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Abstract

Deep learning technique has dramatically boosted the

performance of face alignment algorithms. However, due to

large variability and lack of samples, the alignment problem

in unconstrained situations, e.g. large head poses, exagger-

ated expression, and uneven illumination, is still largely un-

solved. In this paper, we explore the instincts and reasons

behind our two proposals, i.e. Propagation Module and Fo-

cal Wing Loss, to tackle the problem. Concretely, we present

a novel structure-infused face alignment algorithm based

on heatmap regression via propagating landmark heatmaps

to boundary heatmaps, which provide structure information

for further attention map generation. Moreover, we propose

a Focal Wing Loss for mining and emphasizing the difficult

samples under in-the-wild condition. In addition, we adopt

methods like CoordConv and Anti-aliased CNN from other

fields that address the shift-variance problem of CNN for

face alignment. When implementing extensive experiments

on different benchmarks, i.e. WFLW, 300W, and COFW, our

method outperforms state-of-the-arts by a significant mar-

gin. Our proposed approach achieves 4.05% mean error

on WFLW, 2.93% mean error on 300W full-set, and 3.71%

mean error on COFW.

1. Introduction

Face alignment, aimed at localizing facial landmark,

plays an essential role in many face analysis applications,

e.g. face verification and recognition [23], face morphing

[10], expression recognition [13], and 3D face reconstruc-

tion [7]. Recent years have witnessed the constant emer-

gence of fancy face alignment algorithms with considerable

performance on various datasets. Yet face alignment in un-

constrained situations, e.g. large head pose, exaggerated ex-

pression, and uneven illumination, has plagued researchers
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Figure 1. Building blocks of our propagation module. Landmark

heatmaps are input to multiple convolutional operations, then con-

catenated with the output feature maps of last hourglass module,

together processed by a two-stage hourglass module, and finally

normalized by a sigmoid layer to form an attention map that is

imposed on the feature maps.

over the years. Among many other factors, we attribute the

mentioned challenges to the disability of CNN to learn fa-

cial structure information: if a CNN is enabled to extract

the structure of a face in an image, then it can predict facial

landmarks more accurately since even the occluded parts of

a face, for instance, can be inferenced through the shape of

the face. This is also the intention of ASM [4]’s designers.

What exactly is structural information? In our work, we

deem it to be the statistical mean of landmark coordinates.

Perhaps with high variance (such as different head poses),

landmark coordinates are still subject to some distribution

due to the relative non-transformability of a face shape. In

order for a CNN to learn the information, we represent it

as facial boundary in this paper (see Fig. 2) following Wu

et al. [25]. A facial boundary could be the jawline, or the

outer contour of a face. Or it could be the edge surrounding

a mouth. These boundaries are commonly annotated with a

series of points by available datasets due to their difficulty

with modeling a line.
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In this paper, we propose and implement 3 creative ideas

to learn the structural information, , i.e. Propagation Mod-

ule, Focal Wing Loss, and Multi-view Hourglass.

Figure 2. Landmarks are connected to make several boundaries.

Wu et al. produce facial boundaries out of a separate

GAN (Generative Adversarial Network) generator. Specifi-

cally, Wu et al. connected the landmarks to make a blurred

line and specified it as ground truth for future training. Un-

like their fashion of using an independent CNN to generate

facial boundaries, we devise a Propagation Module to do

this job and incorporate it within our network architecture,

in an attempt to substitute a deeper and larger CNN with a

computation-efficient Propagation Module. In addition to

the module’s embeddability in a CNN, what is more impor-

tant is that boundary heatmaps are naturally connected with

landmark heatmaps. For this reason, it is intuitive for us to

use a series of convolution operations to model the connec-

tion and propagate a certain number of landmarks (points)

to a boundary (a curve). Hence we term the module as Prop-

agation Module.

Figure 3. Fractions of images under extreme conditions for dif-

ferent sets. Extreme conditions include large head pose, exagger-

ated expression, non-uniform illumination, unrecognizable make-

up, object occlusion, and blurry shot.

Data imbalance is a common issue in many fields of AI

and so is the case in face alignment community. The struc-

tures of a face varies under in-the-wild conditions. For ex-

ample, the jawline is less widely open when a face is in

profile position than when the face is shown frontal. How-

ever, the ratio of data under these two conditions is not ac-

tually anywhere near 1 : 1, where the number of frontal

images is the same as that of profile ones. As illustrated

in Fig. 3, the fractions of images under extreme conditions

are rather low, all under 30% across both train set and test

set. On the other hand, the fractions on train set deviates

largely from those on test set, which means a learned fea-

ture adapted to train set can misguide the neural network to

make a wrong prediction. This potential non-universal fea-

ture, therefore, necessitates a better design of loss function.

Based on the primitive AWing [24], we propose a Focal

Wing Loss, which dynamically adjusts the penalty for in-

correct prediction and gears the loss weight (thus the learn-

ing rate) for each sample in every batch during training.

This indicates that our training process pay attention evenly

to both hard-to-learn structures and easy-to-learn ones, so

we refer to the loss function as Focal Wing Loss.

Modern-day convolutional neural networks are usually

believed to be shift invariant, and so is the stacked hourglass

used in our work. Nevertheless, researchers have come

to realize the underlying shift variance brought by the in-

troduction of pooling layer, e.g. max pooling and average

pooling. To resolve this translation-variance, Zhang [31]

provided the solution of Anti-aliased CNN, which emulates

the traditional signal processing method of anti-aliasing and

apply it before every downsampling operation, such as pool-

ing and strided convolution. In our task, we cannot afford

to lose structural information when applying pooling layer,

so we incorporate Anti-aliased CNN in a special hourglass

and name it Multi-view Hourglass.

In conclusion, our main contribution include:

• creating a novel propagation module to seamlessly

connect landmark heatmaps with boundary heatmaps,

a module that can be naturally built into stacked hour-

glass model.

• devising a loss function termed as Focal Wing Loss to

dynamically assign loss weight to a particular sample

and tackle data imbalance.

• introducing Anti-aliased CNN from other fields and in-

tegrating them within our Multi-View Hourglass Mod-

ule to add shift equivariance and coordinate informa-

tion to our network.

• implementing extensive experiments on various

datasets as well as ablation studies about the men-

tioned methods.

2. Related Work

Recently, interest of face alignment community has been

largely centering on two mainstream approaches, i.e. co-

ordinate regression and heatmap regression, with various
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Head Pose Expression Illumination Make-up Occlusion Blur

Figure 4. Sample results on WFLW testset. Each column comes

from a subset of WFLW, including large head pose, expression,

illumination, make-up, occlusion, and blur.

model designs. Heatmap regression models, based on

fully convolution network (FCN), output a heatmap for each

landmark and try to maintain structure information through-

out the whole network, therefore, to some extent, dwarfing

coordinate regression models in their state-of-the-art perfor-

mance. MHM [5], one of those heatmap regression models,

implements face detection and face alignment consecutively

and leverages stacked hourglass model to predict landmark

heatmaps. AWing [24], yet another heatmap regression

model, modifies L1 loss to derive so-called adaptive wing

loss and proves its superiority in CNN-based facial land-

mark localization. What is common among these 2 mod-

els is their adoption of stacked hourglass network. Stacked

hourglass model stands out among all FCNs in the field of

landmark detection since its debut in [17] for human pose

estimation. Its prevalence can be attributed to its repeated

bottom-up, top-down processing that allows for capturing

information across all scales of an input image.

First raised by Wu et al. [25] and later popularized by

such researchers as Wang et al. [24], facial boundary iden-

tifies geometry structure of human face and therefore can

infuse a network with prior knowledge, be it used for atten-

tion mechanism (as in the case of LAB [25]) or for gener-

ation of boundary coordinate map (as in the case of AWing

[24]). In the former scenario, LAB first utilizes a stacked

hourglass model to generate facial boundary map and then

incorporates the boundary map to a regression network via

feature map fusion. In the latter scenario, AWing encodes

boundary prediction as a mask on x-y coordinates and con-

sequently produces two additional feature maps for follow-

on convolution. Different from both of them, we generate

the boundary heatmap with only several convolution opera-

tions instead of a complicated CNN.

Attention mechanism has enjoyed great popularity in

computer vision because the extra “attention” brought by

it can guide a CNN to learn worthable features and focus

on them. In our work, we want our model to focus more

on the area of boundary so it can inference landmark more

3
0
0
W

C
O
F
W

Figure 5. Sample results on 300W and COFW testsets. Each row

demonstrates samples from each dataset.

accurately based on the position of boundary. Unlike LAB

[25]’ way of using a ResNet-block-based hourglass to gen-

erate attention map, we adopt a multi-view hourglass which

can maintain structual information throughout the whole

process. Specifically, we incorporate Hierarchical, Paral-

lel & Multi-Scale block [1] to add more sizes of receptive

fields and Anti-aliased CNN [31] to improve shift invari-

ance. Larger size of receptive field means that our model

can “behold” the whole structure of a face, whereas shift

invariance means that our model can still predict boundary

heatmaps correctly even if the correspondent face image is

shifted a little bit. Moreover, we do not have to downsam-

ple boundary heatmaps every time they are fed into the next

hourglass whereas LAB does. This is because we do not

want to lose boundary information via downsampling.

CNN-based localization models have long been trained

with take-away loss functions, e.g. L1, L2, and smooth L1.

These loss functions are indeed useful in common scenar-

ios. Feng et al. [8], however, contends that L2 is sensitive

to outliers and therefore dwarfed by L1. In order to make

their model pay more attention to small and medium range

errors, they modify the L1 loss to create Wing Loss which

is more effective in landmark coordinates regression mod-

els. Based on Wing Loss, Wang et al. [24] further bring in

adaptiveness to the loss function because they believe “in-

fluence” (a concept lent from robust statistics) should be

proportional to gradient and balance all errors. The Adptive

Wing Loss they created is proven to be more effective in

heatmap regression models.

3. Approach

Based on stacked HG design from Bulat et al. [1],

our model further integrates it with Propagation Module,

anti-aliased block, and CoordConv. Each hourglass out-

puts feature maps for the following hourglass and land-

mark heatmaps supervised with ground truth labels. Next

in line is a Propagation Module, which generates boundary

heatmaps and outputs the feature maps for the follow-on

hourglass. This overall process is visualized in Fig. 6.
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Figure 6. Overview of our PropogationNet architecture. RGB images are first processed through a series of basic feature extractors, and

then fed into several hourglass modules followed by a relation block that outputs the boundary heatmaps.

Table 1. Evaluation of PropagationNet and other state-of-the-arts

on COFW testset.
Method NME FR10%

Human [2] 5.60 -

RCPR [2] 8.50 20.00

TCDCN [32] 8.05 -

DAC-CSR [9] 6.03 4.73

Wing [8] 5.44 3.75

Awing [24] 4.94 0.99

LAB [25] 3.92 0.39

PropNet(Ours) 3.71 0.20

3.1. Landmark­Boundary Propagation Module

Inspired by attention mechanism, the Landmark-

Boundary Propagation Module aims to force the network

to pay more “attention” to the boundary area in order to

make more accurate prediction of landmark heatmap. To

achieve this goal, it first employs an array of convolution

operations to transform landmark heatmaps to boundary

heatmaps. These operations basically attempt to learn how

to translate landmark heatmaps and combine the trajecto-

ries to make boundary heatmaps. Every boundary heatmap

is generated via a set of several 7 × 7 convolution oper-

ations. Then it concatenates boundary heatmaps and the

feature maps from its anterior hourglass module and feeds

them into a two-stage hourglass module in order to yield the

attention map. Finally, it enhances the feature maps with

attention map and transports those feature maps to its pos-

terior hourglass. This process is visualized in Fig. 1.

During training, the generation of boundary heatmaps is

supervised by ground truth heatmaps. As for how to pro-

duce ground truth heatmaps, we simply link landmarks to-

gether with straight lines and apply Gaussian blurring filter.

Each boundary has its semantic meanings. As depicted in

Fig. 2, landmarks lying on the jawline are connected to

make contour boundary, those denoting the lower lip are

connected to make another boundary, and so forth. In total,

we obtain M = 15 boundary heatmaps.

3.2. Focal Wing Loss

Adaptive wing loss [24] is derived from wing loss [8]

and is basically a variant of smooth L1 loss except that

the smooth quadratic curve is replaced by a logarithmic

curve. It is piecewise-defined as Eq. (1), where A =

ω (α− y) (θ/ǫ)
α−y−1

/
(

1 + (θ/ǫ)
α−y

)

/ǫ and Ω = θA −

ωln
(

1 + (θ/ǫ)
α−y

)

are defined to make the loss function

continuous and smooth at |y − ŷ| = θ and ω, θ, α, and ǫ
are hyper-parameters that affect the none-L1 range and the

gradient between it.

AWing (x) =

{

ωln
(

1 + |y−ŷ
ǫ

|α−y
)

, |y − ŷ| < θ

A |y − ŷ| − Ω, |y − ŷ| ≥ θ
(1)
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Table 2. Evaluation of PropagationNet and other state-of-the-arts

on 300W testset.

Method
Common Challenging

Fullset
Subset Subset

Inter-pupil Normalization

CFAN [30] 5.50 16.78 7.69

SDM [29] 5.57 15.40 7.50

LBF [18] 4.95 11.98 6.32

CFSS [34] 4.73 9.98 5.76

TCDCN [33] 4.80 8.60 5.54

MDM [21] 4.83 10.14 5.88

RAR [28] 4.12 8.35 4.94

DVLN [27] 3.94 7.62 4.66

TSR [15] 4.36 7.56 4.99

DSRN [16] 4.12 9.68 5.21

LAB [25] 4.20 7.41 4.92

RCN+(L+ELT) [11] 4.20 7.78 4.90

DCFE [22] 3.83 7.54 4.55

Wing [8] 3.27 7.18 4.04

AWing [24] 3.77 6.52 4.31

PropNet(Ours) 3.70 5.75 4.10

Inter-ocular Normalization

PCD-CNN [12] 3.67 7.62 4.44

CPM+SBR [6] 3.28 7.58 4.10

SAN [6] 3.34 6.60 3.98

LAB [25] 2.98 5.19 3.49

DU-Net [20] 2.90 5.15 3.35

AWing [24] 2.72 4.52 3.07

PropNet(Ours) 2.67 3.99 2.93

In order to address data imbalance, we introduce a factor

named Focal Factor. For a class c and a sample n, it is

mathematically defined as:

σ(c)
n =

{

1, if
∑N

n=1 s
(c)
n = 0

N
∑

N

n=1 s
(c)
n

, otherwise
(2)

where s
(c)
n is binary number: when s

(c)
n = 0, the sample

n does not belong to class c; when s
(c)
n = 1, the sample n

belongs to class c. In this paper, a sample that belongs to

a certain class means the sample has the cth attribute, such

as large head pose, exaggerated expression, etc. For WFLW

dataset, these attributes are labeled in annotation file, while

for COFW and 300W we hand-label these attributes by our-

selves and use them when training. Also note that the Focal

Factor is defined batch-wise, which means it is fluctuating

during the training process and again it dynamically adjusts

loss weight on every sample in a batch. Furthermore, the

weight loss is a sum of all focal factors from different class,

as can be seen in the following definition (3). This indicates

that we intend to balance the data across all classes because

a facial image can be subjected to multiple extreme condi-

tions, e.g. a blurry facial image with large head pose.

Figure 7. CED for WFLW testset. NME and FR10% are reported at

the legend for comparison. We compare our methods with other

state-of-the-arts with source codes available, including LAB [25]

and AWing [24].

As a result, we have the loss of landmark as:

Llm =
1

N

N
∑

n=1

C
∑

c=1

σ(c)
n

K
∑

k=1

AWing
(

y(k)n , ŷ(k)n

)

(3)

where N,C,K respectively denote batch size, number of

classes (subsets) and number of coordinates. In our case,

C = 6 for 6 attributes: head pose, expression, illumination,

make-up, occlusion, and blurring; K = 196 for 98 land-

marks that are considered in WFLW dataset. y
(k)
n and ŷ

(k)
n

separately stand for the ground truth heatmap of sample n,

landmark k and the corresponding predicted heatmap.

Similarly, we define the loss function for boundary

heatmap prediction as:

Lbd =
1

N

N
∑

n=1

C
∑

c=1

σ(c)
n

M
∑

m=1

AWing
(

z(m)
n , ẑ(m)

n

)

(4)

where M denotes the total number of boundaries. z
(m)
n and

ẑ
(m)
n are respectively the ground truth boundary heatmap

of sample n, boundary m and the corresponding predicted

boundary heatmap.

Finally we obtain the holistic loss function as:

Loss = Llm + β · Lbd (5)

where β is a hyper-parameter for balancing two tasks.

3.3. Multi­view Hourglass Module

Different from traditional hourglass networks using bot-

tleneck block as their building blocks, we adopt the hier-

archical, parallel and multi-scale residual architecture

proposed by Bulat et al. [1]. We think the architecture is
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Table 3. Evaluation of PropagationNet and other state-of-the-arts on WFLW testset and its subsets.

Metric Method Testset
Pose Expression Illumination Make-up Occlusion Blur

Subset Subset Subset Subset Subset Subset

NME (%)

ESR [3] 11.13 25.88 11.47 10.49 11.05 13.75 12.20

SDM [29] 10.29 24.10 11.45 9.32 9.38 13.03 11.28

CFSS [34] 9.07 21.36 10.09 8.30 8.74 11.76 9.96

DVLN [26] 6.08 11.54 6.78 5.73 5.98 7.33 6.88

LAB [25] 5.27 10.24 5.51 5.23 5.15 6.79 6.12

Wing [8] 5.11 8.75 5.36 4.93 5.41 6.37 5.81

PropNet(Ours) 4.05 6.92 3.87 4.07 3.76 4.58 4.36

FR10% (%)

ESR [3] 35.24 90.18 42.04 30.80 38.84 47.28 41.40

SDM [29] 29.40 84.36 33.44 26.22 27.67 41.85 35.32

CFSS [34] 20.56 66.26 23.25 17.34 21.84 32.88 23.67

DVLN [26] 10.84 46.93 11.15 7.31 11.65 16.30 13.71

LAB [25] 7.56 28.83 6.37 6.73 7.77 13.72 10.74

Wing [8] 6.00 22.70 4.78 4.30 7.77 12.50 7.76

PropNet(Ours) 2.96 12.58 2.55 2.44 1.46 5.16 3.75

AUC10%

ESR [3] 0.2774 0.0177 0.1981 0.2953 0.2485 0.1946 0.2204

SDM [29] 0.3002 0.0226 0.2293 0.3237 0.3125 0.2060 0.2398

CFSS [34] 0.3659 0.0632 0.3157 0.3854 0.3691 0.2688 0.3037

DVLN [26] 0.4551 0.1474 0.3889 0.4743 0.4494 0.3794 0.3973

LAB [25] 0.5323 0.2345 0.4951 0.5433 0.5394 0.4490 0.4630

Wing [8] 0.5504 0.3100 0.4959 0.5408 0.5582 0.4885 0.4918

PropNet(Ours) 0.6158 0.3823 0.6281 0.6164 0.6389 0.5721 0.5836

beneficial to landmark localization due to its multiple re-

ceptive fields and the various scale of images those fields

can bring. That means we have features describing the

larger structure a human face as well as details about each

boundary. Hence we name hourglass module as Multi-view

Hourglass module and the architecture itself as Multi-view

Block, as seen in Fig. 6.

On the other hands, we implement anti-aliased CNN

in place of pooling layer used in traditional hourglass net-

works. One reason for this is to maintain shift equality in

our network while another reason is that we do not want

to lose some detail information caused by pooling layer or

strided convolution.

3.4. Anti­aliased CNN and CoordConv

CoordConv [14] is applied in our work to learn either

complete translation invariance or ranging degrees of trans-

lation dependence. Anti-aliased CNN [31] is also used to

replace pooling layer or strided convolution in our work to

preserve shift equality. We term it anti-aliased block, seen

in Fig. 6.

4. Experiments

4.1. Evaluation Metrics

Normalized Mean Error (NME) is a widely used met-

ric to evaluate the performance of a facial landmark local-

ization algorithm. Pixel-wise absolute distance is normal-

ized over a distance that takes face size into consideration.

Error of each keypoint is calculated this way and then aver-

aged to get the final result. See Equation (6).

NME
(

P, P̂
)

=
1

L

L
∑

l=1

‖pl − p̂l‖2
d

(6)

where P, P̂ are respectively the ground truth coordinates

of all points and the predicted ones for a face image, L
is the total number of keypoints, and pl, p̂l are both 2-

dimensional vector presenting the x-y coordinates of the i-th

keypoint. Especially, d is the mentioned normalization fac-

tor, be it inter-pupil distance or inter-ocular distance. The

latter could be distance between the inner corners of eyes

(not commonly used) or the outer corner of eyes which we

use in our evaluation. For 300W dataset, both factors is ap-

plied; for COFW dataset, we use only inter-pupil distance;

for WFLW dataset, inter-ocular distance is adopted.

Failure Rate (FR) provides another insight into a face

alignment algorithm design. The NME computed on every

image is thresholded at, for example, 8% or 10%. If the

NME of an image is larger than the threshold, the sample is

considered to be a failure. We derive the FR from the rate

of failures in a testset.

Area under the Curve (AUC) is yet another metric pop-

ular among designers of facial landmark detection algo-

rithm. Basically, we derive it from the CED curve: by plot-

ting the curve from zero to the threshold for FR, we have
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Figure 8. Image samples from WFLW testset imposed with gener-

ated boundary heatmap. Each column comes from different sub-

set.

a non-negative curve under which the area is calculated to

be AUC. An AUC increment implies that more samples in

testset are well predicted.

4.2. Datasets

We perform training and testing of our model on 3

datasets: the challenging dataset WFLW [25] which con-

sists of 10,000 faces (7,500 for training and 2,500 for test-

ing) with 98 fully manual annotated landmarks and is proba-

bly hitherto the largest open dataset for face alignment with

a large number of keypoints annotation; COFW dataset [2]

which contains 1852 face images (1,345 for training and

507 for testing) with 29 annotated landmarks and features

heavy occlusions and large shape variations; 300W [19]

which is the first facial landmark localization benchmark

and for its testset, includes 554 samples for common subset

and 135 images for challenging subset.

On WFLW dataset, we achieve state-of-the-art perfor-

mance. See Table 3. Compared with the second leading

algorithm, i.e. Wing, we improve 3 metrics by about 20%

for NME, around 51% for FR10%, and roughly 12% for

AUC10%. More importantly, we outperform all the others

algorithms on all subsets, which means our model remains

robust against different in-the-wild conditions. Special at-

tention should be paid to pose and make-up subsets, where

we made a significant improvement. Some sample from the

testset can be viewed in Fig. 4. Besides, we also draw

Cumulative Error Distribution (CED) curves (see Fig. 7)

for algorithms with available released code, including LAB

[25] and AWing [24]. From the figure, it is obvious that our

PropNet curve is higher than the rest two between 0.02 and

0.08, which means we are able to predict facial landmarks

of a larger fraction of images in WFLW testset.

On COFW dataset, our algorithm outperforms the other

models. See Table 1. As we all know that COFW is well-

known for heavy occlusion and wide range of head pose

variation, our leading NME and FR10% prove that our algo-

rithm stays robust again those extreme situations. This also

implies that Propagation Module is able to infuse the net-

work with geometrical structure of a human face because

only this structure remains in those worst case scenarios.

We can see this in Fig. 5.

On 300W dataset, our model performs excellently on

both two subsets and the fullset when compared with other

algorithms using inter-ocular normalization factor, as the

upper part of Table 2 demonstrates. In terms of metrics

vis-à-vis inter-pupil normalization, we have similar metrics

with the other leading algorithm on the common set and the

fullset, but beat them on the challenging set. This suggests

that our algorithm can make plausible predictions even in

deplorable situations. This is obviously demonstrated in

Fig. 5. A potential reason for relative higher NME with

inter-pupil normalization is that 300W annotates some out-

of-bounding-box facial parts, e.g. chin, with a flat line along

the bounding box rather than sticks to the truth. Therefore,

this annotation style makes it difficult for our model to learn

facial structure.

4.3. Implementation Details

Every input image is cropped and resized to 256 × 256
and the output feature map of every hourglass module is

64× 64. In our network architecture, we adopt four stacked

hourglass modules. During training process, we use Adam

to optimize our neural network with the initial learning rate

set as 1×10−4. Besides, data augmentation is implemented

at training time: random rotation (±30◦), random scaling

(±15%), random crop (±25px), and random horizontal flip

(50%). At test time, we adopt the same strategy of slightly

modifying the predicted result as [17], that is, the coordi-

nate of highest heatmap response is shifted a quarter pixel

away to the coordinate of second highest response next to

it. Moreover, we empirically set the hyper-parameters in

our loss function to be: α = 2.1, β = 0.5, ω = 14, ǫ =
1.0, θ = 0.5.

4.4. Ablation study

Our algorithm is comprised of several pivotal designs,

i.e. Propagation Module (PM), Hourglass Module (HM),

and Focal Wing Loss. We will delve into the effectiveness

of these components in the following paragraph. For com-

parison, we use stacked hourglass model with ResNet block

as our baseline and it is trained with adaptive wing loss.

Propagation Module plays an important role in enhanc-

ing our model’s performance. It makes the largest improve-
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Table 4. The potential of Propagation Module’s (PM) contribution

to our model’s performance.

Method Without PM With PM

NME 4.81 4.48

FR10% 3.36 3.12

AUC10% 0.5132 0.5421

ment to our model. We set our baseline as a stacked hour-

glass network without this module. See Table 4 and com-

pare the relation-block-enhanced model with the baseline

model. We can observe −6.86%, −7.14%, 5.63% increase

respectively in NME (the lower the better), FR (the lower

the better), and AUC (the larger the better). From Fig. 8, we

can see the actual results of generated boundary heatmaps.

They are consistent with our expectation, and substantiate

our presumption that landmark heatmaps can be propagated

to boundary heatmaps via a few consecutive convolution

operations. Furthermore, note that our algorithm remain ro-

bust in extreme conditions, especially when human face is

being occluded, which means the structural information has

been captured through our propagation module.

Table 5. The potential of Multi-view Hourglass Module’s (MHM)

contribution to our model’s performance compared to baseline

model with Bottleneck Block (BB).

Method BB MHM

NME 4.81 4.67

FR10% 3.36 3.16

AUC10% 0.5132 0.5300

Table 6. Comparison between anti-aliased CNN (AC) with differ-

ent size of Gaussian kernel.
Method BL BL+AC-2 BL+AC-3 BL+AC-5

NME 4.81 4.79 4.67 4.75

FR10% 3.36 3.80 3.16 3.76

AUC10% 0.5132 0.5178 0.5300 0.5200

Hourglass Module is one effective module to improve

our network’s performance on WFLW dataset. Take a look

at Table 5. In comparison with the baseline model with

bottleneck block, it increases all three metrics by about

−2.91%, −5.95%, 3.27%. When encountered with the

choice of Gaussian kernel size for anti-aliased CNN, we

compare different sizes against the baseline model. See Ta-

ble 6. We use AC-n to indicate the Gaussian kernel of size

n. For example, AC-3 stands out and we use the size 3 in

the rest experiments.

Focal Wing Loss also contributes to the improvement of

our model’s performance. As can been seen in Table 7, it

gives a rise to three metric increments compared to baseline

model trained with AWing by around −3.53%, −1.19%,

1.23% respectively. In addition, we can also see from Table

3 that our model performs better than other state-of-the-arts

Table 7. The potential of Focal Wing Loss’s contribution to overall

performance.

Method AWing Focal Wing

NME 4.81 4.64

FR10% 3.36 3.32

AUC10% 0.5132 0.5195

on every subsets, which means data imbalance has been ef-

fectively addressed and once again it helps our network to

sustain its robustness against extreme conditions (see fig.

4).

Table 8. Complexity of PropNet and some other state-of-the-arts.

Method LAB[25] AWing[24] PropNet

#params (M) 12.29 24.15 36.30

FLOPS (G) 18.85 26.79 42.83

See Table 8. We make a comparison of computational

complexity with some of the open-source state-of-the-arts.

As can be seen in the table, we have greater number of pa-

rameters and FLOPS than the other two, which may explain

why we achieve better performance than them.

5. Conclusion

In our paper, we pinpoint the long-ignored relation be-

tween landmark heatmaps and boundary heatmaps. To this

end, we propose a Propagation Module to capture the struc-

ture information of human face and bridge the gap between

landmark heatmap and boundary heatmap. This module is

proven by our extensive experiments on widely recognized

datasets to be effective and beneficial to the improvement of

our algorithm’s performance.

Then we creatively formulate our method to solve data

imbalance by introducing the Focal Factor, a factor attempt-

ing to dynamically accommodate the loss weight on each

sample in a batch. As our ablation studies show, it makes

our algorithm more robust under extreme conditions.

Finally, we also redesign hourglass network by incor-

porating multi-view blocks and anti-aliased network. The

multi-view blocks enables our network to have both macro

and micro receptive fields while the anti-aliased architecture

make our network shift invariant again. Our ablation studies

substantiate its usefulness in the enhancement of our perfor-

mance.
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