
Referring Image Segmentation via Cross-Modal Progressive Comprehension

Shaofei Huang1,2∗ Tianrui Hui1,2∗ Si Liu3† Guanbin Li4 Yunchao Wei5

Jizhong Han1,2 Luoqi Liu6 Bo Li3

1 Institute of Information Engineering, Chinese Academy of Sciences
2 School of Cyber Security, University of Chinese Academy of Sciences

3 School of Computer Science and Engineering, Beihang University
4 Sun Yat-sen University 5 University of Technology Sydney 6 360 AI Institute

Abstract

Referring image segmentation aims at segmenting the

foreground masks of the entities that can well match the

description given in the natural language expression. Pre-

vious approaches tackle this problem using implicit feature

interaction and fusion between visual and linguistic modal-

ities, but usually fail to explore informative words of the

expression to well align features from the two modalities

for accurately identifying the referred entity. In this pa-

per, we propose a Cross-Modal Progressive Comprehen-

sion (CMPC) module and a Text-Guided Feature Exchange

(TGFE) module to effectively address the challenging task.

Concretely, the CMPC module first employs entity and at-

tribute words to perceive all the related entities that might

be considered by the expression. Then, the relational words

are adopted to highlight the correct entity as well as sup-

press other irrelevant ones by multimodal graph reasoning.

In addition to the CMPC module, we further leverage a

simple yet effective TGFE module to integrate the reasoned

multimodal features from different levels with the guidance

of textual information. In this way, features from multi-

levels could communicate with each other and be refined

based on the textual context. We conduct extensive experi-

ments on four popular referring segmentation benchmarks

and achieve new state-of-the-art performances. Code is

available at https://github.com/spyflying/CMPC-Refseg.

1. Introduction

As deep models have made significant progresses in vi-

sion or language tasks [31][26][18][12][39], fields combin-

ing them [37][28][50] have drawn great attention of re-

searchers. In this paper, we focus on the referring image

segmentation (RIS) problem whose goal is to segment the
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Figure 1. Interpretation of our progressive referring segmentation

method. (a) Input referring expression and image. (b) The model

first perceives all the entities described in the expression based on

entity words and attribute words, e.g., “man” and “white frisbee”

(orange masks and blue outline). (c) After finding out all the candi-

date entities that may match with input expression, relational word

“holding” can be further exploited to highlight the entity involved

with the relationship (green arrow) and suppress the others which

are not involved. (d) Benefiting from the relation-aware reasoning

process, the referred entity is found as the final prediction (purple

mask). (Best viewed in color).

entities described by a natural language expression. Beyond

traditional semantic segmentation, RIS is a more challeng-

ing problem since the expression can refer to objects or stuff

belonging to any category in various language forms and

contain diverse contents including entities, attributes and re-

lationships. As a relatively new topic that is still far from

being solved, this problem has a wide range of potential ap-

plications such as interactive image editing, language-based

robot controlling, etc. Early works [17][30][34][23] tackle

this problem using a straightforward concatenation-and-

convolution scheme to fuse visual and linguistic features.

Later works [38][3][44] further utilize inter-modality atten-
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tion or self-attention to learn only visual embeddings or

visual-textual co-embeddings for context modeling. How-

ever, these methods still lack the ability of exploiting dif-

ferent types of informative words in the expression to accu-

rately align visual and linguistic features, which is crucial

to the comprehension of both expression and image.

As illustrated in Figure 1 (a) and (b), if the referent, i.e.,

the entity referred to by the expression, is described by “The

man holding a white frisbee”, a reasonable solution is to

tackle the referring problem in a progressive way which can

be divided into two stages. First, the model is supposed to

perceive all the entities described in the expression accord-

ing to entity words and attribute words, e.g., “man” and

“white frisbee”. Second, as multiple entities of the same

category may appear in one image, for example, the three

men in Figure 1 (b), the model needs to further reason re-

lationships among entities to highlight the referent and sup-

press the others that are not matched with the relationship

cue given in the expression. In Figure 1 (c), the word “hold-

ing” which associates “man” with “white frisbee” power-

fully guides the model to focus on the referent who holds a

white frisbee rather than the other two men, which assists in

making correct prediction in Figure 1 (d).

Based on the above motivation, we propose a Cross-

Modal Progressive Comprehension (CMPC) module which

progressively exploits different types of words in the ex-

pression to segment the referent in a graph-based struc-

ture. Concretely, our CMPC module consists of two stages.

First, linguistic features of entity words and attribute words

(e.g., “man” and “white frisbee”) extracted from the ex-

pression are fused with visual features extracted from the

image to form multimodal features where all the entities

considered by the expression are perceived. Second, we

construct a fully-connected spatial graph where each ver-

tex corresponds to an image region and feature of each

vertex contains multimodal information of the entity. Ver-

texes require appropriate edges to communicate with each

other. Naive edges treating all the vertexes equally will in-

troduce abundant information and fail to distinguish the ref-

erent from other candidates. Therefore, our CMPC module

employs relational words (e.g., “holding”) of the expres-

sion as a group of routers to build adaptive edges to con-

nect spatial vertexes, i.e., entities, that are involved with

the relationship described in the expression. Particularly,

spatial vertexes (e.g., “man”) that have strong responses to

the relational words (e.g., “holding”) will exchange infor-

mation with others (e.g., “frisbee”) that also correlate with

the relational words. Meanwhile, spatial vertexes that have

weak responses to the relational words will have less in-

teraction with others. After relation-aware reasoning on

the multimodal graph, feature of the referent can be high-

lighted while those of the irrelevant entities can be sup-

pressed, which assists in generating accurate segmentation.

As multiple levels of features can complement each

other [23][44][3], we also propose a Text-Guided Feature

Exchange (TGFE) module to exploit information of multi-

modal features refined by our CMPC module from different

levels. For each level of multimodal features, our TGFE

module utilizes linguistic features as guidance to select use-

ful feature channels from other levels to realize information

communication. After multiple rounds of communication,

multi-level features are further fused by ConvLSTM [42] to

comprehensively integrate low-level visual details and high-

level semantics for precise mask prediction.

Our contributions are summarized as follows: (1)

We propose a Cross-Modal Progressive Comprehension

(CMPC) module which first perceives all the entities that

are possibly referred by the expression, then utilizes rela-

tionship cues of the input expression to highlight the ref-

erent while suppressing other irrelevant ones, yielding dis-

criminative feature representations for the referent. (2)

We also propose a Text-Guided Feature Exchange (TGFE)

module to conduct adaptive information communication

among multi-level features under the guidance of linguis-

tic features, which further enhances feature representations

for mask prediction. (3) Our method achieves new state-of-

the-art results on four referring segmentation benchmarks,

demonstrating the effectiveness of our model.

2. Related Work

2.1. Semantic Segmentation

Semantic segmentation has made a huge progress based

on Fully Convolutional Networks (FCN) [32]. FCN re-

places fully-connected layers in original classification net-

works with convolution layers and becomes the stan-

dard architecture of the following segmentation methods.

DeepLab [4][5][6] introduces atrous convolution with dif-

ferent atrous rates into FCN model to enlarge the re-

ceptive field of filters and aggregate multi-scale context.

PSPNet [49] utilizes pyramid pooling operations to ex-

tract multi-scale context as well. Recent works such as

DANet [11] and CFNet [47] employ self-attention mech-

anism [40] to capture long-range dependencies in deep net-

works and achieve notable performance. In this paper, we

tackle the more generalized and challenging semantic seg-

mentation problem whose semantic categories are specified

by natural language referring expression.

2.2. Referring Expression Comprehension

The goal of referring expression comprehension is to lo-

calize the entities in the image which are matched with the

description of a natural language expression. Many works

conduct localization in bounding box level. Liao et al. [27]

performs cross-modality correlation filtering to match mul-

timodal features in real time. Relationships between vision

and language modalities [16][43] are also modeled to match
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Figure 2. Overview of our proposed method. Visual features and linguistic features are first progressively aligned by our Cross-Modal Pro-

gressive Comprehension (CMPC) module. Then multi-level multimodal features are fed into our Text-Guided Feature Exchange (TGFE)

module for information communication across different levels. Finally, multi-level features are fused with ConvLSTM for final prediction.

the expression with most related objects. Modular networks

are explored in [45] to decompose the referring expression

into subject, location and relationship so that the matching

score is more finely computed.

Beyond bounding box, the referred object can also be

localized more precisely with segmentation mask. Hu

et al. [17] first proposes the referring segmentation prob-

lem and generates the segmentation mask by directly con-

catenating and fusing multimodal features from CNN and

LSTM [15]. In [30], multimodal LSTM is employed to

sequentially fuse visual and linguistic features in multiple

time steps. Based on [30], dynamic filters [34] for each

word further enhance multimodal features. Fusing multi-

level visual features is explored in [23] to recurrently re-

fine the local details of segmentation mask. As context in-

formation is critical to segmentation task, Shi et al. [38]

utilizes word attention to aggregate only visual context to

enhance visual features. For multimodal context extrac-

tion, cross-modal self-attention is exploited in [44] to cap-

ture long-range dependencies between each image region

and each referring word. Visual-textual co-embedding is

explored in [3] to measure compatibility between referring

expression and image. Adversarial learning [36] and cycle-

consistency [8] between referring expression and its recon-

structed caption are also investigated to boost the segmenta-

tion performance. In this paper, we propose to progressively

highlight the referent via entity perception and relation-

aware reasoning for accurate referring segmentation.

2.3. Graph­Based Reasoning

It has been shown that graph-based models are effec-

tive for context reasoning in many tasks. Dense CRF [2]

is a widely used graph model for post-processing in im-

age segmentation. Recently, Graph Convolution Networks

(GCN) [2] becomes popular for its superiority on semi-

supervised classification. Wang et al. [41] construct a

spatial-temporal graph using region proposals as vertexes

and conduct context reasoning with GCN, which performs

well on video recognition task. Chen et al. [7] pro-

pose a global reasoning module which projects visual fea-

ture into an interactive space and conducts graph convo-

lution for global context reasoning. The reasoned global

context is projected back to the coordinate space to en-

hance original visual feature. There are several concurrent

works [24][25][48] sharing the same idea of projection and

graph reasoning with different implementation details. In

this paper, we propose to regard image regions as vertexes

to build a spatial graph where each vertex saves multimodal

feature vector as its state. Information flow among vertexes

is routed by relational words in the referring expression and

implemented using graph convolution. After the graph rea-

soning, image regions can generate accurate and coherent

responses to the referring expression.

3. Method

Given an image and a natural language expression, the

goal of our model is to segment the corresponding entity

referred to by the expression, i.e., the referent. The over-

all architecture of our model is illustrated in Figure 2. We

first extract the visual features of the image with a CNN

backbone and the linguistic features of the expression with

a text encoder. A novel Cross-Modal Progressive Com-

prehension (CMPC) module is proposed to progressively

highlight the referent and suppress the others via entity per-

ception and subsequent relation-aware reasoning on spatial

region graph. The proposed CMPC module is applied to

multiple levels of visual features respectively and the cor-

responding outputs are fed into a Text-Guided Feature Ex-

change (TGFE) module to communicate information under

the guidance of linguistic modality. After the communi-
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cation, multi-level features are finally fused with ConvL-

STM [42] to make the prediction. We will elaborate each

part of our method in the rest subsections.

3.1. Visual and Linguistic Feature Extraction

As shown in Figure 2, our model takes an image and

an expression as inputs. The multi-level visual features are

extracted with a CNN backbone and respectively fused with

an 8-D spatial coordinate feature O ∈ R
H×W×8 using a

1× 1 convolution following prior works [30][44]. After the

convolution, each level of visual features are transformed to

the same size of RH×W×Cv , with H , W and Cv being the

height, width and channel dimension of the visual features.

The transformed visual features are denoted as {X3, X4,

X5} corresponding to the output of the 3rd, 4th and 5th

stages of CNN backbone (e.g., ResNet-101 [14]). For ease

of presentation, we denote a single level of visual features as

X in Sec. 3.2. The linguistic features L = {l1, l2, ..., lT } is

extracted with a language encoder (e.g., LSTM [15]), where

T is the length of expression and li ∈ R
Cl(i ∈ {1, 2, ..., T})

denotes feature of the i-th word.

3.2. Cross­Modal Progressive Comprehension

As many entities may exist in the image, it is natural to

progressively narrow down the candidate set from all the

entities to the actual referent. In this section, we propose a

Cross-Modal Progressive Comprehension (CMPC) module

which consists of two stages, as illustrated in Figure 3. The

first stage is entity perception. We associate linguistic fea-

tures of entity words and attribute words with the correlated

visual features of spatial regions using bilinear fusion [1] to

obtain the multimodal features M ∈ R
H×W×Cm . All the

candidate entities are perceived by the fusion. The second

stage is relation-aware reasoning. A fully-connected multi-

modal graph is constructed over M with relational words

serving as a group of routers to connect vertexes. Each

vertex of the graph represents a spatial region on M . By

reasoning among vertexes of the multimodal graph, the re-

sponses of the referent matched with the relationship cue are

highlighted while those of non-referred ones are suppressed

accordingly. Finally, the enhanced multimodal features M̄g

are further fused with visual and linguistic features.

Entity Perception. Similar to [43], we classify the

words into 4 types, including entity, attribute, relation and

unnecessary word. A 4-D vector is predicted for each word

to indicate the probability of it being the four types re-

spectively. We denote the probability vector for word t as

pt = [pentt , pattrt , prelt , punt ] ∈ R
4 and calculate it as:

pt = softmax(W2σ(W1lt + b1) + b2), (1)

where W1 ∈ R
Cn×Cl , W2 ∈ R

4×Cn , b1 ∈ R
Cn and

b2 ∈ R
4 are learnable parameters, σ(·) is sigmoid function,

pentt , pattrt , prelt and punt denote the probabilities of word

t being the entity, attribute, relation and unnecessary word

respectively. Then the global language context of entities

q ∈ R
Cl could be calculated as a weighted combination of

the all the words in the expression:

q =
T
∑

t=1

(pentt + pattrt )lt. (2)

Next, we adopt a simplified bilinear fusion strategy [1]

to associate q with the visual feature of each spatial region:

Mi = (qW3i)⊙ (XW4i), (3)

M =

r
∑

i=1

Mi (4)

where W3i ∈ R
Cl×Cm and W4i ∈ R

Cv×Cm are learnable

parameters, r is a hyper-parameter and ⊙ denotes element-
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wise product. By integrating both visual and linguistic con-

text into the multimodal features, all the entities that might

be referred to by the expression are perceived appropriately.

Relation-Aware Reasoning. To selectively highlight the

referent, we construct a fully-connected graph over the mu-

timodal features M and conduct reasoning over the graph

according to relational cues in the expression. Formally, the

multimodal graph is defined as G = (V, E ,Mg, A) where V
and E are the sets of vertexes and edges, Mg = {mi}Ni=1 ∈
R

N×Cm is the set of vertex features, A ∈ R
N×N is the

adjacency matrix and N is number of vertexes.

Details of relation-aware reasoning is illustrated in the

right part of Figure 3. As each location on M represents a

spatial region on the original image, we regard each region

as a vertex of the graph and the multimodal graph is com-

posed of N = H × W vertexes in total. After the reshap-

ing operation, a linear layer is applied to M to transform

it into the features of vertexes Mg . The edge weights de-

pend on the affinities between vertexes and relational words

in the referring expression. Features of relational words

R = {rt}Tt=1 ∈ R
T×Cl are calculated as:

rt = prelt lt, t = 1, 2, ..., T. (5)

As shown in Figure 3, adjacency matrix A is formulated as:

B = (MgW5)(RW6)
T , (6)

B1 = softmax(B), (7)

B2 = softmax(BT ), (8)

A = B1B2, (9)

where W5 ∈ R
Cm×Ch and W6 ∈ R

Cl×Ch are learnable pa-

rameters. B ∈ R
N×T is the affinity matrix between Mg and

R. We apply the softmax function along the second and first

dimension of B to obtain B1 ∈ R
N×T and B2 ∈ R

T×N

respectively. A is obtained by matrix product of B1 and

B2. Each element Aij of A represents the normalized mag-

nitude of information flow from the spatial region i to the

region j, which depends on their affinities with relational

words in the expression. In this way, relational words of the

expression can be leveraged as a group of routers to build

adaptive edges connecting vertexes.

After the construction of multimodal graph G, we apply

graph convolution [21] to it as follow:

M̄g = (A+ I)MgW7, (10)

where W7 ∈ R
Cm×Cm is a learnable weight matrix. I is

identity matrix serving as a shortcut to ease optimization.

The graph convolution reasons among vertexes, i.e., image

regions, so that the referent is selectively highlighted ac-

cording to the relationship cues while other irrelevant ones

are suppressed, which assists in generating more discrimi-

native feature representations for referring segmentation.

Afterwards, reshaping operation is applied to obtain the

enhanced multimodal features M̄g ∈ R
H×W×Cm . To in-

corporate the textual information, we first combine features

of all necessary words into a vector s ∈ R
Cl with the pre-

defined probability vectors:

s =
T
∑

t=0

(pentt + pattrt + prelt )lt. (11)

We repeat s for H × W times and concatenate it with X

and M̄g along channel dimension following with a 1 × 1
convolution to get the output features Y ∈ R

H×W×Cm ,

which is equipped with multimodal context for the referent.

3.3. Text­Guided Feature Exchange

As previous works [23][44] show that multi-level seman-

tics are essential to referring segmentation, we further intro-

duce a Text-Guided Feature Exchange (TGFE) module to

communicate information among multi-level features based

on the visual and language context. As illustrated in Fig-

ure 2, the TGFE module takes Y3, Y4, Y5 and word features

[l1, l2, ..., lT ] as input. After n rounds of feature exchange,

Y
(n)
3 , Y

(n)
4 , Y

(n)
5 are produced as outputs.

To get Y
(k)
i , i ∈ {3, 4, 5}, k ≥ 1, we first extract a global

vector g
(k−1)
i ∈ R

Cm of Y
(k−1)
i by weighted global pool-

ing:

g
(k−1)
i = Λ

(k−1)
i Y

(k−1)
i , (12)

where the weight matrix Λ
(k−1)
i ∈ R

HW is derived from:

Λ
(k−1)
i = (sW8)(Y

(k−1)
i W9)

T , (13)

where W8 ∈ R
Cl×Ch and W9 ∈ R

Cm×Ch are transform-

ing matrices. Then a context vector c
(k−1)
i which contains

multimodal context of Y
(k−1)
i is calculated by fusing s and

g
(k−1)
i with a fully connected layer. We finally select in-

formation correlated with level i from features of other two

levels to form the refined features of level i at round k:

Y
(k)
i =















Y
(k−1)
i +

∑

j∈{3,4,5}\{i}

σ(c
(k−1)
i )⊙ Y

(k−1)
j , k ≥ 1

Yi, k = 0
(14)

where σ(·) denotes the sigmoid function. After n rounds

of feature exchange, features of each level are mutually re-

fined to fit the context referred to by the expression. We

further fuse the output features Y
(n)
3 , Y

(n)
4 and Y

(n)
5 with

ConvLSTM [42] for harvesting the final prediction.

4. Experiments

4.1. Experimental Setup

Datasets. We conduct extensive experiments on four

benchmark datasets for referring image segmentation in-
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Method UNC UNC+ G-Ref ReferIt

val testA testB val testA testB val test

LSTM-CNN [17] - - - - - - 28.14 48.03

RMI [30] 45.18 45.69 45.57 29.86 30.48 29.50 34.52 58.73

DMN [34] 49.78 54.83 45.13 38.88 44.22 32.29 36.76 52.81

KWA [38] - - - - - - 36.92 59.09

ASGN [36] 50.46 51.20 49.27 38.41 39.79 35.97 41.36 60.31

RRN [23] 55.33 57.26 53.95 39.75 42.15 36.11 36.45 63.63

MAttNet [45] 56.51 62.37 51.70 46.67 52.39 40.08 n/a -

CMSA [44] 58.32 60.61 55.09 43.76 47.60 37.89 39.98 63.80

CAC [8] 58.90 61.77 53.81 - - - 44.32 -

STEP [3] 60.04 63.46 57.97 48.19 52.33 40.41 46.40 64.13

Ours 61.36 64.53 59.64 49.56 53.44 43.23 49.05 65.53
Table 1. Comparison with state-of-the-art methods on four benchmark datasets using overall IoU as metric. “n/a” denotes MAttNet does

not use the same split as other methods.

cluding UNC [46], UNC+ [46], G-Ref [33] and ReferIt [19].

UNC, UNC+ and G-Ref datasets are all collected based

on MS-COCO [29]. They contain 19, 994, 19, 992 and

26, 711 images with 142, 209, 141, 564 and 104, 560 re-

ferring expressions for over 50, 000 objects, respectively.

UNC+ has no location words and G-Ref contains much

longer sentences (average length of 8.4 words) than others

(less than 4 words), making them more challenging than

UNC dataset. ReferIt dataset is collected on IAPR TC-

12 [9] and contains 19, 894 images with 130, 525 expres-

sions for 96, 654 objects (including stuff).

Implementation Details. We adopt DeepLab-101 [5]

pretrained on PASCAL-VOC dataset [10] as the CNN back-

bone following prior works [44][23] and use the output of

Res3, Res4 and Res5 for multi-level feature fusion. Input

images are resized to 320 × 320. Channel dimensions of

features are set as Cv = Cl = Cm = Ch = 1000 and

the cell size of ConvLSTM [42] is set to 500. When com-

paring with other methods, the hyper-parameter r of bilin-

ear fusion is set to 5 and the number of feature exchange

rounds n is set to 3. GloVe word embeddings [35] pre-

trained on Common Crawl 840B tokens are adopted fol-

lowing [3]. Number of graph convolution layers is set

to 2 on G-Ref dataset and 1 on others. The network is

trained using Adam optimizer [20] with the initial learn-

ing rate of 2.5e−4 and weight decay of 5e−4. Parameters of

CNN backbone are fixed during training. The standard bi-

nary cross-entropy loss averaged over all pixels is leveraged

for training. For fair comparison with prior works, Dense-

CRF [22] is adopted to refine the segmentation masks.

Evaluation Metrics. Following prior works [17][44][3],

overall Intersection-over-Union (Overall IoU) and Prec@X

are adopted as metrics to evaluate our model. Overall IoU

calculates total intersection regions over total union regions

of all the test samples. Prec@X measures the percentage of

predictions whose IoU are higher than the threshold X with

X ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

4.2. Comparison with State­of­the­arts

To demonstrate the superiority of our method, we eval-

uate it on four referring segmentation benchmarks. Com-

parison results are presented in Table 1. We follow prior

works [44][3] to only report overall IoU due to the limit

of pages. Full results are included in supplementary ma-

terials. As illustrated in Table 1, our method outperforms

all the previous state-of-the-arts on four benchmarks with

large margins. Comparing with STEP [3] which densely

fuses 5 levels of features for 25 times, our method exploits

fewer levels of features and fusion times while consistently

achieving 1.40%-2.82% performance gains on all the four

datasets, demonstrating the effectiveness of our modules.

In particular, our method yields 2.65% IoU boost against

STEP on G-Ref val set, indicating that our method could

better handle long sentences than those lack the ability of

progressive comprehension. Besides, ReferIt is a challeng-

ing dataset and previous methods only have marginal im-

provements on it. For example, STEP and CMSA [44] ob-

tain only 0.33% and 0.17% improvements on ReferIt test

set respectively, while our method enlarges the performance

gain to 1.40%, which shows that our model can well gener-

alize to multiple datasets with different characteristics. In

addition, our method also outperforms MAttNet [45] by

a large margin in Overall IoU. Though MAttNet achieves

higher precisions (e.g., 75.16% versus 71.72% in Prec@0.5

on UNC val set) than ours, it relies on Mask R-CNN [13]

pretrained on noticeably more COCO [29] images (110K)

than ours pretrained on PASCAL-VOC [10] images (10K).

Therefore, it may not be completely fair to directly compare

performances of MAttNet with ours.

4.3. Ablation Studies

We perform ablation studies on UNC val set and G-Ref

val set to testify the effectiveness of each proposed module.

Components of CMPC Module. We first explore the

10493



EP RAR TGFE GloVe Prec@0.5 Prec@0.6 Prec@0.7 Prec@0.8 Prec@0.9 Overall IoU

1 48.01 37.98 27.92 16.30 3.72 47.36

2
√

49.76 40.35 30.15 17.84 4.16 49.06

3
√

59.32 51.16 40.59 26.50 6.66 53.40

4
√ √

62.86 54.54 44.10 28.65 7.24 55.38

5
√ √ √

62.87 54.91 44.16 28.43 7.23 56.00

6* 63.12 54.56 44.20 28.75 8.51 56.38

7
√

67.63 59.80 49.72 34.45 10.62 58.81

8
√ √

68.39 60.92 50.70 35.24 11.13 59.05

9
√ √

69.37 62.28 52.66 36.89 11.27 59.62

10
√ √ √

71.04 64.02 54.25 38.45 11.99 60.72

11
√ √ √ √

71.27 64.44 55.03 39.28 12.89 61.19
Table 2. Ablation studies on UNC val set. *Row 6 is the multi-level version of row 1 using only ConvLSTM for fusion. EP and RAR

indicate entity perception stage and relation-aware reasoning stage in our CMPC module respectively.

effectiveness of each component of our proposed CMPC

module and the experimental results are shown in Ta-

ble 2. EP and RAR denotes the entity perception stage and

relation-aware reasoning stage in CMPC module respec-

tively. GloVe means using GloVe word embeddings [35] to

initialize the embedding layer, which is also adopted in [3].

Results of rows 1 to 5 are all based on single-level features,

i.e. Res5. Our baseline is implemented as simply concate-

nating the visual feature extracted with DeepLab-101 and

linguistic feature extracted with an LSTM and making pre-

diction on the fusion of them. As shown in row 2 of Ta-

ble 2, including EP brings 1.70% IoU improvement over the

baseline, indicating the perception of candidate entities are

essential to the feature alignment between visual and lin-

guistic modalities. In row 3, RAR alone brings 6.04% IoU

improvement over baseline, which demonstrates that lever-

aging relational words as routers to reason among spatial

regions could effectively highlight the referent in the image,

thus boosting the performance notably. Combining EP with

RAR, as shown in row 4, our CMPC module could achieve

55.38% IoU with single level features, outperforming base-

line with a large margin of 8.02% IoU. This indicates that

our model could accurately identity the referent by progres-

sively comprehending the expression and image. Integrated

with GloVe word embeddings, the IoU gain further achieves

8.64% with the aid of large-scale corpus.

We further conduct ablation studies based on multi-level

features in rows 6 to 11 of Table 2. Row 6 is the multi-

level version of row 1 using ConvLSTM to fuse multi-level

features. The TGFE module in rows 7 to 11 is based on

single round of feature exchange. As shown in Table 2, our

model performs consistently with the single level version,

which well proves the effectiveness of our CMPC module.

TGFE module. Table 3 presents the ablation results

of TGFE module. n is the number of feature exchange

rounds. The experiments are based on multi-level features

with CMPC module. It is shown that only one round of fea-

ture exchange in TGFE could improve the IoU from 59.85%

to 60.72%. When we increase the rounds of feature ex-

change in TGFE, the IoU increases as well, which well

proves the effectiveness of our TGFE module. We further

evaluate TGFE module on baseline model and the compar-

ing results are shown in row 6 and row 7 of Table 2. TGFE

with single round of feature exchange improves the IoU

from 56.38% to 58.81%, indicating that our TGFE module

can effectively utilize rich contexts in multi-level features.

CMPC only
+TGFE

n = 1 n = 2 n = 3
59.85 60.72 61.07 61.25

Table 3. Overall IoUs of different numbers of feature exchange

rounds in TGFE module on UNC val set. n denotes the number of

feature exchange rounds.

Dataset
CMPC

n = 0 n = 1 n = 2 n = 3
UNC val 49.06 55.38 51.57 50.70

G-Ref val 36.50 38.19 40.12 38.96
Table 4. Experiments of graph convolution on UNC val set and

G-Ref val set in terms of overall IoU. n denotes the number of

graph convolution layers in our CMPC module. Experiments are

all conducted on single level features.

Number of Graph Convolution Layer. In Table 4, we

explore the number of graph convolution layers in CMPC

module based on single-level features. n is the number of

graph convolution layers in CMPC. Results on UNC val set

show that more graph convolution layers leads to perfor-

mance degradation. However, on G-Ref val set, 2 layers

of graph convolution in CMPC achieves better performance

than 1 layer while 3 layers decreasing the performance. As

the average length of expressions in G-Ref (8.4 words) is

much longer than that of UNC (< 4 words), we suppose that

stacking more graph convolution layers in CMPC can ap-

propriately improve the reasoning effect for longer referring

expressions. However, too many graph convolution layers

may introduce noises and harm the performance.

Qualitative Results. We presents qualitative compar-

ison between the multi-level baseline model and our full
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Expression: “girl on phone”

Expression: “big green suitcase”

Expression: “stander in darker pants”

Expression: “left cup”

(a) (b) (c) (d) (a) (b) (c) (d)

Figure 4. Qualitative results of referring image segmentation. (a) Original image. (b) Results predicted by the multi-level baseline model

(row 6 in Table 2). (c) Results predicted by our full model (row 11 in Table 2). (d) Ground-truth.

Guy Guy on ground Guy standing

Man Man wearing blue sweater Man wearing light blue shirt

Donut Donut at the bottom Donut at the left

(a) (b) (c) (d) (e)

Figure 5. Visualization of affinity maps between images and expressions in our model. (a) Original image. (b)(c) Affinity maps of only

entity words and full expressions in the test samples. (d) Ground-truth. (e) Affinity maps of expressions manually modified by us.

model in Figure 4. From the top-left example we can ob-

serve that the baseline model fails to make clear judgement

between the two girls, while our full model is able to dis-

tinguish the correct girl having relationship with the phone,

indicating the effectiveness of our CMPC module. Simi-

lar result is shown in the top-right example of Figure 4. As

illustrated in the bottom row of Figure 4, attributes and loca-

tion relationship can also be well handled by our full model.

Visualization of Affinity Maps. We visualize the affin-

ity maps between multimodal feature and the first word in

the expression in Figure 5. As shown in (b) and (c), our

model is able to progressively produce more concentrated

responses on the referent as the expression becomes more

informative from only entity words to the full sentence. In-

terestingly, when we manually modify the expression to re-

fer to other entities in the image, our model is still able

to correctly comprehend the new expression and identify

the referent. For example, in the third row of Figure 5(e),

when the expression changes from “Donut at the bottom” to

“Donut at the left”, high response area shifts from bottom

donut to the left donut according to the expression. It indi-

cates that our model can adapt to new expressions flexibly.

5. Conclusion and Future Work

To address the referring image segmentation problem,

we propose a Cross-Modal Progressive Comprehension

(CMPC) module which first perceives candidate entities

considered by the expression using entity and attribute

words, then conduct graph-based reasoning with the aid of

relational words to further highlight the referent while sup-

pressing others. We also propose a Text-Guided Feature

Exchange (TGFE) module which exploits textual informa-

tion to selectively integrate features from multiple levels to

refine the mask prediction. Our model consistently out-

performs previous state-of-the-art methods on four bench-

marks, demonstrating its effectiveness. In the future, we

plan to analyze the linguistic information more structurally

and explore more compact graph formulation.
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