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Abstract

Neural net compression can be achieved by approximat-

ing each layer’s weight matrix by a low-rank matrix. The

real difficulty in doing this is not in training the resulting

neural net (made up of one low-rank matrix per layer), but

in determining what the optimal rank of each layer is—

effectively, an architecture search problem with one hyper-

parameter per layer. We show that, with a suitable for-

mulation, this problem is amenable to a mixed discrete-

continuous optimization jointly over the ranks and over the

matrix elements, and give a corresponding algorithm. We

show that this indeed can select ranks much better than

existing approaches, making low-rank compression much

more attractive than previously thought. For example, we

can make a VGG network faster than a ResNet and with

nearly the same classification error.

Compressing large deep neural nets so that they can be

deployed on resource-constrained devices, such as smart

cameras or mobile phones, is a problem of considerable in-

terest at present. Of the many existing compression forms

we focus on low-rank compression, whose roots lie in ma-

trix algebra, and where we replace a matrix W with an-

other one having lower rank (which can thus be written as

the product UVT of two smaller matrices). That low-rank

compression can be very effective is obvious from its many

applications in numerical linear algebra, image and signal

processing, model order reduction, machine learning and

statistics, and other areas in science and engineering. In-

deed it has been applied for deep net compression (see re-

lated work), although it generally has been found less ef-

fective than other compression techniques such as weight

quantization or pruning. However, a low-rank represen-

tation has the advantage of fast inference (particularly on

GPUs), since it uses dense matrices having a local, regular

and parallelizable memory access pattern.

A fundamental problem in low-rank compression is the

selection of the rank. This is often not recognized because

selecting the rank and the corresponding matrices U and

V is very easy in some special but important cases, which

accounts for the widespread use of low-rank compression.

Indeed, say we are given a matrixW and want to find a low-

rank matrix that produces the lowest approximation error to

W. The solution of this problem is known and is com-

putationally very convenient: solving a single full singular

value decomposition (SVD) we obtain the optimal solution

for any desired rank and hence any desired approximation

error [15]. We simply sort the singular values and pick as

many as we need in increasing order to reach the desired ap-

proximation error. The matrices U and V are given by the

corresponding singular vectors. Note that we need not solve

a separate optimization problem for each target value of the

error or rank: we get all the possible solutions at once. This

property will prove useful in our algorithm later.

This property also holds in a special case of the model

compression problem (well known in statistics as reduced-

rank regression (RRR) [22, 41]): solving a linear regression

fit but constraining the rank of the coefficient matrix to be

at most r. This problem can be solved again for all possible

values of the rank r by computing a single SVD of the data

matrix (training input and output vectors).

Let us now see why this is much harder in the case of a

deep net where we want to find both the rank for each layer

matrix and the matrix coefficients so that some desired error

is minimized and the ranks are constrained. The solution is

not given anymore by computing a single SVD and exam-

ining a list of ranks and their errors. What is relatively easy

(at least, doable in current practice with deep nets) is to find

the weights of the matrix at each layer if we fix ahead of

time the rank rk that we want to use in each layer k. This

is because we can then write the matrix at each layer as

UkV
T
k and optimize this network as usual over all the Uk

and Vk matrices. That is, we compute the gradient using

the chain rule (easily done with automatic differentiation in

deep learning frameworks such as PyTorch [39] or Tensor-

Flow [1]) and use it with stochastic gradient descent (SGD)

to converge (approximately at least) to a local minimizer.

This makes it obvious that the real problem is in deter-

mining optimal values for the set of ranks r1, . . . , rK . It
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also shows that the problem can be seen as a special case

of architecture optimization, where we search both over ar-

chitectures (i.e., the number of hidden units, or rank, within

each layer) and over values of the matrices’ weights. Hence,

this is a hard, combinatorial problem which is exponential

on the number of layers. Specifically, in a net with K lay-

ers of weights each having a maximum rank of Rk there

are
∏K

k=1
Rk combinations of rank choices, and each Rk

can be thousands in large nets. Even having access to many

GPUs over weeks of training makes it possible to train only

a tiny subset of combinations. Practically, this means that

one should try to guess reasonable values for these ranks

and perhaps explore the space from that point a little by try-

ing additional combinations, but this generally will provide

solutions that may be far from optimal.

In this paper, we propose a way to find a good, approx-

imate solution to this problem efficiently. We first formu-

late the problem in a way that incorporates our desire of

minimizing the (say) classification loss of the net but with

a model selection cost dependent on the ranks (memory

or inference time, for example), and a rank constraint on

each layer. We then show how this can be optimized over

both ranks and weight values, by interleaving SGD steps

that train the uncompressed net with SVD steps that deter-

mine the currently optimal rank and weight matrices. Our

algorithm can be shown to explore architectures on the fly

while monotonically decreasing a certain objective function

which, in the limit, tends to a local solution of the problem

(an approximate solution, since the problem is presumably

NP-hard). We achieve this with a single run of the training

algorithm, which is not much slower than training the un-

compressed net itself, and therefore much faster than train-

ing multiple nets of different architectures. After reviewing

related work (section 1), we formulate the problem (sec-

tion 2), give our algorithm (section 3), and test it with neural

nets having up to hundreds of layers (section 4).

1. Related work

Matrix factorizations, including low-rank factorization

via the SVD and various forms of tensor factorization,

have been extensively studied in theory and application

[8, 9, 27, 46]. Likewise, neural net compression can be

done with methods other than low-rank compression, such

as weight quantization or pruning. In this section, we limit

ourselves to works involving low-rank compression (of ma-

trices or tensors) of deep neural nets in terms of model size

or inference time.

Ranks assumed fixed Various types of low-rank decom-

positions of fully-connected and convolutional layers (with

suitable reshaping) have been used [10, 11, 23, 32, 43, 45,

47, 48, 49, 52], as well as tensor decompositions such as

CP [11, 30], Tucker [26] and Tensor-Train [14, 38]. Modi-

fications and combinations of different decompositions are

common too, e.g. constraining each filter in a convolutional

layer to have unit rank [23] or to be a linear combination of

filters of different rank [20, 21].

Algorithmically, early works used either data-dependent

or data-independent methods to obtain a layerwise fac-

torization of a trained, reference net, which determines

the rank at each layer, and then fine-tuned the resulting

net. Data-independent strategies minimize the distance
∥

∥W −UVT
∥

∥ between the original and compressed weight

matrix, using a closed form solution such as the SVD

[11, 38, 45, 47] or iterative optimization [23, 30]. Data-

dependent strategies minimize either a data-dependent dis-

tance between the original and compressed matrix [11], or

the distance of the output activations (at each layer) between

the original and compressed matrix
∥

∥Wx−UVTx
∥

∥,

treating it as regression problem [10, 52].

Rank selection Some methods apply a heuristic to fix the

ranks ahead of time, such as using a greedy approach or

thresholding [25, 26, 47, 48, 52]. We use some of these

(described in section 4.1) as baseline comparison in our ex-

periments. Other work [47] proposes to train a neural net

with a penalty that encourages (but does not actually con-

strain) the weight matrices to be low-rank. Since it does not

handle the ranks directly, it requires a heuristic selection

(thresholding) of the ranks after training. This thresholding

can be alternated instead with the net training [48]. Finally,

we are aware of only one method to jointly learn ranks and

weights as part of the overall optimization [32]. This pro-

poses a specific formulation to minimize the loss of a deep

net with constraints on the total number of allowed weights

and computation. This problem is solved approximately in

an alternating manner, where one step optimizes over the

weights via SGD, and another step optimizes over the ranks

but requires the solution of a mixed-integer program (in-

volving discrete and continuous variables, NP-hard) using

the commercial software MOSEK. Our algorithm also has

a step over the full-rank weight matrices and over the low-

rank matrices and their ranks, but we show the latter can be

solved exactly in closed form via an SVD per layer for both

ranks and weights.

Another line of work is to use a convex relaxation of the

rank, the nuclear norm (or trace norm) [13]. Minimizing the

nuclear norm instead of the rank is easier and enjoys opti-

mality guarantees under certain conditions in compressed

sensing [3, 40]. The nuclear norm was used to reduce the

number of parameters in single- [16] and multi-layer net-

works [2]. However, minimizing the nuclear norm is gener-

ally not equivalent to minimizing the rank with multi-layer

networks, and it is not clear how cost functions such as

FLOPs would relate to the nuclear norm. Our formulation

has both advantages: it directly optimizes what we really

want (a cost function of each integer rank) and does so ex-

actly and efficiently in the step over the ranks.
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2. Problem formulation

Assume we want to train a K-layer deep net, where layer

k takes the form zk = σ(Wkzk−1), σ(·) is an elementwise

nonlinearity (e.g. ReLU), and zk is the input at layer k (with

x = z0 and y = zK being the input and output of the net);

we omit bias parameters to keep the notation simple. Let us

denote the loss function (e.g. cross-entropy for classification

on a training set) as L(W) where W = (W1, . . . ,WK)
are the deep net weight matrices, where Wk is of dimension

ak × bk, and bk = ak−1 (so layer k − 1 feeds into layer

k). We then want to minimize the sum of this loss and a

cost function C but constraining each rank not to exceed a

maximum rank Rk at each layer. Hence we have:

min
W

L(W) + λC(W)

s.t. rank (Wk) ≤ Rk, k = 1, . . . ,K.
(1)

Note that we must have Rk ≤ min(ak, bk), which is the

maximum rank possible at layer k. The constraint in (1)

can be equivalently written as Wk = UkV
T
k where Uk

is of ak × rk , Vk is of bk × rk and rk ∈ {0, 1, . . . , Rk},
but rk is an unknown parameter itself that we need to op-

timize over. In this equivalent formulation, we optimize

over {Wk,Uk,Vk, rk}
K
k=1

jointly, which makes explicit

the combinatorial nature of the problem.

We now define the cost function C(W) as follows and

make some key observations:

C(W) = C(r1, . . . , rK) = C1(r1) + · · ·+ CK(rK). (2)

A useful particular case is C(W) = α1r1 + · · · + αKrK
where α1, . . . , αK ≥ 0 are constants. First, from an opti-

mization point of view, C depends only on the ranks (not

the actual weight values in W) and is a separable function

of them. With some manipulations in the next section, this

will make it possible to solve a problem that has an appar-

ently exponential cost over the number of layers K exactly

in linear cost over K . The intuition is very similar to the

“model selection on the fly” idea of [7].

Second, from a modeling point of view, C can represent

several costs of interest in the context of neural net com-

pression by appropriate choices of the coefficients αk. For

example, the memory occupied by W (in number of ele-

ments) results from αk = ak + bk (since Wk is stored as

Uk and Vk, and the memory occupied by a floating-point

number does not depend on its value). The runtime at in-

ference to compute the output y of the net with an input

x results (up to an additive constant) from those same co-

efficients. If convolutional layers are involved, the coeffi-

cients change according to which filters are reused but the

memory and runtime remain a linear function of the ranks.

Other costs, such as energy or bandwidth, can be written in

this form, at least approximately. Hence, C plays the role

of a model selection criterion. But unlike traditional crite-

ria such as AIC, BIC or MDL [17], over which there is no

general agreement, in our context there is a clear definition

of cost (given by the system where the neural net will be

deployed and the performance target required by the appli-

cation, such as fast image classification in a camera of given

memory size and CPU frequency). While this cost can be

defined in different ways, it is not arbitrary. The hyperpa-

rameter λ ≥ 0 naturally trades off the classification loss

with the cost, and determines the distribution of ranks over

the deep net layers—which varies in a complex way, as seen

in our experiments.

3. Optimization algorithm

Let us rewrite (1) by introducing auxiliary variables Θ =
(Θ1, . . . ,ΘK) and a constraint Θ = W:

min
W,Θ,r

L(W) + λC(r) (3)

s.t. Wk = Θk, rank (Θk) = rk ≤ Rk, k = 1, . . . ,K

with r = (r1, . . . , rK). This formulation now takes the

form of model compression as constrained optimization

[4, 5, 6], for which a convenient “learning-compression

(LC)” optimization algorithm can be generally applied, and

which helps us capitalize on the separability of the cost

function C. Following [4], we apply a penalty method

and then alternating optimization. Below we give the algo-

rithm for the quadratic-penalty method [37] for shortness,

however, we implement the augmented Lagrangian version

which works in a similar way but with the introduction of

a Lagrange multiplier vector β of the same dimension as

W, see Alg. 1. After applying the quadratic-penalty we

optimize the following while driving the penalty parameter

µ→∞ (norms are Frobenius):

Q(W,Θ, r;µ) = L(W) + λC(r) +
µ

2

K
∑

k=1

‖Wk −Θk‖
2

s.t. rank (Θk) = rk ≤ Rk, k = 1, . . . ,K

by using alternating optimization over W and (Θ, r). The

step overW (“learning (L)” step) has the form of a standard

loss minimization minW L(W) + µ
2

∑

k ‖Wk −Θk‖
2

but with a quadratic regularizer on W (since Θ is fixed),

and can be done using a standard algorithm to optimize

the loss, e.g. SGD with deep nets. The step over Θ and r

(“compression (C)” step) separates into a problem for each

layer’s matrix Θk and rank rk , of the following form:

min
Θk,rk

λCk(rk) +
µ

2
‖Wk −Θk‖

2

s.t. rank (Θk) = rk ≤ Rk.

(4)

We recognize this problem as a standard low-rank approx-

imation in the Frobenius norm with a penalty on the rank
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Algorithm 1 Pseudocode (augmented Lagrangian version)

input training set, K-layer neural net with weights {Wk},
hyperparameter λ, layerwise cost functions {Ck}

W = (W1, . . . ,WK)← argminW L(W) reference net

r = (r1, . . . , rK)← 0 ranks

Θ = (Θ1, . . . ,ΘK)← 0 auxiliary weights

β = (β1, . . . ,βK)← 0 Lagrange multipliers

for µ = µ0 < µ1 < · · · <∞
W← argminW L(W) + µ

2
‖W −Θ− 1

µ
β‖

2
L step

for k = 1, . . . ,K C step

Θk, rk ← argmin
Θk,rk

λCk(rk) +
µ
2
‖Wk −Θk −

1

µ
βk‖

2

β ← β − µ(W −Θ) multipliers step

if ‖W −Θ‖ is small enough then exit the loop

return W,Θ, r

variable rk (which is a scalar). This can be solved using

the Eckhart-Young theorem [15, th. 2.4.8]. Assume w.l.o.g.

ak ≥ bk and let Wk = UkSkV
T
k be the SVD of Wk,

whereUk of ak×bk andVk of bk×bk are orthogonal matri-

ces, and Sk = diag (s1, . . . , sbk) with s1 ≥ · · · ≥ sbk ≥ 0
(sorted singular values). Then problem (4) is equivalent to:

min
r

λCk(r) +
µ

2

Rk
∑

i=r+1

s2ki s.t. rk ∈ {0, 1, . . . , Rk} (5)

which can be solved by enumeration, i.e., trying all Rk + 1
values of r. That is, the C step is solved exactly by 1)

computing the full SVD of each Wk (although we only

need its leading Rk singular values), 2) finding the opti-

mal rank of each rk from (5), and 3) forming each Θk =
Uk(: , 1: rk)Sk(1: rk, 1: rk)V(: , 1: rk)

T based on the top

rk singular values and corresponding singular vectors. If

λ = 0 this returns the usual solution rk = Rk where we

pick the top Rk singular values, but with λ > 0 we get

rk ≤ Rk depending on the case. We can solve (5) by enu-

meration because a single SVD gives us the optimal singu-

lar vectors and singular values for all possible rank values,

as mentioned in the introduction.

Overall, the LC algorithm operates by training the regu-

larized model for a while with SGD over the full-rank ma-

trices W1, . . . ,WK (with a regularization term given by

each low-rank matrix Θk), and then obtaining each low-

rank matrix Θk with currently optimal rank rk via a SVD of

Wk. The algorithm keeps two copies of each layer matrix:

Wk of full (unrestricted) rank, and Θk of rank rk ≤ Rk

determined within each C step. Both coincide in the limit

µ→∞. It is within the C step that the architecture changes

at each step, effectively by doing a model selection over the

rank of each matrix. Practically, rather than continuing to it-

erate L and C steps until convergence, at some iteration we

fix the ranks, thereby fixing the architecture, and optimize

it directly via SGD with the chain rule, which is faster.

4. Experiments

We evaluate our algorithm on multiple datasets and net-

works: LeNet300, LeNet5 on MNIST [31]; ResNets [18],

VGG16 [44], and NIN [35] on CIFAR10 [28]; AlexNet [29]

on ImageNet [42]; and compare our results to baselines

and other relevant works. We choose both lean (ResNets)

and large (AlexNet, VGG16) networks to demonstrate the

power of rank-selection approach. Experiments are initial-

ized from reasonably well-trained reference models with

same or exceeding test accuracies reported in the literature.

We use our LC algorithm (augmented Lagrangian ver-

sion) as follows throughout all experiments with minor

changes (see suppl. mat. for details). In the L step we use

Nesterov’s accelerated gradient method [36] with momen-

tum 0.9 on minibatches of size 128 (256 for MNIST) and

decayed learning rate schedule of η0 · a
m at the mth epoch.

The initial learning rate η0 is one of {0.0007,0.001}; the

learning rate decay is one of {0.98,0.99}. We run each L

step for 15 epochs (30 for MNIST). The C step requires,

per layer, a SVD followed by a scalar rank selection. It

runs for j iterations where j ≤ 60 and uses a penalty pa-

rameter schedule µj = µ0 · b
j; we take µ0 to be one of

{5 · 10−4, 10−3} and b ∈ {1.2,1.25}.
For each compressed model we report its training loss,

test error, and ratio of storage (ρstorage) and floating point

operations (ρFLOPs). We calculate FLOPs based on the as-

sumption of fused multiplication and addition, treating it

as one FLOP. For example, a forward pass through a fully

connected layer with weight matrix of n × m and bias of

n× 1 has nm multiplications and nm additions, for which

we report nm FLOPs. See suppl. mat. for details.

For the cost function C of eq. (2) we use throughout the

paper the deep net inference runtime (FLOPs added over

all layers), which is a linear function of the layers’ ranks.

We report results for different values of the λ hyperparam-

eter which trades off the classification loss L vs the cost C.

Also, in one of our animations (suppl. mat.), we use storage

(memory occupied by the parameters) instead. It is very

interesting to observe how different the resulting rank dis-

tribution is over the layers. This is to be expected because,

while memory and FLOPs are similar for fully-connected

layers, they are very different in convolutional layers. Other

suppl. mat. animations show how the ranks change over iter-

ations of the LC algorithm, going up and down individually

in a complex way and making large moves in rank space,

and how this depends on λ and C.

Low-rank parametrization of convolutional layers A

convolutional layer with n filters of c channels and d × d

spatial resolution has ncd2 parameters. We can parametrize

it with one of the following low-rank structures:

Scheme 1 We can view the convolutional weights as a lin-
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λ× 10−3 rank per layer FLOPs # params. logL Etrain Etest ρFLOPs ρstorage

R [300 100 10] 0.26M 0.26M -3.68 0.00 1.98 1.00 1.00
0.25 [35 16 9] 45 330 46 150 -4.11 0.00 1.87 5.87 5.77

L
eN

et
3
0
0

1 [24 10 9] 31 006 31 826 -4.02 0.00 2.06 8.59 8.36
2 [18 9 9] 24 102 24 922 -3.88 0.00 2.39 11.04 10.68

R [20 50 500 10] 2.29M 0.43M -6.27 0.00 0.55 1.00 1.00
0.4 [5 5 14 9] 328 390 26 855 -3.73 0.01 0.75 6.98 16.04

L
eN

et
5

1.0 [4 5 9 9] 295 970 20 310 -3.27 0.01 0.82 7.75 21.20
1.1 [3 3 9 9] 199 650 19 165 -2.28 0.16 1.33 11.49 22.47

Table 1. Results of our algorithm with different λ values on LeNet300 and LeNet5 nets on MNIST (R = reference net). We report the rank

selected for each layer, number and ratio of parameters and FLOPs of the compressed net, training loss L, and training and test error (%).
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Figure 1. Left: our algorithm and baselines on CIFAR10 networks (ResNets, VGG16, NIN). We plot test error vs ρFLOPs ratio (reference

net: horizontal dashed lines). Right: rank selected at each layer for a NIN, compressed to achieve ρFLOPs = 2 (reference: black × line).

ear layer with shape of n×cd2 applied to appropriately

reshaped volumes of the input. The rank-r approxima-

tion then has two linear mappings with weight shapes

of n × r and r × cd2, which can be efficiently imple-

mented as a sequence of two convolutional layers, with

r filters of shape c× d× d, and with n filters of shape

r × 1× 1 [32, 47, 48, and others].

Scheme 2 Alternatively, we can view the convolutional

weights as a linear layer with shape of nd× cd applied

to reshaped volumes of the input. For this scheme, an

approximation of rank r will have two linear mappings

with weight shapes of nd× r and r× cd, which can be

implemented as a sequence of two convolutional lay-

ers: first with r filters of c × d × 1 and second with n

filters of r × 1× d [23, 45].

We use the same low-rank scheme throughout all layers in

a network. We run experiments with scheme 1 on MNIST

and CIFAR10 and with both schemes for ImageNet.

4.1. Comparison baselines to estimate the ranks

One simple, approximate way to apply low-rank com-

pression to a deep net is to estimate the ranks with a heuris-

tic so the architecture is determined and then training this

as usual. We briefly describe two heuristics we use as base-

line. In each case, first a reference net with full-rank weight

matrices is trained, and then a lower rank is chosen for each

layer as follows:

Baseline 1 [52] Pick ranks to maximize the accumulated

sum of singular values over all the matrices subject to

the resulting FLOPS of the net being within a propor-

tion p of the full-rank net. They do this by a greedy

algorithm, picking one rank at a time from one of the

matrices.

Baseline 2 [47, 48] A simpler heuristic is to choose the

lowest rank rk of matrix k, separately for each layer

k, such that its rk-rank approximation error is within

a 1 − p proportion of the norm of the original matrix:
∥

∥Wk −UkV
T
k

∥

∥

F
≤ (1 − p)‖Wk‖F . They take p to

be 0.95 [47] or {0.95, 0.99} [48].

Essentially, this is the commonly used rule with PCA of

picking the number of principal components that will pre-

serve a target proportion p ∈ [0, 1] of explained variance.

It is done jointly over all layers in baseline 1, which is a
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hard optimization problem that is solved approximately, or

layerwise in baseline 2, which can be done exactly. Having

chosen a p value and estimated the ranks with a baseline, we

retrain the new net using Nesterov SGD with learning rates

to achieve as good performance as possible. We train for

about twice the number of epochs required to train the ref-

erence networks, with a learning rate of 0.002 for ResNets

and 0.001 for NIN and VGG16, decayed by 0.99 after every

epoch. See suppl. mat. for details. Finally, we also com-

pare with COBLA [32], which approximately optimizes the

training loss over both ranks and weight matrices.

4.2. MNIST experiments

We train LeNet300 and LeNet5 networks on MNIST

(60k grayscale images of 28×28 and 10 digit classes). We

normalize the images to have pixels in [0, 1] and subtract

their mean. Table 1 shows the result of our algorithm with

different values of λ (see suppl. mat. for full details and

additional experiments). It is clear that significant compres-

sion can be achieved with no or little increase in error, and

that the ranks found show a complex distribution over lay-

ers. We explore this further next.

4.3. CIFAR10 experiments and comparison

We train reference ResNets of different sizes (20, 32,

56 and 110 layers) following the procedure of the original

paper [18]. NIN and VGG16 (adapted for CIFAR10) are

trained using the same data augmentation as for ResNets.

We compress these networks using the baselines described

earlier and our algorithm (with various values of λ). For

ResNets we compress the convolutional layers only, since

the last, only fully-connected layer is very small (64×10).

Fig. 1 (left 4 panels) clearly shows that our method

achieves considerably better test errors across all nets and
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Figure 4. Distribution of ranks and FLOPs over layers for VGG16 and ResNet20 using our method for selected values of λ (×10−4).

all target compression ratios of FLOPs. The improvement is

very significant compared to the value of the reference net,

particularly for larger FLOP ratios (more compression), and

for the nets that are harder to compress (ResNets). For VGG

we even beat the reference test error over a wide range. The

improvement over the baselines happens because the latter

irrevocably commit to the heuristically selected ranks, while

our algorithm explores different rank selections eventually

converging to a much better one. Fig. 1 (right) shows the

selected ranks per layer for the case of a NIN (with ranks

selected to achieve 2× speedup). The selection of our algo-

rithm is quite different from the baselines and shows a com-

plex pattern over the NIN layers. We discuss this further

later. Fig. 1 (left panel for NIN) shows the results for the

COBLA joint weights-and-ranks optimization [32]. It does

much worse than our algorithm and even than the baselines,

particularly in the high compression regime; see also fig. 2

and fig. 3 (right).

Comparing the performance of compressed neural net-

works is a task complex, as there are multiple dimensions

for it that are not directly correlated. For example, the num-

ber of parameters is in general not proportional to the run-

time (FLOPs) at inference. (Also, reported compression

ratios of any kind can be easily inflated by compressing a

large, overparameterized model in the first place.) Rather

than reporting a single compression ratio as in fig. 1, in

fig. 2 we show test error (Y axis), inference FLOPs (X axis)

and number of parameters (ball size for each net), in order

to understand the interplay between these for our algorithm

and other published works. Thus, fig. 2 shows low-rank

compression for all our results and others’ published results

[32, 47, 48]. Importantly, it also puts low-rank compression

in perspective with other reported results for faster infer-

ence involving structured filter pruning [19, 33, 50, 51, 53].

Some portions of the figure (for ResNet20, 32 and NIN) are

enlarged in fig. 3 to avoid clutter.

We see that, for a given network over various levels of

low-rank compression, our algorithm’s results are the best

(with very few exceptions) in the Pareto curve sense: they

cannot be improved in both error and FLOPs. If looking

at specific nets, the optimal ones are ResNets and VGG,

although which one is better depends on the area of the

error-compression space we consider. For example, the ref-

erence VGG16 has many parameters (large ball) and is slow

(large FLOPs) compared to reference ResNets (as is widely

known). But scanning our low-rank curve over λ shows a

different picture: low-rank VGG16s improve significantly

over low-rank ResNets in some regions of the error-FLOPs

space (e.g. a low-rank VGG16 achieves 6.11% error with

107 MFLOPs, while the reference ResNet110 has 6.02%
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λ× 10−4 # params. MFLOPs top-1 top-5

R 62.3M 1139 42.49 19.54

0.05 40.7M 436 41.56 19.15
0.15 18.2M 263 42.63 19.95

sc
h
em

e
1

0.17 14.2M 240 42.83 19.93

0.05 40.5M 324 41.46 19.14
0.10 25.2M 236 41.81 19.40

sc
h
em

e
2

0.15 18.1M 190 42.07 19.54
0.20 12.4M 151 42.69 19.83

Table 2. Our algorithm on AlexNet using low-rank parametrization

schemes 1 and 2 (for several λs). We report: number of parameters

and MFLOPs, and top-1/top-5 errors on the validation set (%).

MFLOPs top-1 top-5 ρFLOPs

Caffe-AlexNet [24] 724 42.70 19.80 1.00

Kim et al. [26], Tucker 272 n/a 21.67 2.66
Tai et al. [45], scheme 2 185 n/a 20.34 3.90
Wen et al. [47], scheme 1 269 n/a 20.14 2.69
Kim et al. [25], scheme 2 272 43.40 20.10 2.66

Yu et al. [51], filter prun. 232 44.13 n/a 3.12
Li et al. [34], filter prun. 334 43.17 n/a 2.16
Ding et al. [12], filter prun. 492 43.83 20.47 1.47

ours, scheme 1, λ = 0.17 240 42.83 19.93 3.01
ours, scheme 2, λ = 0.20 151 42.69 19.83 4.79

Table 3. AlexNet compression with our algorithm vs published

work using low-rank methods and structured pruning. We report

top-1/top-5 validation error (%) and MFLOPs number and ratio.

error with 252 MFLOPs). The low-rank models obtained

with our algorithm are comparable and often considerably

better than other published low-rank compression and struc-

tured pruning results.

With these results, we can also understand the important

question of how the optimally selected ranks change over

the layers of a net, and over λ values. In particular, is it

possible to infer approximately optimal ranks beforehand

by some heuristic, fix them and train the resulting net with

SGD? Already the ranks found by our algorithm for NIN in

fig. 1 show a complex pattern over layers that is quite differ-

ent from those of the heuristics. Fig. 4 shows the rank dis-

tribution over layers obtained by our method for ResNet20

and VGG16 (for selected λ values), and the corresponding

FLOPs/layer. The distribution is far from uniform and not

directly related to either the maximum rank or the FLOPs at

a layer. Some layers (e.g. 5 and 9 for VGG16) have much

higher ranks than others. Their relative proportion does not

stay the same for different λ values. For example, see lay-

ers 10 and 11 of VGG16: for λ = 0.5 the rank of layer 10

is greater than that of layer 11, but for λ = 0.8 the relation

is reversed. These relations cannot be captured by simple

heuristics, and need to be inferred via joint optimization, be-

cause the classification loss and the cost function (FLOPs,

storage, etc.) interact in nonlinear ways. Understanding the

rank distribution may be a useful research direction, as it

may give insights about the design and structure of deep

nets. In summary, we conclude that learning both ranks and

weights is well worth the effort—which is not large: our LC

algorithm is not much slower than such heuristic methods.

It is simple to implement and its runtime (dominated by the

L steps) is just a few times that of training the reference,

full-rank net.

4.4. ImageNet experiments

We train a batch normalized version of the AlexNet net-

work [29] with 62M parameters on the ImageNet ILSVRC

2012 dataset [42] using the augmentation procedure of the

original paper. Our reference model achieves a validation

accuracy of 57.71% (top-1) and 80.45% (top-5). We com-

press the reference network using our rank-selection algo-

rithm for both low-rank decomposition schemes using vari-

ous λ values (details in the suppl. mat.). See tables 2–3.

Our compressed networks achieve much better error and

speedup (ρFLOPs) compared to other low-rank and filter

pruning methods. Our smallest scheme-1 network has lower

FLOPs and error than the scheme-1 decomposed AlexNet

of [47]. Our smallest scheme-2 network achieves 4.79×
FLOPs reduction wrt Caffe-AlexNet while having the same

error, which outperforms similar scheme-2 methods of

[25, 45], and structured pruning methods of [12, 34, 51].

5. Conclusion

We have approached the problem of low-rank compres-

sion in a multilayer deep net as a model selection problem of

finding the ranks. The mathematical vehicle that makes this

possible is the introduction of a model selection criterion

that serves both to specify an application-driven cost of real

interest, and to do an architecture search with guarantees

of continued progress. Our resulting algorithm monotoni-

cally decreases at each iteration an objective function over

both architectures (rank selections at each layer) and nu-

merical weight values, switching from one architecture to

another on the fly, and produces a good approximate solu-

tion to the problem. In our experiments, this finds solutions

that improve over other ways of approximately determining

the ranks, and which provide insights about the structure of

deep nets depending on the types of layers. It also makes

low-rank compression much more attractive for deep nets

compared to pruning than previously thought.
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