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Abstract

We present a novel self quality evaluation metric SQE
for parameters optimization in the challenging yet critical

multi-object tracking task. Current evaluation metrics all

require annotated ground truth, thus will fail in the test en-

vironment and realistic circumstances prohibiting further

optimization after training. By contrast, our metric re-

flects the internal characteristics of trajectory hypotheses

and measures tracking performance without ground truth.

We demonstrate that trajectories with different qualities ex-

hibit different single or multiple peaks over feature dis-

tance distribution, inspiring us to design a simple yet ef-

fective method to assess the quality of trajectories using a

two-class Gaussian mixture model. Experiments mainly on

MOT16 Challenge data sets verify the effectiveness of our

method in both correlating with existing metrics and en-

abling parameters self-optimization to achieve better per-

formance. We believe that our conclusions and method are

inspiring for future multi-object tracking in practice.

1. Introduction

Multi-object tracking (MOT) aims to track all objects of

interest categories in a video sequence [18, 26]. It is cru-

cial in applications like video surveillance and autonomous

driving, where multiple pedestrians and vehicles need to be

tracked simultaneously [6, 25, 3]. In recent years, tracking-

by-detection [9, 18, 23, 6, 1, 5] has become the predomi-

nant paradigm of MOT. This approach first detects objects

in each frame, then extracts discriminative features to quan-

tify the similarities between targets, and finally perform data

association to assign detections into their most likely trajec-

tories. During this process, several influential parameters

need to be set manually, such as the threshold determining

whether to establish associations. To find the optimal pa-

∗This work was done during Zheni Zeng was an intern at Megvii Inc.
†Corresponding author.

Figure 1. Examples of different intra and inter distance distribu-

tions. Ideally, the distance distribution within the same trajectory

or between two different trajectories present a single peak with

little noise. If false identification takes place, such as the hypo-

thetical identity 2 follows target B at first and then switches to

another target C, the distance distribution would present multiple

distinguishable peaks. See Section 3.2 for a detailed explanation.

rameters, an evaluation procedure is needed to measure the

tracking performance. However, existing evaluation metrics

like event-based measures CLEAR MOT [3] or identity-

based measures IDF1 [16] all require ground truth anno-

tations, limiting the optimization to training data. Since the

optimized parameters could be sub-optimal in test scenes, a

self evaluation metric that enables parameters optimization

without ground truth is urgently needed.

To evaluate the accuracy and stability of a tracker with-

out ground truth, we design a self quality evaluation metric

SQE that considers the quantity, length, and feature dis-

tance information of the trajectory hypotheses comprehen-

sively. Our method can assess the quality of trajectories ow-

ing to the distinctive distance distribution forms as shown in

Figure 1. The intra distance denotes the feature distance be-

tween each two detection boxes in the same trajectory, and

all pairs constitute the intra distance distribution. Similarly,

the inter distance denotes the feature distance between each

two detection boxes from different trajectories. Intuitively,

when a trajectory contains different targets, the distance dis-
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tribution scatters, and we demonstrate that it has the general

characteristic of multiple peaks.

SQE enables automatic parameters adaptation to ac-

commodate different scenes. Designing a tracking algo-

rithm that performs well under various video scenes is hard,

yet tuning parameters in existing tracking algorithms can

achieve equally outstanding performance in an easier man-

ner. To the best of our knowledge, there is no previous work

in this area to date. We believe that our approach is exceed-

ingly instructive and provides new ideas for future research.

In summary, our contributions are as follows: (1) We

show that feature distance distributions can reflect trajectory

hypotheses quality; (2) We propose a self quality evaluation

metric SQE based on two-class Gaussian mixture model,

which can primarily fulfill the self-evaluation desire; (3) We

test the effectiveness of our method on various data sets and

note its drawbacks. A future prospect of using distributions

to estimate erroneous frames is discussed in the end.

2. Related Work

2.1. MOT algorithms

In the tracking-by-detection paradigm, trackers first de-

tect objects in each frame and then associate detections over

time to form trajectories for targeted individuals [9, 26, 12].

Online methods [14, 24, 4, 23] only use previous and cur-

rent frames and are thus suitable for real-time applications.

One straightforward implementation is simple online and

real-time tracking (SORT) [4], which predicts the new lo-

cations of bounding boxes using Kalman filter, followed

by a data association procedure using intersection-over-

union (IOU) to calculate the cost matrix. Although SORT

achieves favourable speed and accuracy simultaneously, it

suffers from heavy identity switches due to short-term mo-

tion information. Deep SORT [23], on the other hand, intro-

duces object re-identification (REID) as appearance infor-

mation to handle long-term occlusions, leading to a more

robust and effective algorithm. Due to the rapid develop-

ment of deep neural networks (DNNs), REID features with

powerful discriminative capability have been popularized in

MOT algorithms [6, 22, 26, 25]. In addition, the frame-by-

frame association problem is often seen as bipartite graph

matching solved by Hungarian algorithm [8].

By contrast, offline methods [27, 9, 2] have access to

the whole sequence and can perform global optimization on

data association. These batch methods generally formulate

MOT as a network flow problem [27, 15]. K-shortest paths

(KSP) [2], successive shortest-path (SSP) [9], and dynamic

programming (DP) [15] can be used to find the optimal so-

lution. Offline methods enable correction of early errors in

online methods and often show better performance, but are

not applicable to time-critical applications.

In this paper, we focus on a simple, efficient, and easy-

Figure 2. Comparison of MOTA and IDF1. Both Tracker 1 and

Tacker2 track target A which lasts 10 frames. Tracker 1, which

correctly tracks 2 frames and the remaining frames are assigned to

other wrong targets, has 4 identity switches, while Tracker 2 tracks

8 frames with 2 errors has the same number of identity switches.

IDF1 measures how long the identification is correct and give dif-

ferent scores, which can better reflect trackers’ performance.

to-implement tracking framework. We use REID features to

calculate the cost between current object detections and ex-

isting tracklets, minimize the total cost by Hungarian algo-

rithm, and employ operations like interpolation and merg-

ing to correct previous results. Among all the parameters

that need to be set, the REID threshold and merging thresh-

old are the two most dominant parameters, which allows es-

tablishing associations and merging tracklets respectively.

2.2. Evaluation metrics

Quantitative evaluation of tracking performance is chal-

lenging due to the complexity of multi-target tracking task.

A large number of metrics have been proposed [10, 17, 20,

13], including two main common metrics serving different

purposes. One of them is CLEAR MOT metrics [3, 11],

which contains multiple object tracking accuracy (MOTA)

and multiple object tracking precision (MOTP):

MOTA = 1−

∑

t(FNt + FPt + IDSt)
∑

t GTt

, (1)

MOTP =

∑

i,t d
i
t

∑

t ct
, (2)

where ct denotes the number of matched targets in frame t,

and dit denotes the matching distance of target i. Compar-

ing to MOTP, which is mainly influenced by localization

accuracy of detections, MOTA sums various sources of er-

rors, including false negatives, false positives, and identity

switches, providing a better overall performance measure.

The other is ID metrics [16], which contains identifica-

tion precision (IDP), identification recall (IDR) and corre-

sponding F1 score IDF1:

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
, (3)

where IDTP, IDFP, and IDFN are calculated by the truth-

to-result match, i.e., bipartite graph matching between true

trajectories and hypothetical trajectories. Afterwards, each
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hypothesis is assigned to a unique target. All the frames

of hypotheses with small overlap are seen as false positives

and that of ground truth are seen as false negatives.

Comparing to MOTA, IDF1 better measures the con-

sistency of ID matching. A simple example to illustrate its

effectiveness is presented in Figure 2. In this paper, we fo-

cus on the performance of identification, and thus use IDF1

as the reference of our self-evaluation metric.

3. Self Quality Evaluation

We design a novel self quality evaluation metric SQE
to measure the tracking performance without ground truth

annotations that can enable parameters optimization to gain

better tracking performance in reality. This metric should be

positively correlated with IDF1 which generally measures

the tracking performance the best. The guiding design cri-

teria is provided below in which we highlight some distinc-

tive features an ideal tracker should possess. Both the the-

oretical and practical facets show that high-quality trajecto-

ries present single peaks in the feature distance distribution,

while low-quality trajectories present multiple peaks.

3.1. Design criteria

To have a better understanding of the proposed metric,

we first explain that an ideal MOT tracker should meet the

following criteria. It should be able to: (1) track all targets

continuously from appearing to leaving the tracking area;

(2) track each target consistently, that is, each target should

be assigned one and only one track ID over time; (3) locate

the position of each target as accurately as possible.

As mentioned in Section 2.2, (3) quantifies the detection

performance in the tracking-by-detection paradigm, thus it

is not our main focus. For self evaluation metrics design,

(1) inspires that the number and length of trajectories are

supposed to be appropriate. (2) leads to the assumption that

for an outstanding tracker, REID features are as similar as

possible if coming from the same trajectory, otherwise are

as different as possible. This can be characterized by the in-

tra and inter distance of trajectories. We define the distance

between two featuresf and g as their Euclidean distance:

distance = ‖f − g‖2. (4)

Based on the above considerations, our self evaluation

metric should take the quantity, length, and feature distance

information into account comprehensively. Since establish-

ing relationship between the identification quality and the

absolute values of distance is hard, distance distribution

analysis is considered to be a more reasonable solution.

3.2. Distance distribution analysis

We demonstrate in theory that the intra distance of the

same target and the inter distance of different targets obey

chi distribution.

For object representation, it is common that low-quality

inputs will lead to uncertain estimations, causing the com-

puted REID features to fluctuate around the ideal value. We

follow the assumptions in [19], modeling the distribution of

features as multivariate Gaussian distribution:

p(z) = N (z;µ,σ2
I), (5)

where z is a N-dimension feature vector, µ and σ
2 repre-

sent the ideal value and uncertainty along each dimension

respectively. Each dimension obeys an independent Gaus-

sian distribution.

We measure the Euclidean distance between a pair of

features (zi, zj):

d(zi, zj) =

√

√

√

√

N
∑

k=1

(zik − zjk)2 =

√

√

√

√

N
∑

k=1

d2k. (6)

According to the nature of independent Gaussian random

variables, we have p(dk) = N (dk;µik − µjk, σ
2

ik + σ2

jk).
If (zi, zj) comes from the same target, then µik − µjk = 0,

σ2

ik + σ2

jk = 2σ2

k. Thus, the feature distance after stan-

dardization obeys chi distribution with a degree of freedom

equals to N:
√

√

√

√

N
∑

k=1

(
dk

√

2σ2

k

)2 ∼ χN , (7)

and if (zi, zj) comes from different targets:

√

√

√

√

√

N
∑

k=1

(
dk − (µik − µjk)

√

σ2

ik + σ2

jk

)2 ∼ χN , (8)

Therefore, the intra and inter distance distributions of

ideal trajectory hypotheses present single peaks. Next

we consider a low-quality trajectory containing an identity

switch between target A and B. For the ease of analysis, we

assume that each target and feature dimension has the same

variance. Therefore, the distance of features (zAi, zBj)
obeys non-central chi distribution with a positive noncen-

trality parameter λ =
∑N

k=1
(µAik − µBjk)

2. Meanwhile,

the distance within each target obeys central chi distribution

proved as above. The final distance distribution is indeed

the sum of central and non-central chi distributions, thus

showing a bimodal form. It can be inferred that the low-

quality trajectories with wrong identification would present

multiple peaks in the intra and inter distance distributions.

3.3. Practical verification

We practically verify the above conclusions by visualiz-

ing the intra and inter distance distributions of several dif-

ferent tracking cases in Figure 3. The results exhibit that

the high-quality trajectories, such as the one labeled with
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(a) ID 0 (b) ID 0 & ID 1

(c) ID 9 (d) ID 3 & ID 220

Figure 3. Distance distributions of several different tracking cases and corresponding visualization results.

ID 0 consistently tracks a person moving forward while be-

ing separated from the one with ID 1, present single peaks.

In contrast, the low-quality trajectories, such as the one con-

taining an identity switch with ID 9 and the overlapped ones

with ID 3 and ID 220, present multiple peaks.

To quantify the validity of our Gaussian assumption in

Section 3.2, we use the descriptor provided in [21] to per-

form a normality test on the ground truth of MOT16 train

set and find that 74% of the trajectories can be approximate

as Gaussian distribution at a significance level of 0.1. Un-

der low-density scenarios like MOT16-05, the percentage

raises to 88 %. Considering that counterexamples may oc-

cur in practice, such as two similar-dressed people, we have

also tested the performance of the descriptor on classifying

unique person IDs in MOT16’s detection boxes. When the

precision is set to 0.95, the recall and mAP can reach 0.94

and 0.98 respectively. Therefore, we consider the coun-

terexamples only make up a small portion.

However, due to non-ideal factors, the final distances do

not fully obey the theoretical chi distribution. We take ID 0

for example. Although a similar overall shape is shown, the

hypothesis test has an extremely low p-value of 0, indicat-

ing a statistically significant difference. This may have two

reasons: (1) Bias is introduced when using sample statistics

to replace the true mean and variance for standardization;

(2) Features extracted by the REID model are not indepen-

dent in each dimension. The second reason is very common,

since deep neural networks tend to cause strong correlations

between multiple dimensions.

It is encouraging that the trajectories of different quali-

ties still retain the distinctive single or multiple peaks. The

more frames with wrong identification, the more obvious

the two peaks, and the larger interval between them. In

practice we found that fitting a two-class Gaussian distri-

bution and setting a threshold for the mean difference can

qualitatively detect those low-quality trajectories which sig-

nificantly affect tracking performance. According to the vi-

sualization results, we also found that the false alarm tra-

jectory is usually short in length, large in variance, and may

interfere with the inter distances to produce multiple peaks.

These trajectories for which no real target exists are also

categorized as low-quality trajectories.

3.4. Metric

Based on the above criteria and distance distribution

analyses, we propose a novel self quality evaluation metric

SQE, which can be expressed as:

SQE =
n× L

n+ k1 × L+ k2 × (fp+ dif + sim)
(9)

The specific explanation is detailed below. The evalua-

tion process is summarized in Algorithm 1 and mainly di-

vided into four steps:

(1) For a trajectory with short length and large standard

deviation, we mark it as false alarm and accumulate fp.

(2) For the rest trajectories we utilize a two-class Gaus-

sian mixture model to fit the intra distances, and judge

whether it is a low-quality trajectory according to the mean

difference. If it exceeds a certain threshold, we assert that

this trajectory contains more than one target and accumulate

a difference error, denoted by dif .

(3) Similarly, the inter distances of each two non-false

alarm trajectories are also fitted. They are considered to

match the same target with a large mean difference, and the

similarity error is denoted by sim.

(4) Other internal characteristics like the number n and

mean length L of trajectories are also embedded.

When the REID threshold is set too strict, there are so

many detection boxes being excluded that n and L are both

8309



Algorithm 1: self quality evaluation

Input: set of trajectory hypotheses T = {Tk}
Output: self evaluation result

1 n = number of trajectories in T ;

2 L = mean length of trajectories in T ;

3 initialization;

4 foreach Tk ∈ T do

5 calculate the intra distance by Equation 4;

6 if LT k < δL and Std > δD then

7 mark the track as false alarm;

8 fp = fp+ 1;

9 else

10 fit a two-class Gaussian mixture model;

11 if ∆mean > δm then

12 dif = dif + 1;

13 end

14 end

15 end

16 foreach Tl, Tm ∈ T do

17 calculate the inter distance by Equation 4;

18 if not false alarm tracks then

19 fit a two-class Gaussian mixture model;

20 if ∆mean > δm then

21 sim = sim+ 1;

22 end

23 end

24 end

25 calculate SQE by Equation 9;

26 return SQE;

small; when n × L remains almost constant, the two vari-

ables have opposite trend, and extreme situations includ-

ing excessively fragmented or concatenated trajectories will

lead to imbalance between them. To downgrade these poor

tracking results, we employ the form of harmonic mean, and

set k1 to accommodate moving speed and density of track-

ing objects. For pedestrian tracking task on street videos,

the magnitude of n and L is approximately equivalent, and

thus k1 could be set to 1 concisely.

Based on this rough constraint form, a correction item

is added to the denominator. We have demonstrated that

the accumulated dif , sim and fp can reflect the number of

low-quality trajectories. Therefore, their sum is expected to

be small, and meanwhile the value of SQE is large. The

correction item actually plays a key role within the range of

moderate values of n and L. k2 is used to adjust the ratio

between n, L and sum of errors.

Parameters in SQE are not difficult to set. δL is compa-

rable to the video’s frame rate. With a high-precision ReID

model, randomly selecting false alarms and ID switch ex-

amples from reference videos is adequate to observe Std

and ∆m, so as to set δD and δm accordingly. Additionally,

when the tracker and task (vehicle/pedestrian) are given, k1
and k2 could be set empirically.

4. Experiments

Implementation details. We assess our self evaluation

method mainly on the MOT16 Challenge data sets [11],

which contains 14 video sequences (7 for training, 7 for

testing) taken by both static and moving cameras from dif-

ferent angles in different scenes. We focus our study on

pedestrian tracking and make use of the person ReID model

provided by [21]. All the experiments are completed with

the same parameter setting: δL = 15, δD = 0.2, δm = 0.3,

k1 = 1 and k2 takes 2 and 10 for the REID threshold and

the merging threshold, respectively. The REID threshold

varies from 0.3 to 1.6, beyond which IDF1 remains invari-

ant. Similarly, the merging threshold varies from 0.5 to 1.5.

The parameter optimization process is based on grid search.

The rest of this section prove the accuracy, universality, and

effectiveness of our self quality evaluation metric SQE.

Comparison with supervised metrics. To demonstrate

the effectiveness of our self evaluation metric in evaluating

tracking performance, we compare its score with existing

commonly used supervised metrics on MOT16-02 training

video, and visualize IDF1 and SQE in Figure 4. We found

that as the the REID threshold ascends, both SQE and IDF1

increase at first and decrease afterwards, and reach the high-

est value at 0.8 with relatively high IDP, IDR, and MOTA.

These two items present a very similar trend, which indi-

cates that our designed metric can primarily fulfill the de-

sired positive correlations with IDF1 which generally mea-

sures the performance of identification the best.

(a) (b)

Figure 4. Visualization of IDF1 and SQE on MOT16-02 (complex

scene) when changing the REID threshold.

MOT16-02 video records a complex scene with a large

number of people walking around a large square. We fur-

ther analyse the result on MOT16-09 video, a simpler street

scene with low density and the least number of tracks from

a low angle, in Figure 5. The favourable similarity illus-

trates that our self evaluation method can be generalized

to different viewpoints and scenarios. The detailed results

on other videos are provided in the supplementary material.
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video method parameter IDF∗

1
IDP∗ IDR∗ MOTA∗ IDS∗

∆
(IDF1)

02
baseline(gt) 0.80 58.3 79.3 46.0 51.9 69

0.0
SQE(ours) 0.80 58.3 79.3 46.0 51.9 69

04
baseline(gt) 1.05 82.0 93.5 73.0 77.3 21

1.1
SQE(ours) 0.80 80.9 93.0 71.5 76.2 32

05
baseline(gt) 0.90 71.2 79.2 64.6 62.0 23

0.1
SQE(ours) 1.00 71.1 78.3 65.2 61.5 32

09
baseline(gt) 1.20 76.0 88.8 66.4 73.5 8

1.3
SQE(ours) 0.80 74.7 88.6 64.6 72.2 7

10
baseline(gt) 0.95 72.4 76.6 68.7 71.5 79

1.9
SQE(ours) 0.90 70.5 74.5 66.8 71.2 81

11
baseline(gt) 0.85 80.1 89.7 72.4 75.0 29

4.6
SQE(ours) 1.00 75.5 83.8 68.7 73.5 34

13
baseline(gt) 0.75 58.2 74.6 47.7 47.0 73

2.3
SQE(ours) 1.05 55.9 68.9 47.0 45.6 90

* denotes that the score for SQE parameters is only calculated after the parameters are determined by SQE, but not used to tune the parameters.

Table 1. Comparison of the optimal REID threshold determined by ground truth and our self evaluation method on MOT16-02∼13.

(a) (b)

Figure 5. Visualization of IDF1 and SQE on MOT16-09 (simple

scene) when changing the REID threshold.

(a) (b)

Figure 6. Visualization of IDF1 and SQE on MOT16-02 when

changing the matching cosine threshold in Deep SORT algorithm.

We summarize the optimal REID threshold determined by

IDF1 and SQE in Table 1, with corresponding evaluation

scores under these parameters. Our self evaluation method

can approximately quantify tracking performance, specifi-

cally, 85% of the optimal parameter differences do not ex-

ceed 0.25, and 85% of the corresponding IDF1 differences

do not exceed 3.

Generalization to other tracking algorithms. To illus-

trate the robustness and universality of our method, other

tracking algorithms are supposed to be tested as a supple-

mentary experiment. We choose Deep SORT, which is one

of the highly recognized and open source MOT algorithms

in recent years. The REID threshold corresponds to the

matching cosine threshold in Deep SORT. This algorithm

replaces our interpolation logic with IOU matching, causing

the features during occlusion time period to exhibit a small

interference peak in the intra distance distribution; there-

fore, we remove the feature information of these frames

when performing self evaluation. As shown in Figure 6,

a strong correlation between IDF1 and SQE is presented,

demonstrating the success of our method on other trackers.

Generalization to other parameters. We further test

the universality of our method on other parameters. Except

for the REID threshold, the merging threshold is another

dominant factor affecting final tracking performance. Simi-

larly, we visualize the comparison of IDF1 and SQE of both

complex and simple scenes in Figure 7 and 8. The results

still maintain positive correlations. Table 2 shows a high

accuracy, with 5 out of 7 videos have an optimal parame-

ter difference below 0.1, and almost all the corresponding

IDF1 differences do not exceed 3.

Practical testing. Our ultimate goal is to find the op-

timal parameters in realistic scenes where ground truth is

unavailable. Additionally in reality the training data is rel-

atively small in scale comparing to the unknown test envi-

ronment. To test our method in a pragmatic manner, we

regard the first 4 training videos as our test set and the last

3 training videos as our training set. Conventionally, the

parameters are tuned on the training set and remain con-

stant during testing. In our simulation, we name these pa-
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video method parameter IDF∗

1
IDP∗ IDR∗ MOTA∗ IDS∗

∆
(IDF1)

02
baseline(gt) 1.00 57.9 72.7 46.1 51.7 82

0.0
SQE(ours) 1.00 57.9 72.7 46.1 51.7 82

04
baseline(gt) 1.05 82.3 94.2 73.1 76.8 23

0.6
SQE(ours) 1.00 81.7 93.7 72.4 76.5 27

05
baseline(gt) 0.85 73.6 82.5 66.5 61.9 34

0.5
SQE(ours) 0.75 73.1 82.8 65.5 61.4 46

09
baseline(gt) 1.00 75.9 89.2 66.0 73.2 7

3.1
SQE(ours) 0.70 72.8 85.8 63.2 72.8 12

10
baseline(gt) 1.05 71.5 75.1 68.2 70.8 77

1.6
SQE(ours) 0.95 69.9 74.5 65.9 71.5 82

11
baseline(gt) 1.10 78.2 87.6 70.5 75.0 30

2.8
SQE(ours) 0.85 75.4 84.7 68.0 73.9 35

13
baseline(gt) 1.05 56.7 70.7 47.3 46.2 68

0.6
SQE(ours) 1.10 56.1 69.2 47.1 45.4 72

Table 2. Comparison of the optimal merging threshold determined by ground truth and our self evaluation method on MOT16-02∼13.

(a) (b)

Figure 7. Visualization of IDF1 and SQE on MOT16-02 (complex

scene) when changing the merging threshold.

(a) (b)

Figure 8. Visualization of IDF1 and SQE on MOT16-09 (simple

scene) when changing the merging threshold.

rameters as the baseline parameters. Conversely, our SQE
metric can guide the self-optimization of parameters with-

out ground truth. Thus, it is employed directly to tune the 4

testing videos individually.

In reality we can first acquire baseline parameters as ref-

erence on small-scale training data, then conduct self evalu-

ation to further optimize the parameters in a relatively small

range. The procedure of computing the customized parame-

ters is as follows: (1) Find baseline parameters; (2) For each

testing video, fix one parameter with reference to baseline,

and then tune the other according to SQE alternately; (3)

Combine them to be the customized parameters.

Our method is considered to be effectual if the tracker us-

ing the customized parameters outperform the tracker using

constant training-set-tuned parameters. The result is shown

in Table 3, where gt denotes the true optimal parameters

on each video. To be rigorous, we use the best parameters

found by grid search on the 3 assumed training videos as the

baseline. It is apparent that the parameters tuned by SQE
achieve considerable improvement comparing to the base-

line, and the results are much closer to the the true optimum,

showing the effectiveness of our method when implemented

in a practical manner.

To further illustrate the performance of self-optimization

using SQE, we experiment on MOT16 test set and KITTI

train set [7]. The baseline parameters are the best param-

eters found by grid search on MOT16 training set, which

outperform empirical parameters by 5.8% IDF1 already.

This setup is based on the updated submitting policy of

KITTI 1, and we believe it can simulate pedestrian track-

ing in reality where test scenes varies greatly compared to

annotated videos. As shown in Table 4, the parameter self-

optimization enabled by SQE elevates the performance of

the tracker on these data sets.

Drawbacks and prospects. The above experiments re-

flect the effectiveness of our proposed SQE metric, while

there are still some drawbacks worth noting. Firstly, due to

the randomness during model fitting, dif and sim possess

several units of uncertainty, resulting in insufficient sensitiv-

ity to small changes in IDF1. Secondly, current metrics lack

physical consistency explanation. IDF1 is calculated by

1http://www.cvlibs.net/datasets/kitti/eval tracking.php
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video method parameter IDF∗

1
IDP∗ IDR∗ MOTA∗ IDS∗

02

gt 0.85, 0.95 59.2 79.9 47.0 52.8 80

baseline 0.75, 1.00 56.2 78.3 43.8 50.1 61

SQE(ours) 0.90, 1.00 57.9 75.5 47.0 52.8 82

04

gt 0.85, 1.05 82.6 94.6 73.3 76.7 23

baseline 0.75, 1.05 80.9 92.9 71.6 76.3 25

SQE(ours) 0.75, 1.10 82.3 94.4 72.9 76.6 21

05

gt 0.90, 0.85 73.6 82.5 66.5 61.9 34

baseline 0.75, 1.05 68.4 80.1 59.7 57.6 24

SQE(ours) 1.00, 0.95 72.2 81.1 65.1 62.6 25

09

gt 1.20, 0.70 76.0 88.8 66.4 73.5 8

baseline 0.75, 1.05 71.4 84.7 61.7 72.2 6

SQE(ours) 0.85, 0.90 73.0 87.1 62.8 71.2 10

overall

gt - 76.4 90.3 66.2 69.7 145

baseline - 74.0 88.5 63.5 68.4 116

SQE(ours) - 75.5 88.8 65.6 69.5 138

Table 3. Comparison of different REID and merging threshold selections based on ground truth, optimum of the remaining 3 videos and

our SQE metric. Adjust two parameters at the same time.

dataset method IDF∗

1
IDP∗ IDR∗ IDS∗

MOT16 test
baseline 66.6 75.8 59.4 442

ours 68.3 83.4 57.8 456

KITTI train∗∗
baseline 67.4 67.2 67.7 37

ours 68.5 67.9 69.1 44

** we use the 5 videos with the most pedestrians in KITTI train set.

Table 4. Practical testing on MOT16 test set and KITTI train set.

IDTP, IDFP and IDFN, while our method simply records

the number of low-quality trajectories. A more precise idea

is to estimate IDTP and IDFP relying on the quantity in-

formation. Assume that for a trajectory where an identity

switch occurs, target A appears n1 frames while target B

appears n2 frames. The total length is L and the number of

distances in the class with larger values is N . Then A and

B satisfy the following conditions:

{

n1 + n2 = L,

n1 × n2 = N,
(10)

which can be easily solved. We can make estimations by:

IDTP, IDFP = max (n1, n2),min (n1, n2). (11)

Such processing for the intra distance distribution can

accurately estimate the number of erroneous frames. Fur-

thermore, the inter distance distribution can help refine the

estimations. For example, if there is another trajectory that

also tracks A, we only keep the longer one as IDTP ac-

cording to the calculation rule of IDF1. However, more

detailed considerations are needed for global precise esti-

mations. In addition, categorizing low-quality trajectories

and estimating erroneous frames may also be conducive to

tracker’s post-processing so as to improve tracking perfor-

mance. Finally, the adjustable parameters k1 and k2 need to

be defined more strictly. We plan to investigate these down-

sides in the future.

5. Conclusion

In this paper, we propose a self quality evaluation met-

ric SQE to enable the parameters optimization in the test

environment and realistic scenes where ground truth is un-

available. This new perspective can bypass the difficulty of

designing an algorithm that perform well in various scenes.

We demonstrate that trajectories with different qualities ex-

hibit different single or multiple peaks in feature distance

distribution, inspiring us to use a two-class Gaussian mix-

ture model to estimate identification errors. Experiments

mainly on the MOT16 Challenge data sets demonstrate the

effectiveness of our method in both correlating with ex-

isting metrics and enabling parameters self-optimization to

achieve better tracking performance. In the end, the draw-

backs and prospects for future work are summed up. We be-

lieve that our work is instructive for further MOT research.
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