39.98 39.27 39.89 16.94 22.00 24.44 26.21 27.96 28.89

DSH 21.15 27.53 29.71 26.13 26.60 28.94 40.97 42.03 43.06 45.81 43.78 42.86 8.27 9.60 11.55 12.34 13.56 15.64

LSH 16.25 16.99 23.23 20.38 19.70 26.98 33.40 33.99 34.03 32.89 34.12 34.50 5.36 6.72 10.39 12.71 15.60 17.08

SGH 24.83 24.78 25.85 27.78 28.26 29.35 35.77 34.06 33.60 33.11 32.75 32.41 12.49 17.23 20.34 21.75 24.46 25.42

OCH 18.94 25.73 26.73 26.34 27.88 29.22 71.50 72.27 72.65 72.71 69.17 68.91 11.56 15.36 17.49 20.18 22.00 22.90

ITQ+ 20.27 20.53 16.77 15.87 17.79 14.90 35.35 34.48 34.33 34.42 34.05 34.74 – – – – – –

LapITQ+ 26.38 26.31 24.91 24.61 22.04 21.33 38.95 38.43 39.64 39.35 39.33 38.76 – – – – – –

GTH 19.10 24.17 24.27 24.38 23.64 29.36 36.70 38.95 37.23 37.87 37.70 38.36 11.56 14.79 16.97 19.53 20.88 22.38

KSH 43.75 46.91 50.02 47.43 45.25 46.81 74.74 76.05 76.71 76.70 76.22 73.14 20.34 12.07 26.77 32.83 35.28 34.49

SDH 29.98 43.02 42.57 46.56 42.40 48.12 67.60 65.75 68.58 65.06 65.66 67.03 18.05 25.71 26.23 26.38 26.77 26.29

PWCF 47.47 51.99 51.44 51.75 50.89 53.95 79.38 80.42 79.24 79.31 78.15 78.87 22.46 30.58 35.29 35.24 38.92 40.32

Table 2. The MAP scores (%) on MNIST&USPS, VOC2007&Caltech101, and Caltech256&ImageNet databases with varying code length

from 16 to 128 for single-domain retrieval.
MNIST&USPS VOC2007&Caltech101 Caltech256&ImageNet

Bit 16 32 48 64 96 128 16 32 48 64 96 128 16 32 48 64 96 128

NoTL 67.22 69.31 70.52 70.78 71.64 71.88 98.12 98.13 98.36 98.36 98.58 98.82 15.12 20.50 22.66 24.22 25.954 27.43

SH 47.07 49.19 49.24 49.64 49.69 49.03 66.56 64.44 66.39 68.39 67.29 66.12 10.44 11.33 12.28 12.24 12.85 13.51

ITQ 63.37 69.96 69.53 70.19 71.22 71.59 99.03 99.15 99.09 99.10 99.14 99.19 15.96 20.57 23.07 24.16 26.39 27.63

DSH 45.76 54.23 58.03 59.92 61.80 63.50 94.58 93.88 95.93 97.07 97.93 97.86 8.09 10.21 11.83 12.89 15.43 15.15

LSH 47.21 55.63 59.81 60.54 60.81 62.90 61.17 65.69 79.25 84.76 88.81 88.19 5.15 6.87 10.22 12.63 15.37 17.38

SGH 58.41 63.61 64.69 65.79 66.55 66.81 86.06 86.70 88.49 88.68 91.18 91.71 12.37 16.75 19.54 20.90 23.37 24.93

OCH 53.56 58.49 60.48 63.96 66.29 65.39 89.36 97.47 98.30 98.45 98.71 99.21 10.11 15.05 17.47 19.58 20.70 22.31

ITQ+ 41.87 37.94 37.00 37.23 35.19 34.88 64.15 59.00 56.94 56.12 54.74 52.61 – – – – – –

LapITQ+ 54.21 55.64 53.66 52.58 51.56 49.80 70.53 69.08 67.95 66.32 69.49 67.59 – – – – – –

GTH 53.20 58.78 62.17 63.23 62.94 60.59 90.25 82.72 92.93 93.73 94.33 87.44 11.73 15.02 17.67 19.21 20.87 21.90

KSH 26.06 37.11 42.57 41.89 40.89 38.07 96.98 91.90 93.03 92.58 96.27 95.86 16.20 11.23 19.88 25.64 28.07 29.58

SDH 50.32 54.20 57.29 57.48 60.64 60.76 88.49 86.54 88.27 87.28 89.11 89.24 13.92 18.72 21.20 21.64 22.74 23.94

PWCF 69.37 70.70 70.94 71.64 73.51 73.89 99.67 99.61 99.77 99.66 99.33 99.58 21.96 26.56 28.75 29.91 32.92 34.96

main are used as retrieval database. For the single-domain

retrieval, the training samples from the target domain are

used as retrieval database.

To further prove our versatility and cross-domain re-

trieval performance, a large number of experiments were

carried out on Office-Home. For the sake of simplicity,

Artistic images, Clip Art images, Product images, and Real-

World images are replaced as A, C, P and R, respectively.

A→C implies Artistic is the source domain and Clip Art is

the target domain.

3.2. Experimental Results

In Table 1, we report the MAP scores (%) of all the com-

pared methods and our method PWCF on MNIST&USPS,

VOC2007&Caltech101, and Caltech256&ImageNet for

cross-domain retrieval. Obviously, our PWCF outperforms

compared methods on all databases in most cases. To fur-

ther prove the effectiveness of our method, we conduct an

experimental evaluation of single-domain retrieval. The re-

sults are shown in Table 2. We can see that our method

is superior to the compared methods in both cross-domain

retrieval and single-domain retrieval.

In Table 3, we report the MAP scores (%) of all the com-

pared methods and our PWCF with 64 bits on Office-Home

for cross-domain retrieval. We can see however the source

domain and target domains are set, our methods perform

Table 3. The MAP scores (%) on Office-home databases with 64

bits for cross-domain retrieval. P→R implies Product is the source

domain and Real-World is the target domain.
P→R R→P C→R R→C A→R R→A average

NoTL 25.02 29.09 16.98 14.73 27.38 21.05 22.38

SH 15.01 16.82 10.38 8.32 14.52 12.41 12.91

ITQ 26.32 29.13 17.60 15.88 26.86 21.99 22.96

SDH 8.86 7.72 6.44 6.15 10.07 9.11 8.06

LSH 10.74 14.78 9.85 8.37 12.24 10.02 11.00

SGH 24.12 26.47 16.10 14.14 22.82 20.41 20.68

OCH 20.06 20.23 10.97 10.61 19.35 15.32 16.09

ITQ+ 17.94 – 10.61 – – 15.16 14.57

LapITQ+ 15.94 – 11.72 – – 13.52 13.83

GTH 19.40 22.80 12.27 12.03 20.98 16.47 17.33

KSH 32.02 34.42 21.56 18.51 25.87 20.04 25.40

SDH 25.75 27.90 15.97 16.72 32.06 22.79 23.53

PWCF 34.03 34.44 24.22 18.42 34.57 28.95 29.11
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Figure 5. The influence of the number of retrieved samples for

cross-domain retrieval on Product→Real with 64 bits.
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Table 4. The MAP scores (%) on MNIST&USPS databases with varying code length from 16 to 128 for cross-domain retrieval or single-

domain retrieval.
cross-domain single-domain

Bit 16 32 48 64 96 128 16 32 48 64 96 128

PWCF 47.47 51.99 51.44 51.75 50.89 53.95 69.37 70.70 70.94 71.64 73.51 73.89

PWCF-T 45.13 48.76 50.02 50.57 50.66 51.43 51.45 62.18 68.25 69.91 71.62 72.81

PWCF-F 44.07 45.40 47.58 50.01 50.12 53.18 52.55 62.70 66.37 69.07 71.27 72.03

PWCF-M 29.13 30.76 33.44 34.56 35.68 36.22 62.16 67.84 69.04 70.25 70.68 71.32

PWCF-C 40.80 47.02 50.04 50.36 48.88 47.81 50.85 61.11 64.94 66.40 69.24 70.30

PWCF-H 29.09 32.14 34.89 36.36 36.84 36.88 49.12 64.13 67.82 69.15 70.64 71.09

PWCF-Q 10.89 10.65 10.64 10.60 10.63 10.52 15.22 15.43 16.24 16.83 19.05 18.49

better than others. The results certify that our PWCF has

universality in practical application. We also show the in-

fluence of the number of retrieved samples for cross-domain

retrieval task. Fig. 5 (a) shows the precision when the num-

ber of retrieved samples vary from 0 to 1000 and Fig. 5

(b) shows the recall when the number of retrieved samples

vary from 0 to 1000. From the figures, we can see that our

PWCF always presents competitive retrieval performance

compared to baselines, which demonstrates the efficacy of

our PWCF.

3.3. Convergence Analysis

The proposed PWCF is solved with a variable alternat-

ing strategy, and the convergence can be guaranteed. We

present the convergence curves of the objective function in

Fig. 6, from which we see that PWCF can quickly converge

to an optimal solution within several iterations.
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Figure 6. Convergence of Algorithm 1 on (a) MNIST&USPS and

(b)VOC2007&Caltech101 with 64 bits.

3.4. Ablation Study

We investigate six variants of PWCF in Table 4: (1)

PWCF-T is the PWCF variant without BP induced focal-

triplet loss T ri. (2) PWCF-F is the STH variant, which

replaces the BP induced focal-triplet loss as the standard

triplet loss. (3) PWCF-M is the PWCF variant without man-

ifold loss M. (4) PWCF-C is the PWCF variant without BP

induced classifier loss C. (5) PWCF-H is the PWCF variant

without the Histogram Feature of Neighbors, which calcu-

lates the weight matrix Z by using original content features.

Also, the hard triplets are constructed by original features

without the Histogram Feature of Neighbors. (6) PWCF-Q

is the PWCF variant without BP induced quantization loss

Q. We report the results to different code lengths on the

MNIST&USPS dataset for single-domain and cross-domain

retrieval.

We can see that the four parts of our model have differ-

ent effects on retrieval performance. Comparing PWCF-T,

PWCF-F, PWCF, triplet loss is good for training PWCF and

our proposed focal-triplet hashing loss is better than stan-

dard triplet loss. Comparing PWCF-M with PWCF, the un-

derlying manifold structure across different domains is ex-

tremely helpful to capture the correlation between samples.

Comparing PWCF-H with PWCF, the proposed histogram

features reduce the impact of data distribution discrepan-

cy between different domains and it is unreasonable to use

Euclidean distance of original features to measure the simi-

larity between cross-domain samples.

4. Conclusion

In this paper, we propose an effective domain adap-

tive retrieval method named Probability Weighted Compact

Feature Learning (PWCF), which learns compact binary

codes to represent images. First, we propose BP induced

focal-triplet loss, BP induced quantization loss and BP in-

duced classification loss from the Bayesian perspective to

optimize the binary compact feature between samples from

different domains. Besides, The underlying manifold struc-

ture across different domains is used to capture meaning-

ful nearest neighbors of different domains and further ex-

plore the potential correlation. To address the data distri-

bution discrepancy issue, we propose a Histogram Feature

of Neighbors (HFON) to metric the similarity/dissimilarity

between the samples from different domains. The exper-

imental results show that our PWCF always shows much

higher retrieval performance in the scenarios of the cross-

domain retrieval and single-domain retrieval, which verify

that our method outperforms many state-of-the-art image

retrieval methods.
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