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Figure 1. Results of our monocular scene flow approach on the KITTI dataset [11]. Given two consecutive images (left), our method

jointly predicts depth (middle) and scene flow (right). (x,z)-coordinates of 3D scene flow are visualized using an optical flow color coding.

Abstract

Scene flow estimation has been receiving increasing at-

tention for 3D environment perception. Monocular scene

flow estimation – obtaining 3D structure and 3D motion

from two temporally consecutive images – is a highly ill-

posed problem, and practical solutions are lacking to date.

We propose a novel monocular scene flow method that

yields competitive accuracy and real-time performance. By

taking an inverse problem view, we design a single con-

volutional neural network (CNN) that successfully esti-

mates depth and 3D motion simultaneously from a clas-

sical optical flow cost volume. We adopt self-supervised

learning with 3D loss functions and occlusion reason-

ing to leverage unlabeled data. We validate our de-

sign choices, including the proxy loss and augmenta-

tion setup. Our model achieves state-of-the-art accuracy

among unsupervised/self-supervised learning approaches

to monocular scene flow, and yields competitive results for

the optical flow and monocular depth estimation sub-tasks.

Semi-supervised fine-tuning further improves the accuracy

and yields promising results in real-time.

1. Introduction

Scene flow estimation is the task of obtaining 3D struc-

ture and 3D motion of dynamic scenes, which is crucial to

environment perception, e.g., in the context of autonomous

navigation. Consequently, many scene flow approaches

have been proposed recently, based on different types of

input data, such as stereo images [18, 44, 51, 56, 62], 3D

point clouds [14, 29], or a sequence of RGB-D images

[15, 16, 31, 38, 39, 46]. However, each sensor configura-

tion has its own limitations, e.g. requiring stereo calibration

for a stereo rig, expensive sensing devices (e.g., LiDAR) for

measuring 3D points, or being limited to indoor usage (i.e.,

RGB-D camera). We here consider monocular 3D scene

flow estimation, aiming to overcome these limitations.

Monocular scene flow estimation, however, is a highly

ill-posed problem since both monocular depth (also called

single-view depth) and per-pixel 3D motion need to be es-

timated from consecutive monocular frames, here two con-

secutive frames. Comparatively few approaches have been

suggested so far [3, 58], none of which achieves both rea-

sonable accuracy and real-time performance.

Recently, a number of CNN approaches [5, 28, 30, 40,

60, 64] have been proposed to jointly estimate depth, flow,

and camera ego-motion in a monocular setup. This makes

it possible to recover 3D motion from the various outputs,

however with important limitations. The depth–scale ambi-

guity [40, 64] and the impossibility of estimating depth in

occluded regions [5, 28, 30, 60] significantly limit the abil-

ity to obtain accurate 3D scene flow across the entire image.

In this paper, we propose a monocular scene flow ap-

proach that yields competitive accuracy and real-time per-

formance by exploiting CNNs. To the best of our knowl-

edge, our method is the first monocular scene flow method

that directly predicts 3D scene flow from a CNN. Due to

the scarcity of 3D motion ground truth and the domain

over-fitting problem when using synthetic datasets [4, 33],

we train directly on the target domain in a self-supervised

manner to leverage large amounts of unlabeled data. Op-

tional semi-supervised fine-tuning on limited quantities of

ground-truth data can further boost the accuracy.

We make three main technical contributions: (i) We pro-

pose to approach this ill-posed problem by taking an inverse

problem view. Noting that optical flow is the 2D projec-

tion of a 3D point and its 3D scene flow, we take the in-
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verse direction and estimate scene flow in the monocular

setting by decomposing a classical optical flow cost vol-

ume into scene flow and depth using a single joint decoder.

We use a standard optical flow pipeline (PWC-Net [45])

as basis and adapt it for monocular scene flow. We ver-

ify our architectural choice and motivation by comparing

with multi-task CNN approaches. (ii) We demonstrate that

solving the monocular scene flow task with a single joint

decoder actually simplifies joint depth and flow estimation

methods [5, 28, 30, 40, 60, 64], and yields competitive ac-

curacy despite a simpler network. Existing multi-task CNN

methods have multiple modules for the various tasks and of-

ten require complex training schedules due to the instability

of training multiple CNNs jointly. In contrast, our method

only uses a single network that outputs scene flow and depth

(as well as optical flow after projecting to 2D) with a sim-

pler training setup and better accuracy for depth and scene

flow. (iii) We introduce a self-supervised loss function for

monocular scene flow as well as a suitable data augmenta-

tion scheme. We introduce a view synthesis loss, a 3D re-

construction loss, and an occlusion-aware loss, all validated

in an ablation study. Interestingly, we find that the geomet-

ric augmentations of the two tasks conflict one another and

determine a suitable compromise using an ablation study.

After training on unlabeled data from the KITTI raw

dataset [10], we evaluate on the KITTI Scene Flow dataset

[36, 37] and demonstrate highly competitive accuracy com-

pared to previous unsupervised/self-supervised learning ap-

proaches to monocular scene flow [30, 60, 61], increasing

the accuracy by 34.0%. The accuracy of our fine-tuned

network moves even closer to that of the semi-supervised

method of [3], while being orders of magnitude faster.

2. Related Work

Scene flow. Scene flow is commonly defined as a dense

3D motion field for each point in the scene, and was first

introduced by Vedula et al. [47, 48]. The most common

setup is to jointly estimate 3D scene structure and 3D

motion of each point given a sequence of stereo images

[18, 44, 50, 51, 52, 56, 62]. Early approaches were mostly

based on standard variational formulations and energy mini-

mization, yielding limited accuracy and incurring long run-

time [1, 18, 49, 56, 62]. Later, Vogel et al. [50, 51, 52]

introduced an explicit piecewise planar surface representa-

tion with a rigid motion model, which brought significant

accuracy improvements especially in traffic scenarios. Ex-

ploiting semantic knowledge by means of rigidly moving

objects yielded further accuracy boosts [2, 32, 35, 41].

Recently, CNN models have been introduced as well.

Supervised approaches [22, 24, 33, 42] rely on large syn-

thetic datasets and limited in-domain data to achieve state-

of-the-art accuracy with real-time performance. Un-/self-

supervised learning approaches [27, 28, 53] have been de-

veloped to circumvent the difficulty of obtaining ground-

truth data, but their accuracy has remained behind.

Another category of approaches estimates scene flow

from a sequence of RGB-D images [15, 16, 31, 38, 39, 46]

or 3D points clouds [14, 29], exploiting the given 3D struc-

ture cues. In contrast, our approach is based on a more chal-

lenging setup that jointly estimates 3D scene structure and

3D scene flow from a sequence of monocular images.

Monocular scene flow. Xiao et al. [58] introduced a vari-

ational approach to monocular scene flow given an initial

depth cue, but without competitive accuracy. Brickwedde et

al. [3] proposed an integrated pipeline by combining CNNs

and an energy-based formulation. Given depth estimates

from a monocular depth CNN, trained on pseudo-labeled

data, the method jointly estimates 3D plane parameters and

the 6D rigid motion of a piecewise rigid scene representa-

tion, achieving state-of-the-art accuracy. In contrast to [3],

our approach is purely CNN-based, runs in real-time, and is

trained in an end-to-end self-supervised manner, which al-

lows to exploit a large amount of unlabeled data (cf . [58]).

Joint estimation of optical flow and depth. Given two

depth maps and optical flow between two temporally con-

secutive frames, 3D scene flow can be simply calculated

[43] by relating two 3D points from optical flow. How-

ever, this pipeline has a critical limitation; it cannot esti-

mate the 3D motion for occluded pixels since their depth

value in the second frame is not known. Several recent

methods [5, 26, 40, 60, 61, 63, 64] utilized multi-task CNN

models to jointly estimate depth, optical flow, camera mo-

tion, and moving object masks from a monocular sequence

in an unsupervised/self-supervised setting. While it may

be possible to reconstruct scene flow from their outputs,

these methods [30, 60] yield limited scene flow accuracy

due to being limited to non-occluded regions. In contrast,

our method directly estimates 3D scene flow with a CNN so

that we naturally bypass this problem.

3. Self-Supervised Monocular Scene Flow

3.1. Problem formulation

For each pixel p = (px, py) in the reference frame

It, our main objective is to estimate the corresponding

3D point P = (Px, Py, Pz) and its (forward) scene flow

s = (sx, sy, sz) to the target frame It+1, as illustrated in

Fig. 2a. The scene flow is defined as 3D motion with re-

spect to the camera, and its projection onto the image plane

becomes the optical flow f = (fx, fy).
To estimate scene flow in the monocular camera setting,

we take an inverse problem approach: we use CNNs to es-

timate a classical optical flow cost volume as intermediate

representation, which is then decomposed with a learned

decoder into 3D points and their scene flow. Unlike scene

flow with a stereo camera setup [26, 27, 53], it is challeng-
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(b) Back-projecting optical flow into 3D space.

Figure 2. Relating monocular scene flow estimation to opti-

cal flow: (a) Projection of scene flow into the image plane yields

optical flow [59]. (b) Back-projection of optical flow leaves an

ambiguity in jointly determining depth and scene flow.

ing to determine depth on an absolute scale due to the scale

ambiguity. Yet, relating per-pixel correspondence between

two images can provide a cue for estimating depth in the

monocular setting. Also, given an optical flow estimate,

back-projecting optical flow into 3D yields many possible

combinations of depth and scene flow, see Fig. 2b, which

makes the problem much more challenging.

3.2. Network architecture

In contrast to previous work [5, 30, 40, 60, 61, 64] that

uses separate networks for each task (e.g., optical flow,

depth, and camera motion), our method only uses one single

CNN model that outputs both 3D scene flow and disparity1

through a single decoder. We argue that having a single

decoder is more sensible in our monocular setting than sep-

arate decoders, because when decomposing evidence for 2D

correspondence into 3D structure and 3D motion, their in-

terplay need to be taken into account (cf . Fig. 2b).

The first technical basis of our CNN model is PWC-

Net [45], one of the state-of-the-art optical flow networks,

which we modify for our task. Fig. 3 illustrates our monoc-

ular scene flow architecture atop PWC-Net. PWC-Net has

a pyramidal structure that constructs a feature pyramid and

incrementally updates the estimation across the pyramid

levels. The yellow-shaded area shows one forward pass for

each pyramid level.

While maintaining the original structure, we modify the

decoder of each pyramid level to output disparity and scene

1Even though we do not have stereo images at test time, we still esti-

mate disparity of a hypothetical stereo setup following [12, 13], which can

be converted into depth given the assumed stereo configuration.

flow together by increasing the number of output channels

from 2 to 4 (i.e., 3 for scene flow and 1 for disparity). Fol-

lowing the benefit of residual motion estimation in the con-

text of optical flow [19, 21, 45], we estimate residual scene

flow at each level. In contrast, we observe that residual

updates hurt disparity estimation, hence we estimate (non-

residual) disparity at all levels. To have more discriminate

features, we increase the number of feature channels in the

pyramidal feature extractor from [16, 32, 64, 96, 128, 196]
to [32, 64, 96, 128, 192, 256].

3.3. Addressing the scale ambiguity

When resolving the 3D ambiguities, it is not possible to

determine the depth scale from a single correspondence in

two monocular images. In order to estimate depth and scene

flow on an absolute scale, we adopt the monocular depth

estimation approach of Godard et al. [12, 13] as our second

basis, which utilizes pairs of stereo images with their known

stereo configuration and camera intrinsics K for training; at

test time, only monocular images and known intrinsics are

needed. The images from the right camera guide the CNN

to estimate the disparity d on an absolute scale by exploiting

semantic and geometric cues indirectly [7] through a self-

supervised loss function. Then the depth d̂ can be trivially

recovered given the baseline distance of a stereo rig b and

the camera focal length ffocal as d̂ = b ·ffocal/d. We also use

stereo images only for training; at test time our approach

is purely monocular. In our context, estimating depth on

an absolute scale helps to disambiguate scene flow on an

absolute scale as well (cf . Fig. 2b). Moreover, tightly cou-

pling temporal correspondence and depth actually helps to

identify the appropriate absolute scale, which allows us to

avoid unrealistic testing settings that other monocular meth-

ods rely on (e.g., [40, 61, 64] use ground truth to correctly

scale their predictions at test time).

3.4. A proxy loss for self­supervised learning

Similar to previous monocular structure reconstruction

methods [5, 30, 40, 60, 61, 63, 64], we exploit a view syn-

thesis loss to guide the network to jointly estimate disparity

and scene flow. For better accuracy in both tasks, we exploit

occlusion cues through bi-directional estimation [34], here

of disparity and scene flow. Given a stereo image pair of the

reference and target frame {Il
t, I

l
t+1, Ir

t, I
r
t+1}, we input a

monocular sequence from the left camera (Il
t and Il

t+1) to

the network and obtain a disparity map of each frame (dl
t

and dl
t+1) as well as forward and backward scene flow (sl

fw

and sl
bw) by simply switching the temporal order of the in-

put. The two images from the right camera (Ir
t and Ir

t+1) are

used only as a guidance in the loss function and are not used

at test time. Our total loss is a weighted sum of a disparity

loss Ld and a scene flow loss Lsf,

Ltotal = Ld + λsfLsf. (1)
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Figure 3. Our monocular scene flow architecture based on PWC-Net [45]: while maintaining the overall original structure of PWC-

Net, we modify the decoder to output residual scene flow and (non-residual) disparity together. After the residual update of scene flow,

we project the scene flow back to optical flow using depth. Then, the optical flow is used for warping the feature map (only 3 of 7 levels

shown for ease of visualization) in the next pyramid level. The light-yellow shaded region shows one forward pass for each pyramid level.

Disparity loss. Based on the approach of Godard et

al. [12, 13], we propose an occlusion-aware monocular dis-

parity loss, consisting of a photometric loss Ld_ph and a

smoothness loss Ld_sm,

Ld = Ld_ph + λd_smLd_sm, (2)

with regularization parameter λd_sm = 0.1. The disparity

loss is applied to both disparity maps dl
t and dl

t+1. For

brevity, we only describes the case of dl
t.

The photometric loss Ld_ph penalizes the photometric

difference between the left image Il
t and the reconstructed

left image Ĩl,d
t , which is synthesized from the output dispar-

ity map dl
t and the given right image Ir

t using bilinear in-

terpolation [23]. Different to [12, 13], we only penalize the

photometric loss for non-occluded pixels. Following stan-

dard practice [12, 13], we use a weighted combination of an

L1 loss and the structural similarity index (SSIM) [55]:

Ld_ph =

∑

p

(

1−Ol,disp
t (p)

)

· ρ
(

Il
t(p), Ĩ

l,d
t (p)

)

∑

q

(

1−Ol,disp
t (q)

)
(3a)

with

ρ(a, b) = α
1− SSIM(a, b)

2
+ (1− α)‖a− b‖1, (3b)

where α = 0.85 and Ol,disp
t is the disparity occlusion mask

(0 – visible, 1 – occluded). To obtain the occlusion mask

Ol,disp
t , we feed the right image Ir

t into the network to obtain

the right disparity dr
t and take the inverse of its disocclu-

sion map, which is obtained by forward-warping the right

disparity map [20, 54].

To encourage locally smooth disparity estimates, we

adopt an edge-aware 2nd-order smoothness [28, 34, 57],

Ld_sm =
1

N

∑

p

∑

i∈{x,y}

∣

∣∇2
i d

l
t(p)

∣

∣ · e−β‖∇iI
l
t(p)‖1 , (4)

𝐏𝐏𝑡𝑡 𝐏𝐏𝑡𝑡′

𝐩𝐩′

𝐬𝐬fwl 𝐩𝐩

𝐩𝐩
�𝑡𝑡+1l 𝐩𝐩′

𝐏𝐏𝑡𝑡+1′𝐏𝐏𝑡𝑡 𝐏𝐏𝑡𝑡′

𝐩𝐩′

𝐬𝐬fwl (𝐩𝐩)

𝐩𝐩
�d𝑡𝑡l (𝐩𝐩)

(a) Photometric loss.

𝐏𝐏𝑡𝑡 𝐏𝐏𝑡𝑡′

𝐩𝐩′

𝐬𝐬fwl (𝐩𝐩)

𝐩𝐩
�d𝑡𝑡+1l (𝐩𝐩′)

𝐏𝐏𝑡𝑡+1′𝐏𝐏𝑡𝑡 𝐏𝐏𝑡𝑡′

𝐩𝐩′

𝐬𝐬fwl 𝐩𝐩

𝐩𝐩
�𝑡𝑡l 𝐩𝐩

(b) 3D point reconstruction loss.

Figure 4. Scene flow losses: (a) Finding corresponding pixels

given depth and scene flow for the photometric loss Lsf_ph (Eq. 7).

(b) Penalizing 3D distance (dashed, red) between corresponding

3D points by the point reconstruction loss Lsf_pt (Eq. 8).

with β = 10 and N being the number of pixels.

Scene flow loss. The scene flow loss consists of three terms

– a photometric loss Lsf_ph, a 3D point reconstruction loss

Lsf_pt, and a scene flow smoothness loss Lsf_sm,

Lsf = Lsf_ph + λsf_ptLsf_pt + λsf_smLsf_sm, (5)

with regularization parameters λsf_pt = 0.2 and λsf_sm =
200. The scene flow loss is applied to both forward and

backward scene flow (sl
fw and sl

bw). Again for brevity, we

only describe the case of forward scene flow sl
fw.

The scene flow photometric loss Lsf_ph penalizes the pho-

tometric difference between the reference image Il
t and the

reconstructed reference image Ĩl,sf
t , synthesized from the

disparity map dl
t, the output scene flow sl

fw, and the target

image Il
t+1. To reconstruct the image, the corresponding

pixel coordinate p′ in Il
t+1 of each pixel p in Il

t is calculated

by back-projecting the pixel p into 3D space using the cam-

era intrinsics K and estimated depth d̂l
t(p), translating the
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points using the scene flow sl
fw(p), and then re-projecting

them to the image plane (cf . Fig. 4a),

p′ = K
(

d̂l
t(p) ·K

−1p+ sl
fw(p)

)

, (6)

assuming a homogeneous coordinate representation. Then,

we apply the same occlusion-aware photometric loss as in

the disparity case (Eq. 3a),

Lsf_ph =

∑

p

(

1−Ol,sf
t (p)

)

· ρ
(

Il
t(p), Ĩ

l,sf
t (p)

)

∑

q

(

1−Ol,sf
t (q)

) , (7)

where Ol,sf
t is the scene flow occlusion mask, obtained by

calculating disocclusion using the backward scene flow sl
bw.

Additionally, we also penalize the Euclidean distance

between the two corresponding 3D points, i.e. the trans-

lated 3D point of pixel p from the reference frame and the

matched 3D point in the target frame (cf . Fig. 4b):

Lsf_pt =

∑

p

(

1−Ol,sf
t (p)

)

·
∥

∥P′
t −P′

t+1

∥

∥

2
∑

q

(

1−Ol,sf
t (q)

) , (8a)

with

P′
t = d̂l

t(p) ·K
−1p+ sl

fw(p) (8b)

P′
t+1 = d̂l

t+1(p
′) ·K−1p′, (8c)

and p′ as defined in Eq. (6). Again, this 3D point recon-

struction loss is only applied on visible pixels, where the

correspondence should hold.

Analogous to the disparity loss in Eq. (4), we also adopt

edge-aware 2nd-order smoothness for scene flow to encour-

age locally smooth estimation:

Lsf_sm =
1

N

∑

p

∑

i∈{x,y}

∣

∣∇2
i s

l
fw(p)

∣

∣ · e−β‖∇iI
l
t(p)‖1 . (9)

3.5. Data augmentation

In many prediction tasks, data augmentation is crucial to

achieving good accuracy given limited training data. In our

monocular scene flow task, unfortunately, the typical geo-

metric augmentation schemes of the two tasks (i.e., monoc-

ular depth estimation, scene flow estimation) conflict each

other. For monocular depth estimation, not performing ge-

ometric augmentation is desirable as it enables learning the

scene layout under a fixed camera configuration [7, 17]. On

the other hand, the scene flow necessitates geometric aug-

mentations to match corresponding pixels better [24, 33].

We investigate which type of (geometric) augmentation

is suitable for our monocular scene flow task and method.

Similar to previous multi-task approaches [5, 40, 64], we

prepare a simple data augmentation scheme, consisting of

random scales, cropping, resizing, and horizontal image

Monocular depth Monocular scene flow

Aug. CC. [9] Abs. Rel. Sq. Rel. D1-all D2-all F1-all SF1-all

0.113 1.118 32.06 36.46 24.68 49.89

✓ 0.122 1.172 31.25 34.86 23.49 47.05

✓ 0.112 1.089 37.24 39.26 24.82 54.83

✓ ✓ 0.121 1.155 33.25 36.21 24.73 49.12

Table 1. Impact of geometric augmentations (Aug.) and CAM-

Convs (CC.) [9] on monocular depth and scene flow estima-

tion (on KITTI split, see text): the accuracy of monocular depth

estimation improves only when using CAM-Convs while that of

monocular scene flow estimation improves when only using aug-

mentation without CAM-Convs.

flipping. Upon the augmentation, we also explore the recent

CAM-Convs [9], which facilitate depth estimation irrespec-

tive of the camera intrinsics. After applying augmentations

on the input images, we calculate the resulting camera in-

trinsics and then input them in the format of CAM-Convs

(see [9] for technical details). We conjecture that using ge-

ometric augmentation will improve the scene flow accuracy.

Yet, at the same time adopting CAM-Convs [9] could pre-

vent the depth accuracy from dropping due to the changes

in camera intrinsics of the augmented images. We conduct

our empirical study on the KITTI split [13] of the KITTI

raw dataset [10] (see Sec. 4.1 for details).

Empirical study for monocular depth estimation. We

use a ResNet18-based monocular depth baseline [13] us-

ing our proposed occlusion-aware loss. Table 1 (left hand

side) shows the results. As we can see, geometric augmen-

tations deteriorate the depth accuracy, since they prevent the

network from learning a specific camera prior by inputting

augmented images with diverse camera intrinsics; this ob-

servation holds with and without CAM-Convs. This likely

explains why some multi-task approaches [26, 27, 28, 53]

only use minimal augmentation schemes such as image flip-

ping and input temporal-order switching. Only using CAM-

Convs [9] works best as the test dataset contains images

with different intrinsics, which CAM-Convs can handle.

Empirical study for monocular scene flow estimation.

We train our full model with the proposed loss from Eq. (1).

Looking at the right side of Table 1 yields different con-

clusions for monocular scene flow estimation: using aug-

mentation improves the scene flow accuracy in general, but

using CAM-Convs [9] actually hurts the accuracy. We con-

jecture that the benefit of CAM-Convs – introducing a test-

time dependence on input camera intrinsics – may be re-

dundant for correspondence tasks (i.e. optical flow, scene

flow) and can hurt the accuracy. We also observe that CAM-

Convs lead to slight over-fitting on the training set, yielding

marginally lower training loss (e.g., < 1%) but with higher

error on the test set. Therefore, we apply only geometric

augmentation without CAM-Convs in the following.
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4. Experiments

4.1. Implementation details

Dataset. For evaluation, we use the KITTI raw dataset

[10], which provides stereo sequences covering 61 street

scenes. For the scene flow experiments, we use the KITTI

Split [13]: we first exclude 29 scenes contained in KITTI

Scene Flow Training [36, 37] and split the remaining 32
scenes into 25 801 sequences for training and 1684 for vali-

dation. For evaluation and the ablation study, we use KITTI

Scene Flow Training as test set, since it provides ground-

truth labels for disparity and scene flow for 200 images.

After training on KITTI Split in a self-supervised man-

ner, we optionally fine-tune our model using KITTI Scene

Flow Training [36, 37] to see how much accuracy gain can

be obtained from annotated data. We fine-tune our model

in a semi-supervised setting by combining a supervised loss

with our self-supervised loss (see below for details).

Additionally for evaluating monocular depth accuracy,

we also use the Eigen Split [8] by excluding 28 scenes that

the 697 test sequences cover, splitting into 20 120 training

sequences and 1338 validation sequences.

Data augmentation. We adopt photometric augmentations

with random gamma, brightness, and color changes. As dis-

cussed in Sec. 3.5, we use geometric augmentations consist-

ing of horizontal flips [26, 27, 28, 53], random scales, ran-

dom cropping [5, 40, 64], and then resizing into 256× 832
pixels as in previous work [27, 28, 30, 40, 60].

Self-supervised training. Our network is trained using

Adam [25] with hyper-parameters β1=0.9 and β2=0.999.

Our initial learning rate is 2 × 10−4, and the mini-batch size

is 4. We train our network for a total of 400k iterations.2

In every iteration, the regularization weight λsf in Eq. (1) is

dynamically determined to make the loss of the scene flow

and disparity be equal in order to balance the optimization

of the two joint tasks [21]. Our specific learning rate sched-

ule, as well as details on hyper-parameter choice and data

augmentation are provided in the supplementary material.

Unlike previous approaches requiring stage-wise pre-

training [27, 28, 53, 64] or iterative training [30, 40, 60]

of multiple CNNs due to the instability of joint training, our

approach does not need any complex training strategies, but

can just be trained from scratch all at once. This highlights

the practicality of our method.

Semi-supervised fine-tuning. We optionally fine-tune our

trained model in a semi-supervised manner by mixing the

two datasets, the KITTI raw dataset [10] and KITTI Scene

Flow Training [36, 37], at a ratio of 3 : 1 in each batch of 4.

The latter dataset provides sparse ground truth of the dispar-

ity map of the reference image, disparity information at the

2Code is available at https://github.com/visinf/self-mono-sf.

Occ. 3D points D1-all D2-all F1-all SF1-all

(Basic) 33.31 51.33 24.74 64.05

✓ 30.99 50.89 23.55 62.50

✓ 32.07 36.01 27.30 49.27

✓ ✓ 31.25 34.86 23.49 47.05

Table 2. Ablation study on the loss function: based on the Ba-

sic 2D loss consisting of photometric and smoothness loss, the 3D

point reconstruction loss (3D points) improves scene flow accu-

racy, especially when discarding occluded pixels in the loss (Occ.).

target image mapped into the reference image, as well as op-

tical flow. We apply our self-supervised loss to all samples

and a supervised loss (L2 for optical flow, L1 for disparity)

only for the sample from KITTI Scene Flow Training after

converting the scene flow into two disparity maps and op-

tical flow. Through semi-supervised fine-tuning, the proxy

loss can guide pixels that the sparse ground truth cannot su-

pervise. Moreover, the model can be prevented from heavy

over-fitting on the only 200 annotated images by leveraging

more data. We train the network for 45k iterations with the

learning rate starting at 4 × 10−5 (see supplemental).

Evaluation metric. For evaluating the scene flow accu-

racy, we follow the evaluation metric of KITTI Scene Flow

benchmark [36, 37]. It evaluates the accuracy of the dispar-

ity for the reference frame (D1-all) and for the target image

mapped into the reference frame (D2-all), as well as of the

optical flow (F1-all). Each pixel that exceeds a threshold

of 3 pixels or 5% w.r.t. the ground-truth disparity or optical

flow is regarded as an outlier; the metric reports the outlier

ratio (in %) among all pixels with available ground truth.

Furthermore, if a pixel satisfies all metrics (i.e., D1-all, D2-

all, and F1-all), it is regarded as valid scene flow estimate

from which the outlier rate for scene flow (SF1-all) is cal-

culated. For evaluating the depth accuracy, we follow the

standard evaluation scheme introduced by Eigen et al. [8].

We assume known test-time camera intrinsics.

4.2. Ablation study

To confirm the benefit of our various contributions, we

conduct ablation studies based on our full model using the

KITTI split with data augmentation applied.

Proxy loss for self-supervised learning. Our proxy loss

consists of three main components: (i) Basic: a basic com-

bination of 2D photometric and smoothness losses, (ii) 3D

points: the 3D point reconstruction loss for scene flow, and

(iii) Occ.: whether applying the photometric and point re-

construction loss only for visible pixels or not. Table 2

shows the contribution of each loss toward the accuracy.

The 3D points loss significantly contributes to more ac-

curate scene flow by yielding more accurate disparity on

the target image (D2-all). This highlights the importance

of penalizing the actual 3D Euclidean distance between two

corresponding 3D points (cf . Fig. 4b), which typical loss
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Model D1-all D2-all F1-all SF1-all

Monocular depth only 27.59 – – –

Optical flow only – – 24.27 –

Scene flow w/ separate decoders 100 97.22 27.63 100

Scene flow w/ a single decoder 31.25 34.86 23.49 47.05

Table 3. Single decoder vs. separate decoders: using a single

decoder yields stable training and comparable accuracy on both

tasks to models that target each individual task separately.

functions in 2D space (i.e. Basic loss) as in previous work

[30, 60] cannot.

Taking occlusion into account consistently improves the

scene flow accuracy further. The main objective of our

proxy loss is to reconstruct the reference image as closely

as possible, which can lead to hallucinating potentially in-

correct estimates of disparity and scene flow in the occluded

areas. Thus, discarding occluded pixels in the loss is critical

to achieving accurate predictions.

Single decoder vs. separate decoders. To verify the key

motivation of decomposing optical flow cost volumes into

depth and scene flow using a single decoder, we compare

against a model with separate decoders for each task, which

follows the conventional design of other multi-task meth-

ods [5, 28, 30, 40, 60, 64]. We also prepare two baselines

that estimate either monocular depth or optical flow only, to

assess the capacity our modified PWC-Net for each task.

Table 3 demonstrates our ablation study on the network

design. First, our model with a single decoder achieves

comparable or even higher accuracy on the depth and opti-

cal flow tasks, compared to using the same network only for

each individual task. We thus conclude that solving monoc-

ular scene flow using a single joint network can substitute

the two individual tasks given the same amount of training

resources and network capacity.

When separating the decoders, we find that the network

cannot be trained stably, yielding trivial solutions for dispar-

ity. This is akin to issues observed by previous multi-task

approaches, which require pre-training or iterative training

for multiple CNNs [27, 28, 30, 40, 53, 60, 64]. In con-

trast, having a single decoder resolves the imbalance and

stability problem by virtue of joint estimation. We include

a more comprehensive analysis in the supplemental, gradu-

ally splitting the decoder to closely analyze its behavior.

4.3. Monocular scene flow

Table 4 demonstrates the comparison to existing monoc-

ular scene flow methods on KITTI Scene Flow Training. We

compare against state-of-the-art multi-task CNN methods

[30, 60, 61, 64] on the scene flow evaluation metric. Our

model significantly outperforms these methods by a large

margin, confirming our method as the most accurate monoc-

ular scene flow method using CNNs to date. For example,

our method yields more than 40.1% accuracy gain for esti-

Method D1-all D2-all F1-all SF1-all Runtime

DF-Net [64] 46.50 61.54 27.47 73.30 –

GeoNet [61] 49.54 58.17 37.83 71.32 0.06 s

EPC [60] 26.81 60.97 25.74 (>60.97) 0.05 s

EPC++ [30] 23.84 60.32 19.64 (>60.32) 0.05 s

Self-Mono-SF (Ours) 31.25 34.86 23.49 47.05 0.09 s

Mono-SF [3] 16.72 18.97 11.85 21.60 41 s

Self-Mono-SF-ft (Ours) (2.89) (3.91) (6.19) (7.53) 0.09 s

Table 4. Monocular scene flow evaluation on KITTI Scene Flow

Training: our self-supervised learning approach significantly out-

performs all multi-task CNN methods (upper rows) on the scene

flow metric, SF1-all. Lower rows provide the accuracy of a semi-

supervised method [3] and our fine-tuned model.

Method D1-all D2-all F1-all SF1-all Runtime

DRISF [32] 2.55 4.04 4.73 6.31 0.75 s

SENSE [24] 2.22 5.89 7.64 9.55 0.32 s

PWOC-3D [42] 5.13 8.46 12.96 15.69 0.13 s

UnOS [53] 6.67 12.05 18.00 22.32 0.08 s

Mono-SF [3] 16.32 19.59 12.77 23.08 41 s

Self-Mono-SF (Ours) 34.02 36.34 23.54 49.54 0.09 s

Self-Mono-SF-ft (Ours) 22.16 25.24 15.91 33.88 0.09 s

Table 5. Scene flow evaluation on KITTI Scene Flow Test: we

compare our method with stereo (top) and monocular (bottom)

scene flow methods. Despite the difficult setting, our fine-tuned

model demonstrates encouraging results in real-time.

mating the disparity on the target image (D2-all). Though

the two methods, EPC [60] and EPC++ [30], do not pro-

vide scene flow accuracy numbers (SF1-all), we can con-

clude that our method clearly outperforms all four methods

in SF1-all, since SF1-all is lower-bounded by D2-all.

Our self-supervised learning approach (Self-Mono-SF)

is outperformed only by Mono-SF [3], which is a semi-

supervised method using pseudo labels, semantic instance

knowledge, and an additional dataset (Cityscapes [6]).

However, our method runs more than two orders of magni-

tude faster. We also provide the accuracy of our fine-tuned

model (Self-Mono-SF-ft) on the training set for reference.

Table 5 shows the comparison with stereo and monocular

scene flow methods on the KITTI Scene Flow 2015 bench-

mark. Fig. 5 provides a visualization. Our semi-supervised

fine-tuning further improves the accuracy, going toward that

of Mono-SF [3], but with a more than 400× faster run-

time. For further accuracy improvements, e.g. rigidity re-

finement [24, 28], exploiting an external dataset [6] for pre-

training, or pseudo ground truth [3] can be applied on top

of our self-supervised learning and semi-supervised fine-

tuning pipeline without affecting run-time.

4.4. Monocular depth and optical flow

Finally, we provide a comparison to unsupervised multi-

task CNN approaches [5, 28, 30, 40, 60, 61, 64] regard-

ing the accuracy of depth and optical flow. We do not re-
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(lower is better) (higher is better)

Split Method Abs Rel Sq Rel RMSE RMSE log δ<1.25 δ<1.252 δ<1.253

K
IT

T
I

DF-Net [64] 0.150 1.124 5.507 0.223 0.806 0.933 0.973

EPC§ [60] 0.109 1.004 6.232 0.203 0.853 0.937 0.975

Liu et al. § [28] 0.108 1.020 5.528 0.195 0.863 0.948 0.980

Self-Mono-SF (Ours)§ 0.106 0.888 4.853 0.175 0.879 0.965 0.987

E
ig

en

GeoNet [61] 0.155 1.296 5.857 0.233 0.793 0.931 0.973

CC [40] 0.140 1.070 5.326 0.217 0.826 0.941 0.975

GLNet(-ref.) [5] 0.135 1.070 5.230 0.210 0.841 0.948 0.980

EPC§ [60] 0.127 1.239 6.247 0.214 0.847 0.926 0.969

EPC++§ [30] 0.127 0.936 5.008 0.209 0.841 0.946 0.979

Self-Mono-SF (Ours)§ 0.125 0.978 4.877 0.208 0.851 0.950 0.978

Table 6. Monocular depth comparison: our method demonstrates superior ac-

curacy on the KITTI split and competitive accuracy on the Eigen split compared

to all published multi-task methods. §method using stereo sequences for training.

Train Test

Method EPE F1-all F1-all

S
te

re
o Lai et al. [26] 7.13 27.13 –

Lee et al. [27] 8.74 20.88 –

UnOS [53] 5.58 – 18.00

M
o
n
o
cu

la
r

GeoNet [61] 10.81 – –

DF-Net [64] 8.98 26.01 25.70

GLNet [5] 8.35 – –

EPC§ [60] – 25.74 –

EPC++§ [30] 5.43 19.64 20.52

Liu et al. § [28] 5.74 – –

Self-Mono-SF (Ours)§ 7.51 23.49 23.54

Table 7. Optical flow estimation on the KITTI split:

our method demonstrates comparable accuracy to both

monocular and stereo-based multi-task methods.

(a) Input images (b) Monocular depth (c) Optical flow (d) 3D visualization of scene flow

Figure 5. Qualitative results of our monocular scene flow results (Self-Mono-SF-ft) on KITTI 2015 Scene Flow Test: each scene

shows (a) two input images, (b) monocular depth, (c) optical flow, and (d) a 3D visualization of estimated depth, overlayed with the

reference image, and colored with the (x, z)-coordinates of the 3D scene flow using the standard optical flow color coding.

port methods that use extra datasets (e.g., the Cityscapes

dataset [6]) for pre-training or online fine-tuning [5], which

is known to give an accuracy boost.

For monocular depth estimation in Table 6, our monocu-

lar scene flow method outperforms all published multi-task

methods on the KITTI Split [13] and demonstrates compet-

itive accuracy on the Eigen split [8]. Note that some of

the methods [40, 61, 64] use ground truth to correctly scale

their predictions at test time, which gives them an unfair

advantage, but are still outperformed by ours.

For optical flow estimation in Table 6, our method

demonstrates comparable accuracy to existing state-of-the-

art monocular [5, 60, 61, 64] and stereo methods [26, 27],

in part outperforming them.

One reason why our flow accuracy may not surpass all

previous methods is that we use a 3D scene flow regularizer

and not a 2D optical flow regularizer. This is consistent with

our goal of estimating 3D scene flow, but it is known that us-

ing a regularizer in the target space is critical for achieving

best accuracy [52]. While our choice of 3D regularizer is

not ideal for optical flow estimation, its benefits manifest

in 3D. For example, while we do not outperform EPC++

[30] in terms of 2D flow accuracy, we clearly surpass it in

terms of scene flow accuracy (see Table 4). Consequently,

our approach is not only the first CNN approach to monocu-

lar scene flow estimation that directly predicts the 3D scene

flow, but also outperforms existing multi-task CNNs.

5. Conclusion

We proposed a CNN-based monocular scene flow esti-

mation approach based on PWC-Net that predicts 3D scene

flow directly. A crucial feature is our single joint decoder

for depth and scene flow, which allows to overcome the

limitations of existing multi-task approaches such as com-

plex training schedules or lacking occlusion handling. We

take a self-supervised approach, where our 3D loss function

and occlusion reasoning significantly improve the accuracy.

Moreover, we show that a suitable augmentation scheme is

critical for competitive accuracy. Our model achieves state-

of-the-art scene flow accuracy among un-/self-supervised

monocular methods, and our semi-supervised fine-tuned

model approaches the accuracy of the best monocular scene

flow method to date, while being orders of magnitude faster.

With competitive accuracy and real-time performance, our

method provides a solid foundation for CNN-based monoc-

ular scene flow estimation as well as follow-up work.
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[16] Michael Hornáček, Andrew Fitzgibbon, and Carsten Rother.

SphereFlow: 6 DoF scene flow from RGB-D pairs. In CVPR,

pages 3526–3533, 2014. 1, 2

[17] Junjie Hu, Yan Zhang, and Takayuki Okatani. Visualization

of convolutional neural networks for monocular depth esti-

mation. In ICCV, pages 3869–3878, 2019. 5

[18] Frédéric Huguet and Frédéric Devernay. A variational

method for scene flow estimation from stereo sequences. In

ICCV, pages 1–7, 2007. 1, 2

[19] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. Lite-

FlowNet: A lightweight convolutional neural network for

optical flow estimation. In CVPR, pages 8981–8989, 2018.

3

[20] Junhwa Hur and Stefan Roth. MirrorFlow: Exploiting sym-

metries in joint optical flow and occlusion estimation. In

ICCV, pages 312–321, 2017. 4

[21] Junhwa Hur and Stefan Roth. Iterative residual refinement

for joint optical flow and occlusion estimation. In CVPR,

pages 5747–5756, 2019. 3, 6

[22] Eddy Ilg, Tonmoy Saikia, Margret Keuper, and Thomas

Brox. Occlusions, motion and depth boundaries with a

generic network for disparity, optical flow or scene flow es-

timation. In ECCV, volume 12, pages 626–643, 2018. 2

[23] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and

Koray Kavukcuoglu. Spatial transformer networks. In

NIPS*2015, pages 2017–2025. 4

[24] Huaizu Jiang, Deqing Sun, Varun Jampani, Zhaoyang Lv,

Erik Learned-Miller, and Jan Kautz. SENSE: A shared en-

coder network for scene-flow estimation. In ICCV, pages

3195–3204, 2019. 2, 5, 7

[25] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method

for stochastic optimization. In ICLR, 2015. 6

[26] Hsueh-Ying Lai, Yi-Hsuan Tsai, and Wei-Chen Chiu. Bridg-

ing stereo matching and optical flow via spatiotemporal cor-

respondence. In CVPR, pages 1890–1899, 2019. 2, 5, 6,

8

[27] Seokju Lee, Sunghoon Im, Stephen Lin, and In So Kweon.

Learning residual flow as dynamic motion from stereo

videos. In IROS, pages 1180–1186, 2019. 2, 5, 6, 7, 8

[28] Liang Liu, Guangyao Zhai, Wenlong Ye, and Yong Liu. Un-

supervised learning of scene flow estimation fusing with lo-

cal rigidity. In IJCAI, pages 876–882, 2019. 1, 2, 4, 5, 6, 7,

8

[29] Xingyu Liu, Charles R. Qi, and Leonidas J. Guibas.

FlowNet3D: Learning scene flow in 3D point clouds. In

CVPR, pages 529–537, 2019. 1, 2

[30] Chenxu Luo, Zhenheng Yang, Peng Wang, Yang Wang, Wei

Xu, Ram Nevatia, and Alan Yuille. Every pixel counts++:

Joint learning of geometry and motion with 3D holistic un-

derstanding. IEEE T. Pattern Anal. Mach. Intell., 2019. 1, 2,

3, 6, 7, 8

[31] Zhaoyang Lv, Kihwan Kim, Alejandro Troccoli, Deqing

Sun, James M Rehg, and Jan Kautz. Learning rigidity in

dynamic scenes with a moving camera for 3D motion field

estimation. In ECCV, pages 468–484, 2018. 1, 2

[32] Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, and

Raquel Urtasun. Deep rigid instance scene flow. In CVPR,

pages 3614–3622, 2019. 2, 7

7404



[33] Nikolaus Mayer, Eddy Ilg, Philip Häusser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In CVPR, pages

4040–4048, 2016. 1, 2, 5

[34] Simon Meister, Junhwa Hur, and Stefan Roth. UnFlow: Un-

supervised learning of optical flow with a bidirectional cen-

sus loss. In AAAI, pages 7251–7259, 2018. 3, 4

[35] Moritz Menze and Andreas Geiger. Object scene flow for

autonomous vehicles. In CVPR, pages 3061–3070, 2015. 2

[36] Moritz Menze, Christian Heipke, and Andreas Geiger. Joint

3D estimation of vehicles and scene flow. In ISPRS Work-

shop on Image Sequence Analysis (ISA), 2015. 2, 6

[37] Moritz Menze, Christian Heipke, and Andreas Geiger. Ob-

ject scene flow. ISPRS Journal of Photogrammetry and Re-

mote Sensing (JPRS), 140:60–76, 2018. 2, 6

[38] Yi-Ling Qiao, Lin Gao, Yukun Lai, Fang-Lue Zhang, Ming-

Ze Yuan, and Shihong Xia. SF-Net: Learning scene flow

from RGB-D images with CNNs. In BMVC, 2018. 1, 2

[39] Julian Quiroga, Thomas Brox, Frédéric Devernay, and James

Crowley. Dense semi-rigid scene flow estimation from

RGBD images. In ECCV, pages 567–582, 2014. 1, 2

[40] Anurag Ranjan, Varun Jampani, Lukas Balles, Kihwan Kim,

Deqing Sun, Jonas Wulff, and Michael J. Black. Competitive

collaboration: Joint unsupervised learning of depth, camera

motion, optical flow and motion segmentation. In CVPR,

pages 12240–12249, 2019. 1, 2, 3, 5, 6, 7, 8

[41] Zhile Ren, Deqing Sun, Jan Kautz, and Erik Sudderth. Cas-

caded scene flow prediction using semantic segmentation. In

3DV, pages 225–233, 2017. 2

[42] Rohan Saxena, René Schuster, Oliver Wasenmüller, and Di-

dier Stricker. PWOC-3D: Deep occlusion-aware end-to-end

scene flow estimation. In IV, pages 324–331, 2019. 2, 7

[43] René Schuster, Christian Bailer, Oliver Wasenmüller, and

Didier Stricker. Combining stereo disparity and optical flow

for basic scene flow. In Commercial Vehicle Technology

2018, pages 90–101, 2018. 2

[44] René Schuster, Oliver Wasenmüller, Georg Kuschk, Chris-

tian Bailer, and Didier Stricker. SceneFlowFields: Dense in-

terpolation of sparse scene flow correspondences. In WACV,

pages 1056–1065, 2018. 1, 2

[45] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

PWC-Net: CNNs for optical flow using pyramid, warping,

and cost volume. In CVPR, pages 8934–8943, 2018. 2, 3, 4

[46] Ravi Kumar Thakur and Snehasis Mukherjee. SceneED-

Net: A deep learning approach for scene flow estimation.

In 2018 15th International Conference on Control, Automa-

tion, Robotics and Vision (ICARCV), pages 394–399, 2018.

1, 2

[47] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins,

and Takeo Kanade. Three-dimensional scene flow. In ICCV,

pages 722–729, 1999. 2

[48] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins,

and Takeo Kanade. Three-dimensional scene flow. IEEE T.

Pattern Anal. Mach. Intell., 27(3):475–480, Mar. 2005. 2

[49] Christoph Vogel, Stefan Roth, and Konrad Schindler. 3D

scene flow estimation with a rigid motion prior. In ICCV,

pages 1291–1298, 2011. 2

[50] Christoph Vogel, Stefan Roth, and Konrad Schindler. View-

consistent 3D scene flow estimation over multiple frames. In

ECCV, volume 4, pages 263–278, 2014. 2

[51] Christoph Vogel, Konrad Schindler, and Stefan Roth. Piece-

wise rigid scene flow. In ICCV, pages 1377–1384, 2013. 1,

2

[52] Christoph Vogel, Konrad Schindler, and Stefan Roth. 3D

scene flow estimation with a piecewise rigid scene model.

Int. J. Comput. Vision, 115(1):1–28, Oct. 2015. 2, 8

[53] Yang Wang, Peng Wang, Zhenheng Yang, Chenxu Luo, Yi

Yang, and Wei Xu. UnOS: Unified unsupervised optical-flow

and stereo-depth estimation by watching videos. In CVPR,

pages 8071–8081, 2019. 2, 5, 6, 7, 8

[54] Yang Wang, Yi Yang, Zhenheng Yang, Liang Zhao, and Wei

Xu. Occlusion aware unsupervised learning of optical flow.

In CVPR, pages 4884–4893, 2018. 4

[55] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P.

Simoncelli. Image quality assessment: From error visibility

to structural similarity. IEEE T. Image Process., 13(4):600–

612, Apr. 2004. 4

[56] Andreas Wedel, Thomas Brox, Tobi Vaudrey, Clemens Rabe,

Uwe Franke, and Daniel Cremers. Stereoscopic scene flow

computation for 3D motion understanding. Int. J. Comput.

Vision, 95(1):29–51, Oct. 2011. 1, 2

[57] Oliver J. Woodford, Philip H. S. Torr, Ian D. Reid, and An-

drew W. Fitzgibbon. Global stereo reconstruction under sec-

ond order smoothness priors. In CVPR, 2008. 4

[58] Degui Xiao, Qiuwei Yang, Bing Yang, and Wei Wei. Monoc-

ular scene flow estimation via variational method. Multime-

dia Tools and Applications, 76(8):10575–10597, 2017. 1, 2

[59] Zike Yan and Xuezhi Xiang. Scene flow estimation: A sur-

vey. arXiv:1612.02590 [cs.CV], 2016. 3

[60] Zhenheng Yang, Peng Wang, Yang Wang, Wei Xu, and Ram

Nevatia. Every pixel counts: Unsupervised geometry learn-

ing with holistic 3D motion understanding. In ECCV Work-

shops, pages 691–709, 2018. 1, 2, 3, 6, 7, 8

[61] Zhichao Yin and Jianping Shi. GeoNet: Unsupervised learn-

ing of dense depth, optical flow and camera pose. In CVPR,

pages 1983–1992, 2018. 2, 3, 7, 8

[62] Ye Zhang and Chandra Kambhamettu. On 3D scene flow and

structure estimation. In CVPR, pages 3526–3533, 2001. 1, 2

[63] Alex Zihao Zhu, Wenxin Liu, Ziyun Wang, Vijay Kumar,

and Kostas Daniilidis. Robustness meets deep learning: An

end-to-end hybrid pipeline for unsupervised learning of ego-

motion. In CVPR Workshops, 2019. 2, 3

[64] Yuliang Zou, Zelun Luo, and Jia-Bin Huang. DF-Net: Un-

supervised joint learning of depth and flow using cross-task

consistency. In ECCV, pages 36–53, 2018. 1, 2, 3, 5, 6, 7, 8

7405


