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Abstract

Neural net compression can be achieved by approximat-
ing each layer’s weight matrix by a low-rank matrix. The
real difficulty in doing this is not in training the resulting
neural net (made up of one low-rank matrix per layer), but
in determining what the optimal rank of each layer is—
effectively, an architecture search problem with one hyper-
parameter per layer. We show that, with a suitable for-
mulation, this problem is amenable to a mixed discrete-
continuous optimization jointly over the ranks and over the
matrix elements, and give a corresponding algorithm. We
show that this indeed can select ranks much better than
existing approaches, making low-rank compression much
more attractive than previously thought. For example, we
can make a VGG network faster than a ResNet and with
nearly the same classification error.

Compressing large deep neural nets so that they can be
deployed on resource-constrained devices, such as smart
cameras or mobile phones, is a problem of considerable in-
terest at present. Of the many existing compression forms
we focus on low-rank compression, whose roots lie in ma-
trix algebra, and where we replace a matrix W with an-
other one having lower rank (which can thus be written as
the product UV of two smaller matrices). That low-rank
compression can be very effective is obvious from its many
applications in numerical linear algebra, image and signal
processing, model order reduction, machine learning and
statistics, and other areas in science and engineering. In-
deed it has been applied for deep net compression (see re-
lated work), although it generally has been found less ef-
fective than other compression techniques such as weight
quantization or pruning. However, a low-rank represen-
tation has the advantage of fast inference (particularly on
GPUs), since it uses dense matrices having a local, regular
and parallelizable memory access pattern.

A fundamental problem in low-rank compression is the
selection of the rank. This is often not recognized because
selecting the rank and the corresponding matrices U and
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V is very easy in some special but important cases, which
accounts for the widespread use of low-rank compression.
Indeed, say we are given a matrix W and want to find a low-
rank matrix that produces the lowest approximation error to
W. The solution of this problem is known and is com-
putationally very convenient: solving a single full singular
value decomposition (SVD) we obtain the optimal solution
for any desired rank and hence any desired approximation
error [15]. We simply sort the singular values and pick as
many as we need in increasing order to reach the desired ap-
proximation error. The matrices U and V are given by the
corresponding singular vectors. Note that we need not solve
a separate optimization problem for each target value of the
error or rank: we get all the possible solutions at once. This
property will prove useful in our algorithm later.

This property also holds in a special case of the model
compression problem (well known in statistics as reduced-
rank regression (RRR) [22, 41]): solving a linear regression
fit but constraining the rank of the coefficient matrix to be
at most . This problem can be solved again for all possible
values of the rank r by computing a single SVD of the data
matrix (training input and output vectors).

Let us now see why this is much harder in the case of a
deep net where we want to find both the rank for each layer
matrix and the matrix coefficients so that some desired error
is minimized and the ranks are constrained. The solution is
not given anymore by computing a single SVD and exam-
ining a list of ranks and their errors. What is relatively easy
(at least, doable in current practice with deep nets) is to find
the weights of the matrix at each layer if we fix ahead of
time the rank ry, that we want to use in each layer k. This
is because we can then write the matrix at each layer as
Uka and optimize this network as usual over all the Uy,
and V, matrices. That is, we compute the gradient using
the chain rule (easily done with automatic differentiation in
deep learning frameworks such as PyTorch [39] or Tensor-
Flow [1]) and use it with stochastic gradient descent (SGD)
to converge (approximately at least) to a local minimizer.

This makes it obvious that the real problem is in deter-
mining optimal values for the set of ranks r,...,rgx. It
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also shows that the problem can be seen as a special case
of architecture optimization, where we search both over ar-
chitectures (i.e., the number of hidden units, or rank, within
each layer) and over values of the matrices’ weights. Hence,
this is a hard, combinatorial problem which is exponential
on the number of layers. Specifically, in a net with K lay-
ers of weights each having a maximum rank of Ry there
are Hszl Rj. combinations of rank choices, and each Ry
can be thousands in large nets. Even having access to many
GPUs over weeks of training makes it possible to train only
a tiny subset of combinations. Practically, this means that
one should try to guess reasonable values for these ranks
and perhaps explore the space from that point a little by try-
ing additional combinations, but this generally will provide
solutions that may be far from optimal.

In this paper, we propose a way to find a good, approx-
imate solution to this problem efficiently. We first formu-
late the problem in a way that incorporates our desire of
minimizing the (say) classification loss of the net but with
a model selection cost dependent on the ranks (memory
or inference time, for example), and a rank constraint on
each layer. We then show how this can be optimized over
both ranks and weight values, by interleaving SGD steps
that train the uncompressed net with SVD steps that deter-
mine the currently optimal rank and weight matrices. Our
algorithm can be shown to explore architectures on the fly
while monotonically decreasing a certain objective function
which, in the limit, tends to a local solution of the problem
(an approximate solution, since the problem is presumably
NP-hard). We achieve this with a single run of the training
algorithm, which is not much slower than training the un-
compressed net itself, and therefore much faster than train-
ing multiple nets of different architectures. After reviewing
related work (section 1), we formulate the problem (sec-
tion 2), give our algorithm (section 3), and test it with neural
nets having up to hundreds of layers (section 4).

1. Related work

Matrix factorizations, including low-rank factorization
via the SVD and various forms of tensor factorization,
have been extensively studied in theory and application
[8, 9, 27, 46]. Likewise, neural net compression can be
done with methods other than low-rank compression, such
as weight quantization or pruning. In this section, we limit
ourselves to works involving low-rank compression (of ma-
trices or tensors) of deep neural nets in terms of model size
or inference time.

Ranks assumed fixed Various types of low-rank decom-
positions of fully-connected and convolutional layers (with
suitable reshaping) have been used [10, 11, 23, 32, 43, 45,
47, 48, 49, 52], as well as tensor decompositions such as
CP [11, 30], Tucker [26] and Tensor-Train [14, 38]. Modi-
fications and combinations of different decompositions are

common too, e.g. constraining each filter in a convolutional
layer to have unit rank [23] or to be a linear combination of
filters of different rank [20, 21].

Algorithmically, early works used either data-dependent
or data-independent methods to obtain a layerwise fac-
torization of a trained, reference net, which determines
the rank at each layer, and then fine-tuned the resulting
net. Data-independent strategies minimize the distance
||W AV H between the original and compressed weight
matrix, using a closed form solution such as the SVD
[11, 38, 45, 47] or iterative optimization [23, 30]. Data-
dependent strategies minimize either a data-dependent dis-
tance between the original and compressed matrix [ 1], or
the distance of the output activations (at each layer) between
the original and compressed matrix HWx - UVTx
treating it as regression problem [10, 52].

i}

Rank selection Some methods apply a heuristic to fix the
ranks ahead of time, such as using a greedy approach or
thresholding [25, 26, 47, 48, 52]. We use some of these
(described in section 4.1) as baseline comparison in our ex-
periments. Other work [47] proposes to train a neural net
with a penalty that encourages (but does not actually con-
strain) the weight matrices to be low-rank. Since it does not
handle the ranks directly, it requires a heuristic selection
(thresholding) of the ranks after training. This thresholding
can be alternated instead with the net training [48]. Finally,
we are aware of only one method to jointly learn ranks and
weights as part of the overall optimization [32]. This pro-
poses a specific formulation to minimize the loss of a deep
net with constraints on the total number of allowed weights
and computation. This problem is solved approximately in
an alternating manner, where one step optimizes over the
weights via SGD, and another step optimizes over the ranks
but requires the solution of a mixed-integer program (in-
volving discrete and continuous variables, NP-hard) using
the commercial software MOSEK. Our algorithm also has
a step over the full-rank weight matrices and over the low-
rank matrices and their ranks, but we show the latter can be
solved exactly in closed form via an SVD per layer for both
ranks and weights.

Another line of work is to use a convex relaxation of the
rank, the nuclear norm (or trace norm) [13]. Minimizing the
nuclear norm instead of the rank is easier and enjoys opti-
mality guarantees under certain conditions in compressed
sensing [3, 40]. The nuclear norm was used to reduce the
number of parameters in single- [16] and multi-layer net-
works [2]. However, minimizing the nuclear norm is gener-
ally not equivalent to minimizing the rank with multi-layer
networks, and it is not clear how cost functions such as
FLOPs would relate to the nuclear norm. Our formulation
has both advantages: it directly optimizes what we really
want (a cost function of each integer rank) and does so ex-
actly and efficiently in the step over the ranks.
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2. Problem formulation

Assume we want to train a K -layer deep net, where layer
k takes the form z;, = 0(Wyzx—_1), o(+) is an elementwise
nonlinearity (e.g. ReLU), and zy, is the input at layer k (with
X = zp and y = zx being the input and output of the net);
we omit bias parameters to keep the notation simple. Let us
denote the loss function (e.g. cross-entropy for classification
on a training set) as L(W) where W = (Wy,..., W)
are the deep net weight matrices, where Wy, is of dimension
ap X bk, and by = ap—1 (so layer k — 1 feeds into layer
k). We then want to minimize the sum of this loss and a
cost function C' but constraining each rank not to exceed a
maximum rank Ry, at each layer. Hence we have:

min L(W) + XC(W)
w ey
s.t. rank (W) < R, k=1,..., K.

Note that we must have R, < min(ag, by), which is the
maximum rank possible at layer k. The constraint in (1)
can be equivalently written as W, = Usz where U},
isof ap X 7, Vi isof by x rp and 7, € {0,1,..., Rg},
but r; is an unknown parameter itself that we need to op-
timize over. In this equivalent formulation, we optimize
over {Wy,, Uy, Vi, 7 | jointly, which makes explicit
the combinatorial nature of the problem.

We now define the cost function C' (W) as follows and
make some key observations:

C(W)=C(r1,...,rx) = Ci(r1) + - + Ck(rk). (2)
A useful particular case is C(W) = a7 + -+ + agTk
where a1, ...,ax > 0 are constants. First, from an opti-
mization point of view, C' depends only on the ranks (not
the actual weight values in W) and is a separable function
of them. With some manipulations in the next section, this
will make it possible to solve a problem that has an appar-
ently exponential cost over the number of layers K exactly
in linear cost over K. The intuition is very similar to the
“model selection on the fly” idea of [7].

Second, from a modeling point of view, C' can represent
several costs of interest in the context of neural net com-
pression by appropriate choices of the coefficients ay,. For
example, the memory occupied by W (in number of ele-
ments) results from o, = ayp + bi (since Wy, is stored as
Uy, and Vy, and the memory occupied by a floating-point
number does not depend on its value). The runtime at in-
ference to compute the output y of the net with an input
x results (up to an additive constant) from those same co-
efficients. If convolutional layers are involved, the coeffi-
cients change according to which filters are reused but the
memory and runtime remain a linear function of the ranks.
Other costs, such as energy or bandwidth, can be written in
this form, at least approximately. Hence, C plays the role

of a model selection criterion. But unlike traditional crite-
ria such as AIC, BIC or MDL [17], over which there is no
general agreement, in our context there is a clear definition
of cost (given by the system where the neural net will be
deployed and the performance target required by the appli-
cation, such as fast image classification in a camera of given
memory size and CPU frequency). While this cost can be
defined in different ways, it is not arbitrary. The hyperpa-
rameter A > 0 naturally trades off the classification loss
with the cost, and determines the distribution of ranks over
the deep net layers—which varies in a complex way, as seen
in our experiments.

3. Optimization algorithm

Let us rewrite (1) by introducing auxiliary variables ® =
(©1,...,0k) and a constraint @ = W:
i L(W) +AC(r) 3)
s.t. Wy = 0y, rank(@k) =r, < Rp, k=1,... K

with r = (r1,...,7x). This formulation now takes the
form of model compression as constrained optimization
[4, 5, 6], for which a convenient “learning-compression
(LC)” optimization algorithm can be generally applied, and
which helps us capitalize on the separability of the cost
function C. Following [4], we apply a penalty method
and then alternating optimization. Below we give the algo-
rithm for the quadratic-penalty method [37] for shortness,
however, we implement the augmented Lagrangian version
which works in a similar way but with the introduction of
a Lagrange multiplier vector 3 of the same dimension as
W, see Alg. 1. After applying the quadratic-penalty we
optimize the following while driving the penalty parameter
1 — oo (norms are Frobenius):

K
Q(W.©.1:1) = L(W) + AC(xr) + 5 D [ Wy, — O
k=1

S.t. rank(@k):rkSRk, kZl,...,K

by using alternating optimization over W and (©,r). The
step over W (“learning (L)” step) has the form of a standard
loss minimization minw L(W) 4+ 53", [|[W} — ol
but with a quadratic regularizer on W (since © is fixed),
and can be done using a standard algorithm to optimize
the loss, e.g. SGD with deep nets. The step over ® and r
(“compression (C)” step) separates into a problem for each
layer’s matrix &y, and rank r, of the following form:

. I 2
AC + = |[W, — O
Gnil,ilk k(re) 2 H k k” 4)
s.t. rank (@) = 1, < Ry.

We recognize this problem as a standard low-rank approx-
imation in the Frobenius norm with a penalty on the rank
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Algorithm 1 Pseudocode (augmented Lagrangian version)

input training set, K -layer neural net with weights { W},
hyperparameter A, layerwise cost functions {C}, }

W = (Wy,...,Wg) + arg miny L(W) reference net
r=(ry,...,rx) <0 ranks
®=(0,...,0)«0 auxiliary weights
B=(B,....08x) <0 Lagrange multipliers

forjp=po <1 <--- <0
W < argminy L(W) 4 5|W - © — ﬁﬁ”z L step

fork=1,..., K C step
Oy, 1 < argmin A Cx(ry) + 5[Wi, — O — 18,
O,k

B+ B—puW-0) multipliers step
if |[W — ©|| is small enough then exit the loop
return W, ©, r

variable 7, (which is a scalar). This can be solved using
the Eckhart-Young theorem [15, th. 2.4.8]. Assume w.l.o.g.
ar > b and let W, = UkSng be the SVD of Wy,
where Uy, of ay, x by, and Vi, of by, x by, are orthogonal matri-
ces, and Sy, = diag (s1,...,8,) withsy > -+ > s, >0
(sorted singular values). Then problem (4) is equivalent to:

Ry
: [
mrln/\Ck(r) + 5 _Zﬂsil st 1, €{0,1,..., R} (5)

which can be solved by enumeration, i.e., trying all Ry + 1
values of . That is, the C step is solved exactly by 1)
computing the full SVD of each W, (although we only
need its leading R, singular values), 2) finding the opti-
mal rank of each rj from (5), and 3) forming each ®; =
Uk (:, 1:m%) Sk(1:7g, 1) V(:, 1:74)T based on the top
71, singular values and corresponding singular vectors. If
A = 0 this returns the usual solution r, = R; where we
pick the top Ry singular values, but with A > 0 we get
rr < R} depending on the case. We can solve (5) by enu-
meration because a single SVD gives us the optimal singu-
lar vectors and singular values for all possible rank values,
as mentioned in the introduction.

Overall, the LC algorithm operates by training the regu-
larized model for a while with SGD over the full-rank ma-
trices Wy, ..., W (with a regularization term given by
each low-rank matrix ®y), and then obtaining each low-
rank matrix @, with currently optimal rank r, viaa SVD of
‘W .. The algorithm keeps two copies of each layer matrix:
‘W, of full (unrestricted) rank, and @, of rank r, < Ry
determined within each C step. Both coincide in the limit
1 — oo. Itis within the C step that the architecture changes
at each step, effectively by doing a model selection over the
rank of each matrix. Practically, rather than continuing to it-
erate L and C steps until convergence, at some iteration we
fix the ranks, thereby fixing the architecture, and optimize
it directly via SGD with the chain rule, which is faster.

4. Experiments

We evaluate our algorithm on multiple datasets and net-
works: LeNet300, LeNet5 on MNIST [31]; ResNets [18],
VGGI16 [44], and NIN [35] on CIFAR10 [28]; AlexNet [29]
on ImageNet [42]; and compare our results to baselines
and other relevant works. We choose both lean (ResNets)
and large (AlexNet, VGG16) networks to demonstrate the
power of rank-selection approach. Experiments are initial-
ized from reasonably well-trained reference models with
same or exceeding test accuracies reported in the literature.

We use our LC algorithm (augmented Lagrangian ver-
sion) as follows throughout all experiments with minor
changes (see suppl. mat. for details). In the L step we use
Nesterov’s accelerated gradient method [36] with momen-
tum 0.9 on minibatches of size 128 (256 for MNIST) and
decayed learning rate schedule of 7y - a™ at the mth epoch.
The initial learning rate 7o is one of {0.0007,0.001}; the
learning rate decay is one of {0.98,0.99}. We run each L
step for 15 epochs (30 for MNIST). The C step requires,
per layer, a SVD followed by a scalar rank selection. It
runs for j iterations where j < 60 and uses a penalty pa-
rameter schedule 11; = po - b7; we take po to be one of
{5-1074,1073} and b € {1.2,1.25}.

For each compressed model we report its training loss,
test error, and ratio of storage (psorage) and floating point
operations (prLops). We calculate FLOPs based on the as-
sumption of fused multiplication and addition, treating it
as one FLOP. For example, a forward pass through a fully
connected layer with weight matrix of n x m and bias of
n x 1 has nm multiplications and nm additions, for which
we report nm FLOPs. See suppl. mat. for details.

For the cost function C' of eq. (2) we use throughout the
paper the deep net inference runtime (FLOPs added over
all layers), which is a linear function of the layers’ ranks.
We report results for different values of the A hyperparam-
eter which trades off the classification loss L vs the cost C.
Also, in one of our animations (suppl. mat.), we use storage
(memory occupied by the parameters) instead. It is very
interesting to observe how different the resulting rank dis-
tribution is over the layers. This is to be expected because,
while memory and FLOPs are similar for fully-connected
layers, they are very different in convolutional layers. Other
suppl. mat. animations show how the ranks change over iter-
ations of the LC algorithm, going up and down individually
in a complex way and making large moves in rank space,
and how this depends on A and C'.

Low-rank parametrization of convolutional layers A
convolutional layer with n filters of ¢ channels and d x d
spatial resolution has ncd? parameters. We can parametrize
it with one of the following low-rank structures:

Scheme 1 We can view the convolutional weights as a lin-
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Ax 1073 rank per layer ~ FLOPs #params. logL FEyuin FElest PFLOPs  Pstorage
S R [300 100 10 0.26M 0.26M -3.68 0.00 1.98 1.00 1.00
< 0.25 [35 16 9 45330 46150 -4.11 000 1.87 5.87 5.77
Z 1 [24 10 9 31006 31826 -4.02 0.00 2.06 8.9 8.36
3 2 [18 9 9 24102 24922 -3.88 0.00 239 11.04 10.68
“ R [20 50 500 10 2.29M 043M -6.27 0.00 0.55 1.00 1.00
o 0.4 [5 5 14 9] 328390 26855 -3.73 0.01 0.75 698 16.04
4 1.0 4 5 9 9] 295970 20310 -3.27 0.01 082 7.75 21.20
— 1.1 3 3 9 9] 199650 19165 -2.28 0.16 133 1149 2247

Table 1. Results of our algorithm with different A\ values on LeNet300 and LeNet5 nets on MNIST (R = reference net). We report the rank
selected for each layer, number and ratio of parameters and FLOPs of the compressed net, training loss L, and training and test error (%).
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Figure 1. Left: our algorithm and baselines on CIFAR10 networks (ResNets, VGG16, NIN). We plot test error vs prrops ratio (reference
net: horizontal dashed lines). Right: rank selected at each layer for a NIN, compressed to achieve prrops = 2 (reference: black X line).

ear layer with shape of n x cd? applied to appropriately
reshaped volumes of the input. The rank-r approxima-
tion then has two linear mappings with weight shapes
of n x r and r x cd?, which can be efficiently imple-
mented as a sequence of two convolutional layers, with
r filters of shape ¢ x d x d, and with n filters of shape
rx1x1[32,47,48, and others].

Scheme 2 Alternatively, we can view the convolutional
weights as a linear layer with shape of nd x cd applied
to reshaped volumes of the input. For this scheme, an
approximation of rank r will have two linear mappings
with weight shapes of nd x r and r x cd, which can be
implemented as a sequence of two convolutional lay-
ers: first with r filters of ¢ x d x 1 and second with n
filters of r x 1 x d [23, 45].

We use the same low-rank scheme throughout all layers in
a network. We run experiments with scheme 1 on MNIST
and CIFAR10 and with both schemes for ImageNet.

4.1. Comparison baselines to estimate the ranks

One simple, approximate way to apply low-rank com-
pression to a deep net is to estimate the ranks with a heuris-

tic so the architecture is determined and then training this
as usual. We briefly describe two heuristics we use as base-
line. In each case, first a reference net with full-rank weight
matrices is trained, and then a lower rank is chosen for each
layer as follows:

Baseline 1 [52] Pick ranks to maximize the accumulated
sum of singular values over all the matrices subject to
the resulting FLOPS of the net being within a propor-
tion p of the full-rank net. They do this by a greedy
algorithm, picking one rank at a time from one of the
matrices.

Baseline 2 [47, 48] A simpler heuristic is to choose the
lowest rank 7y, of matrix k, separately for each layer
k, such that its rg-rank approximation error is within
a 1 — p proportion of the norm of the original matrix:
Wi —Up V]|, < (1 = p)[[Wk]| . They take p to
be 0.95 [47] or {0.95, 0.99} [48].

Essentially, this is the commonly used rule with PCA of
picking the number of principal components that will pre-
serve a target proportion p € [0, 1] of explained variance.
It is done jointly over all layers in baseline 1, which is a
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hard optimization problem that is solved approximately, or
layerwise in baseline 2, which can be done exactly. Having
chosen a p value and estimated the ranks with a baseline, we
retrain the new net using Nesterov SGD with learning rates
to achieve as good performance as possible. We train for
about twice the number of epochs required to train the ref-
erence networks, with a learning rate of 0.002 for ResNets
and 0.001 for NIN and VGG16, decayed by 0.99 after every
epoch. See suppl. mat. for details. Finally, we also com-
pare with COBLA [32], which approximately optimizes the
training loss over both ranks and weight matrices.

4.2. MNIST experiments

We train LeNet300 and LeNet5 networks on MNIST
(60k grayscale images of 2828 and 10 digit classes). We
normalize the images to have pixels in [0, 1] and subtract
their mean. Table 1 shows the result of our algorithm with

different values of A (see suppl. mat. for full details and
additional experiments). It is clear that significant compres-
sion can be achieved with no or little increase in error, and
that the ranks found show a complex distribution over lay-
ers. We explore this further next.

4.3. CIFAR10 experiments and comparison

We train reference ResNets of different sizes (20, 32,
56 and 110 layers) following the procedure of the original
paper [18]. NIN and VGG16 (adapted for CIFAR10) are
trained using the same data augmentation as for ResNets.
We compress these networks using the baselines described
earlier and our algorithm (with various values of \). For
ResNets we compress the convolutional layers only, since
the last, only fully-connected layer is very small (64 x 10).

Fig. 1 (left 4 panels) clearly shows that our method
achieves considerably better test errors across all nets and

] T T
13 — NIN
ResNet20
12—
ResNzet32
11—
ResNet56
S
10—
% . ResNet110
5
— 9 [
8
8 | Wenetal. [47]
2 —Yeetal. [50]
3 — Zhuang et al. [53]
7l 4 —Lietal. [33]
5—Heetal. [19]
6—Yuetal. [5]]
7 —Xuetal. [48]
61— 8‘— Li and Shi [32]
\ \

| ResNet‘20 —]

C @ ResNet32
ResNet56

@ ResNetl10

® VGGl6
NIN |

10!

MFLOPs

Figure 2. Error-compression space of test error (Y axis), inference FLOPs (X axis) and number of parameters (ball size for each net), for
ResNets, VGG16 and NIN trained on CIFAR10. Results of our algorithm over different A values for a given network span a curve, shown
as connected circles @—@), which starts on the lower right at the reference R (A = 0) and then moves left and up. Other published
results using low-rank compression are shown as isolated circles labeled with a citation. Other published results involving structured filter
pruning for faster inference are shown as isolated squares labeled with a citation. Each color corresponds to a different reference net. The
area of a circle or square is proportional to the number of parameters in the corresponding compressed model. Ideal models are small balls
(having few parameters) on the left-bottom (where both error and FLOPs are the smallest).
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Figure 3. Enlarged portions of fig. 2 for ResNet20, 32, NIN. Blue circles correspond to our LC algorithm over various A values, with area
proportional to the number of parameters (independently normalized for each figure). Results of other compressions are given by other
colored circles (low-rank compressions, in particular COBLA [32] in the NIN plot) and squares (filter pruning).
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Figure 4. Distribution of ranks and FLOPs over layers for VGG16 and ResNet20 using our method for selected values of A (x10~%).

all target compression ratios of FLOPs. The improvement is
very significant compared to the value of the reference net,
particularly for larger FLOP ratios (more compression), and
for the nets that are harder to compress (ResNets). For VGG
we even beat the reference test error over a wide range. The
improvement over the baselines happens because the latter
irrevocably commit to the heuristically selected ranks, while
our algorithm explores different rank selections eventually
converging to a much better one. Fig. 1 (right) shows the
selected ranks per layer for the case of a NIN (with ranks
selected to achieve 2 x speedup). The selection of our algo-
rithm is quite different from the baselines and shows a com-
plex pattern over the NIN layers. We discuss this further
later. Fig. 1 (left panel for NIN) shows the results for the
COBLA joint weights-and-ranks optimization [32]. It does
much worse than our algorithm and even than the baselines,
particularly in the high compression regime; see also fig. 2
and fig. 3 (right).

Comparing the performance of compressed neural net-
works is a task complex, as there are multiple dimensions
for it that are not directly correlated. For example, the num-
ber of parameters is in general not proportional to the run-
time (FLOPs) at inference. (Also, reported compression
ratios of any kind can be easily inflated by compressing a
large, overparameterized model in the first place.) Rather

than reporting a single compression ratio as in fig. 1, in
fig. 2 we show test error (Y axis), inference FLOPs (X axis)
and number of parameters (ball size for each net), in order
to understand the interplay between these for our algorithm
and other published works. Thus, fig. 2 shows low-rank
compression for all our results and others’ published results
[32, 47, 48]. Importantly, it also puts low-rank compression
in perspective with other reported results for faster infer-
ence involving structured filter pruning [19, 33, 50, 51, 53].
Some portions of the figure (for ResNet20, 32 and NIN) are
enlarged in fig. 3 to avoid clutter.

We see that, for a given network over various levels of
low-rank compression, our algorithm’s results are the best
(with very few exceptions) in the Pareto curve sense: they
cannot be improved in both error and FLOPs. If looking
at specific nets, the optimal ones are ResNets and VGG,
although which one is better depends on the area of the
error-compression space we consider. For example, the ref-
erence VGG16 has many parameters (large ball) and is slow
(large FLOPs) compared to reference ResNets (as is widely
known). But scanning our low-rank curve over A shows a
different picture: low-rank VGG16s improve significantly
over low-rank ResNets in some regions of the error-FLOPs
space (e.g. a low-rank VGG16 achieves 6.11% error with
107 MFLOPs, while the reference ResNetl110 has 6.02%
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Ax10~* #params. MFLOPs top-1 top-5

R 62.3M 1139 4249 19.54

© 0.05 40.7M 436 41.56 19.15
§ 0.15 18.2M 263 42,63 19.95
2 0.17 14.2M 240 42.83 19.93
~ 0.05 40.5M 324 4146 19.14
“E’ 0.10 25.2M 236 41.81 19.40
% 0.15 18.1M 190 42.07 19.54
< 0.20 12.4M 151 42.69 19.83

Table 2. Our algorithm on AlexNet using low-rank parametrization
schemes 1 and 2 (for several As). We report: number of parameters
and MFLOPs, and top-1/top-5 errors on the validation set (%).

MFLOPs top-1 top-5 prrops

Caffe-AlexNet [24] 724 4270 19.80 1.00
Kim et al. [26], Tucker 272 n/a 21.67 2.66
Tai et al. [45], scheme 2 185 n/a  20.34 3.90
Wen et al. [47], scheme 1 269 n/a  20.14 2.69

Kim et al. [25], scheme 2 272 4340 20.10 2.66

Yu et al. [51], filter prun. 232 44.13 n/a 3.12
Li et al. [34], filter prun. 334 43.17 nl/a 2.16
Ding et al. [12], filter prun. 492 43.83 2047 1.47

ours, scheme 1, A = 0.17 240 42.83 1993 3.01
ours, scheme 2, A\ = 0.20 151 42.69 19.83 4.79

Table 3. AlexNet compression with our algorithm vs published
work using low-rank methods and structured pruning. We report
top-1/top-5 validation error (%) and MFLOPs number and ratio.

error with 252 MFLOPs). The low-rank models obtained
with our algorithm are comparable and often considerably
better than other published low-rank compression and struc-
tured pruning results.

With these results, we can also understand the important
question of how the optimally selected ranks change over
the layers of a net, and over A\ values. In particular, is it
possible to infer approximately optimal ranks beforehand
by some heuristic, fix them and train the resulting net with
SGD? Already the ranks found by our algorithm for NIN in
fig. 1 show a complex pattern over layers that is quite differ-
ent from those of the heuristics. Fig. 4 shows the rank dis-
tribution over layers obtained by our method for ResNet20
and VGGI16 (for selected A values), and the corresponding
FLOPs/layer. The distribution is far from uniform and not
directly related to either the maximum rank or the FLOPs at
a layer. Some layers (e.g. 5 and 9 for VGG16) have much
higher ranks than others. Their relative proportion does not
stay the same for different A values. For example, see lay-
ers 10 and 11 of VGG16: for A = 0.5 the rank of layer 10
is greater than that of layer 11, but for A = 0.8 the relation
is reversed. These relations cannot be captured by simple

heuristics, and need to be inferred via joint optimization, be-
cause the classification loss and the cost function (FLOPs,
storage, etc.) interact in nonlinear ways. Understanding the
rank distribution may be a useful research direction, as it
may give insights about the design and structure of deep
nets. In summary, we conclude that learning both ranks and
weights is well worth the effort—which is not large: our LC
algorithm is not much slower than such heuristic methods.
It is simple to implement and its runtime (dominated by the
L steps) is just a few times that of training the reference,
full-rank net.

4.4. ImageNet experiments

We train a batch normalized version of the AlexNet net-
work [29] with 62M parameters on the ImageNet ILSVRC
2012 dataset [42] using the augmentation procedure of the
original paper. Our reference model achieves a validation
accuracy of 57.71% (top-1) and 80.45% (top-5). We com-
press the reference network using our rank-selection algo-
rithm for both low-rank decomposition schemes using vari-
ous A values (details in the suppl. mat.). See tables 2-3.

Our compressed networks achieve much better error and
speedup (prLops) compared to other low-rank and filter
pruning methods. Our smallest scheme-1 network has lower
FLOPs and error than the scheme-1 decomposed AlexNet
of [47]. Our smallest scheme-2 network achieves 4.79x
FLOPs reduction wrt Caffe-AlexNet while having the same
error, which outperforms similar scheme-2 methods of
[25, 45], and structured pruning methods of [12, 34, 51].

5. Conclusion

We have approached the problem of low-rank compres-
sion in a multilayer deep net as a model selection problem of
finding the ranks. The mathematical vehicle that makes this
possible is the introduction of a model selection criterion
that serves both to specify an application-driven cost of real
interest, and to do an architecture search with guarantees
of continued progress. Our resulting algorithm monotoni-
cally decreases at each iteration an objective function over
both architectures (rank selections at each layer) and nu-
merical weight values, switching from one architecture to
another on the fly, and produces a good approximate solu-
tion to the problem. In our experiments, this finds solutions
that improve over other ways of approximately determining
the ranks, and which provide insights about the structure of
deep nets depending on the types of layers. It also makes
low-rank compression much more attractive for deep nets
compared to pruning than previously thought.
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