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Abstract

One major challenge for monocular 3D human pose es-

timation in-the-wild is the acquisition of training data that

contains unconstrained images annotated with accurate 3D

poses. In this paper, we address this challenge by propos-

ing a weakly-supervised approach that does not require

3D annotations and learns to estimate 3D poses from un-

labeled multi-view data, which can be acquired easily in

in-the-wild environments. We propose a novel end-to-end

learning framework that enables weakly-supervised train-

ing using multi-view consistency. Since multi-view consis-

tency is prone to degenerated solutions, we adopt a 2.5D

pose representation and propose a novel objective func-

tion that can only be minimized when the predictions of the

trained model are consistent and plausible across all cam-

era views. We evaluate our proposed approach on two large

scale datasets (Human3.6M and MPII-INF-3DHP) where it

achieves state-of-the-art performance among semi-/weakly-

supervised methods.

1. Introduction

Learning to estimate 3D body pose from a single RGB

image is of great interest for many practical applications.

The state-of-the-art methods [6,16,17,28,32,39–41,52,53]

in this area use images annotated with 3D poses and train

deep neural networks to directly regress 3D pose from im-

ages. While the performance of these methods has im-

proved significantly, their applicability in in-the-wild envi-

ronments has been limited due to the lack of training data

with ample diversity. The commonly used training datasets

such as Human3.6M [10], and MPII-INF-3DHP [22] are

collected in controlled indoor settings using sophisticated

multi-camera motion capture systems. While scaling such

systems to unconstrained outdoor environments is imprac-

tical, manual annotations are difficult to obtain and prone

to errors. Therefore, current methods resort to existing

training data and try to improve the generalizabilty of

trained models by incorporating additional weak supervi-

sion in form of various 2D annotations for in-the-wild im-

ages [27,39,52]. While 2D annotations can be obtained eas-

ily, they do not provide sufficient information about the 3D

body pose, especially when the body joints are foreshort-

ened or occluded. Therefore, these methods rely heavily

on the ground-truth 3D annotations, in particular, for depth

predictions.

Instead of using 3D annotations, in this work, we pro-

pose to use unlabeled multi-view data for training. We as-

sume this data to be without extrinsic camera calibration.

Hence, it can be collected very easily in any in-the-wild

setting. In contrast to 2D annotations, using multi-view

data for training has several obvious advantages e.g., am-

biguities arising due to body joint occlusions as well as

foreshortening or motion blur can be resolved by utiliz-

ing information from other views. There have been only

few works [14, 29, 33, 34] that utilize multi-view data to

learn monocular 3D pose estimation models. While the ap-

proaches [29,33] need extrinsic camera calibration, [33,34]

require at least some part of their training data to be labelled

with ground-truth 3D poses. Both of these requirements

are, however, very hard to acquire for unconstrained data,

hence, limit the applicability of these methods to controlled

indoor settings. In [14], 2D poses obtained from multiple

camera views are used to generate pseudo ground-truths for

training. However, this method uses a pre-trained pose esti-

mation model which remains fixed during training, meaning

2D pose errors remain unaddressed and can propagate to the

generated pseudo ground-truths.

In this work, we present a weakly-supervised approach

for monocular 3D pose estimation that does not require any

3D pose annotations at all. For training, we only use a

collection of unlabeled multi-view data and an independent

collection of images annotated with 2D poses. An overview

of the approach can be seen in Fig. 1. Given an RGB image

as input, we train the network to predict a 2.5D pose repre-

sentation [12] from which the 3D pose can be reconstructed

in a fully-differentiable way. Given unlabeled multi-view

data, we use a multi-view consistency loss which enforces

the 3D poses estimated from different views to be consistent

up to a rigid transformation. However, naively enforcing

multi-view consistency can lead to degenerated solutions.

We, therefore, propose a novel objective function which is
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constrained such that it can only be minimized when the 3D

poses are predicted correctly from all camera views. The

proposed approach can be trained in a fully end-to-end man-

ner, it does not require extrinsic camera calibration and is

robust to body part occlusions and truncations in the unla-

beled multi-view data. Furthermore, it can also improve the

2D pose predictions by exploiting multi-view consistency

during training.

We evaluate our approach on two large scale datasets

where it outperforms existing methods for semi-/weakly-

supervised methods by a large margin. We also show that

the MannequinChallenge dataset [18], which provides in-

the-wild videos of people in static poses, can be effectively

exploited by our proposed method to improve the gener-

alizability of trained models, in particular, when their is a

significant domain gap between the training and testing en-

vironments.

2. Related Work

We discuss existing methods for monocular 3D human

pose estimation with varying degree of supervision.

Fully-supervised methods aim to learn a mapping from

2D information to 3D given pairs of 2D-3D correspon-

dences as supervision. The recent methods in this direc-

tion adopt deep neural networks to directly predict 3D poses

from images [16, 17, 41, 53]. Training the data hungry neu-

ral networks, however, requires large amounts of training

images with accurate 3D pose annotations which are very

hard to acquire, in particular, in unconstrained scenarios.

To this end, the approaches in [5, 35, 45] try to augment

the training data using synthetic images, however, still need

real data to obtain good performance. More recent meth-

ods try to improve the performance by incorporating ad-

ditional data with weak supervision i.e., 2D pose annota-

tions [6, 28, 32, 39, 40, 52], boolean geometric relationship

between body parts [27, 31, 37], action labels [20], and

temporal consistency [2]. Adverserial losses during train-

ing [50] or testing [44] have also been used to improve the

performance of models trained on fully-supervised data.

Other methods alleviate the need of 3D image annota-

tions by directly lifting 2D poses to 3D without using any

image information e.g., by learning a regression network

from 2D joints to 3D [9, 21, 24] or by searching nearest

3D poses in large databases using 2D projections as the

query [3, 11, 31]. Since these methods do not use image

information for 3D pose estimation, they are prone to re-

projection ambiguities and can also have discrepancies be-

tween the 2D and 3D poses.

In contrast, in this work, we present a method that

combines the benefits of both paradigms i.e., it estimates

3D pose from an image input, hence, can handle the re-

projection ambiguities, but does not require any images

with 3D pose annotations.

Semi-supervised methods require only a small subset

of training data with 3D annotations and assume no or weak

supervision for the rest. The approaches [33,34,51] assume

that multiple views of the same 2D pose are available and

use multi-view constraints for supervision. Closest to our

approach in this category is [34] in that it also uses multi-

view consistency to supervise the pose estimation model.

However, their method is prone to degenerated solutions

and its solution space cannot be constrained easily. Con-

sequently, the requirement of images with 3D annotations

is inevitable for their approach. In contrast, our method is

weakly-supervised. We constrain the solution space of our

method such that the 3D poses can be learned without any

3D annotations. In contrast to [34], our approach can easily

be applied to in-the-wild scenarios as we will show in our

experiments. The approaches [43, 48] use 2D pose annota-

tions and re-projection losses to improve the performance

of models pre-trained using synthetic data. In [19], a pre-

trained model is iteratively improved by refining its predic-

tions using temporal information and then using them as su-

pervision for next steps. The approach in [30] estimates the

3D poses using a sequence of 2D poses as input and uses

a re-projection loss accumulated over the entire sequence

for supervision. While all of these methods demonstrate

impressive results, their main limiting factor is the need of

ground-truth 3D data.

Weakly-supervised methods do not require paired 2D-

3D data and only use weak supervision in form of motion-

capture data [42], images/videos with 2D annotations [25,

47], collection of 2D poses [4, 7, 46], or multi-view im-

ages [14, 29]. Our approach also lies in this paradigm

and learns to estimate 3D poses from unlabeled multi-view

data. In [42], a probabilistic 3D pose model learned us-

ing motion-capture data is integrated into a multi-staged 2D

pose estimation model to iteratively refine 2D and 3D pose

predictions. The approach [25] uses a re-projection loss to

train the pose estimation model using images with only 2D

pose annotations. Since re-projection loss alone is insuf-

ficient for training, they factorize the problem into the es-

timation of view-point and shape parameters and provide

inductive bias via a canonicalization loss. Similar in spirit,

the approaches [4,7,46] use collection of 2D poses with re-

projection loss for training and use adversarial losses to dis-

tinguish between plausible and in-plausible poses. In [47],

non-rigid structure from motion is used to learn a 3D pose

estimator from videos with 2D pose annotations. The clos-

est to our work are the approaches of [14, 29] in that they

also use unlabeled multi-view data for training. The ap-

proach of [29], however, requires calibrated camera views

that are very hard to acquire in unconstrained environments.

The approach [14] estimates 2D poses from multi-view im-

ages and reconstructs corresponding 3D pose using Epipo-

lar geometry. The reconstructed poses are then used for
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Figure 1. An end-to-end approach for learning 3D pose estimation model without 3D annotations. For training, we only use unlabeled

multi-view data along with an independent collection of images with 2D pose annotations. Given an RGB image, the model is trained

to generate 2D heatmaps H2D and latent depth-maps Hz - shown only for I2 for simplicity. The 2D heatmaps are converted to 2D pose

coordinates using soft-argmax. The relative-depth values ẑ
r are obtained by taking channel-wise summation of the multiplication of

normalized heatmaps H̄2D and latent depth-maps Hz . The 3D pose is reconstructed in a fully differentiable manner by exploiting the scale

normalization constraint (Sec. 3.1). The images with 2D pose annotation are used for heatmap loss LH. The 3D supervision is provided

via a multi-view consistency loss LMC that enforces that the 3D poses generated from different views should be identical up to a rigid

transform. Given 2D pose estimates from different views and camera intrinsics, the objective is designed such that the only way for the

network to minimize it is to produce correct relative depth values ẑr (Sec. 3.3). We also enforce a bone-length loss LB on each predicted

3D pose to further constrain the search space.

training in a fully-supervised way. The main drawback of

this method is that the 3D poses remain fixed throughout the

training, and the errors in 3D reconstruction directly propa-

gate to the trained models. This is, particularly, problematic

if the multi-view data is captured in challenging outdoor

environments where 2D pose estimation may fail easily. In

contrast, in this work, we propose an end-to-end learning

framework which is robust to challenges posed by the data

captured in in-the-wild scenarios. It is trained using a novel

objective function which can simultaneously optimize for

2D and 3D poses. In contrast to [14], our approach can

also improve 2D predictions using unlabeled multi-view

data. We evaluate our approach on two challenging datasets

where it outperforms existing methods for semi-/weakly-

supervised learning by a large margin.

3. Method

Our goal is to train a convolutional neural network

F(I, θ) parameterized by weights θ that, given an RGB im-

age I as input, estimates the 3D body pose P = {pj}j∈J

consisting of 3D locations pj = (xj , yj , zj) ∈ R
3 of J

body joints with respect to the camera.

We do not assume any training data with paired 2D-3D

annotations and learn the parameters θ of the network in

a weakly-supervised way using unlabeled multi-view im-

ages and an independent collection of images with 2D pose

annotations. To this end, we build on the 2.5D pose repre-

sentation of [12] for hand pose estimation and extend it to

human body. This 2.5D pose representation has several key

features that allow us to exploit multi-view information and

devise loss functions for weakly-supervised training.

In the following, we first recap the 2.5D pose represen-

tation (Sec. 3.1) and the approach to reconstruct absolute

3D pose from it (Sec. 3.1.1). We then describe a fully-

supervised approach to regress the 2.5D pose using a con-

volutional neural network (Sec.3.2) followed by our pro-

posed method for weakly-supervised training in Sec. 3.3.

An overview of the proposed approach can be seen in Fig. 1.

3.1. 2.5D Pose Representation

Many existing methods [27, 39, 40] for 3D body pose

estimation adopt a 2.5D pose representation P2.5D =
{p2.5D

j = (uj , vj , z
r
j )}j∈J where uj and vj are the 2D

projection of the body joint j on a camera plane and zrj =
zroot−zj represents its metric depth with respect to the root

joint. This decomposition of 3D joint locations into their

2D projection and relative depth has the advantage that ad-

ditional supervision from in-the-wild images with only 2D

pose annotations can be used for better generalization of the

trained models. However, this representation does not ac-

count for scale ambiguity present in the image which might

lead to ambiguities in predictions.

The 2.5D representation of [12], however, differs from

the rest in terms of scale normalization of 3D poses. Specif-

ically, they scale normalize the 3D pose P such that a spe-
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cific pair of body joints has a unit distance:

P̂ =
P

s
, (1)

where s = ‖pk − pl‖2 is estimated independently for each

pose. The pair (k, l) corresponds to the indices of the joints

used for scale normalization. The resulting scale normal-

ized 2.5D pose representation p̂2.5D
j = (uj , vj , ẑ

r
j ) is ag-

nostic to the scale of the person. This not only makes it

easier to be estimated from cropped RGB images, but also

allows to reconstruct the absolute 3D pose of the person up

to a scaling factor in a fully differentiable manner as de-

scribed next.

3.1.1 Differentiable 3D Reconstruction

Given the 2.5D pose P̂2.5D, we need to find the depth ẑroot
of the root joint to reconstruct the scale normalized 3D lo-

cations P̂ of body joints using perspective projection:

p̂j = ẑjK
−1





uj
vj
1



 = (ẑroot + ẑrj )K
−1





uj
vj
1



 . (2)

The value of ẑroot can be calculated via the scale normal-

ization constraint:

(x̂k − x̂l)
2 + (ŷk − ŷl)

2 + (ẑk − ẑl)
2 = 1, (3)

which leads to an analytical solution as derived in [12].

Since all operations for 3D reconstruction are differentiable,

we can devise loss functions that directly operate on the re-

constructed 3D poses.

In the rest of this paper, we will use the scale normalized

2.5D pose representation. We use the distance between the

neck and pelvis joints to calculate the scaling factor s.

3.2. 2.5D Pose Regression

Since the 3D pose can be reconstructed analytically from

2.5D pose, we train the network to predict 2.5D pose and

implement 3D reconstruction as an additional parameter-

free layer. To this end, we adopt the 2.5D heatmap regres-

sion approach of [12]. Specifically, given an RGB image

as input, the network produces 2J channels as output with

J channels for 2D heatmaps (H2D) while the remaining J

channels are regarded as latent depth maps Hz . The 2D

heatmaps are converted to 2D pose coordinates (uj , vj) by

first normalizing them using spatial softmax, i.e., H̄2D

j =

softmax(H2D

j , λ), and then using the soft-argmax opera-

tion:

uj =
∑

u,v∈U

u · H̄2D

j (u, v); vj =
∑

u,v∈U

v · H̄2D

j (u, v), (4)

where U is a 2D grid sampled according to the effective

stride size of the network, and λ is a constant that controls

the temperature of the normalized heatmaps.

The relative scale normalized depth value ẑrj for each

joint can then be obtained as the summation of the element-

wise multiplication of H̄2D

j and latent depth maps Hz
j :

ẑrj =
∑

u,v

H̄2D

j ⊙Hz
j . (5)

Given the 2D pose coordinates {(uj , vj)}j∈J , relative

depths ẑr = {ẑrj }j∈J and intrinsic camera parameters K,

the 3D pose can be reconstructed as explained in Sec. 3.1.1.

In the fully-supervised (FS) setting, the network can be

trained using the following loss function:

LFS = LH(H
2D,H2D

gt ) + ψLz(ẑ
r, ẑrgt), (6)

where H2D
gt and ẑrgt are the ground-truth 2D heatmaps and

ground-truth scale-normalized relative depth values, respec-

tively. We use mean squared error as the loss functions

LH(·) and Lz(·).
We make one modification to the original loss to bet-

ter learn the confidence scores of predictions. Specifically,

in contrast to [12], we do not learn 2D heatmaps in a la-

tent way. Instead, we chose to explicitly supervise the 2D

heatmap predictions via ground-truth heatmaps with Gaus-

sian distributions at the true joint locations. We will rely

on the confidence scores to devise a weakly-supervised loss

that is robust to uncertainties in 2D pose estimates, as de-

scribed in the following section.

3.3. Weakly­Supervised Training

We describe our proposed approach for training the re-

gression network in a weakly-supervised way without any

3D annotations. For training, we assume a set M =
{{Inc }c∈Cn

}n∈N of N samples, with the nth sample con-

sisting of Cn camera views of a person in same body pose.

The multi-view images can be taken at the same time us-

ing multiple cameras, or using a single camera assuming a

static body pose over time. We do not assume knowledge of

extrinsic camera parameters. Additionally, we use an inde-

pendent set of images annotated only with 2D poses which

is available abundantly or can be annotated by people even

for in-the-wild data. For training, we optimize the following

weakly-supervised (WS) loss function:

LWS = LH(H
2D,H2D

gt ) + αLMC(M) + βLB(L̂, µ̂
L), (7)

where LH is the 2D heatmap loss, LMC is the multi-view

consistency loss, and LB is the limb length loss.

Recall that, given an RGB image, our goal is to esti-

mate the scale normalized 2.5D pose P̂2.5D = {p2.5D
j =

(uj , vj , ẑ
r
j )}j∈J from which we can reconstruct the scale

normalized 3D pose P̂ as explained in Sec. 3.1.1. While

LH provides supervision for 2D pose estimation, the loss

LMC supervises the relative depth component (ẑr). The
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limb length loss LB further ensures that the reconstructed

3D pose P̂ has plausible limb lengths. In the following, we

explain these loss functions in more detail.

Heatmap Loss (LH) measures the difference between

the predicted 2D heatmaps H2D and ground-truth heatmaps

H2D
gt with Gaussian distribution at the true joint location.

It operates only on images annotated with 2D poses and is

assumed to be zero for all other images.

Multi-View Consistency Loss (LMC) enforces that the

3D pose estimates obtained from different views should be

identical up to a rigid transform. Formally, given a multi-

view training sample M = {Ic}c∈C with C camera views,

we define the multi-view consistency loss as the weighted

sum of the difference between the 3D joint locations across

different views after the rigid alignment:

LMC =
∑

c,c′∈C

c 6=c′

∑

j∈J

φj,cφj,c′ · d(p̂j,c,R
c′

c p̂j,c′), (8)

where

φj,c = H2D

j,c (uj,c, vj,c) and φj,c′ = H2D

j,c′(uj,c′ , vj,c′)

are the confidence scores of the jth joint in camera view-

point Ic and Ic′ , respectively. The p̂j,c and p̂j,c′ are the

scale normalized 3D coordinates of the jth joint estimated

from viewpoint Ic and Ic′ , respectively. Rc′

c ∈ R
3×4 is

a rigid transformation matrix that best aligns the two 3D

poses, and d is the distance metric used to measure the dif-

ference between the aligned poses. In this work, we use

L1-norm as the distance metric d. In order to understand

the contribution of LMC more clearly, we can rewrite the

distance term in (8) in terms of the 2.5D pose representa-

tion using (2), i.e.:

d(p̂j,c,R
c′

c p̂j,c′) =

d((ẑroot,c+ẑ
r
j,c)K

−1

c





uj,c
vj,c
1



,Rc′

c (ẑroot,c′+ẑ
r
j,c′)K

−1

c′





uj,c′

vj,c′

1



).

(9)

Let us assume that the 2D coordinates (uj,c, vj,c) and

(uj,c′ , vj,c′) are predicted accurately due to the loss LH and

the camera intrinsics Kc and Kc′ are known. For simplic-

ity, let us also assume the ground-truth transformation Rc′

c

between the two views is known. Then, the only way for

the network to minimize the difference d(., .) is to predict

the correct values for relative depths ẑrj,c and ẑrj,c′ . Hence,

the joint optimization of the losses LH and LMC allows us to

learn correct 3D poses using only weak supervision in form

of multi-view images and 2D pose annotations. Without the

loss LH the model can lead to degenerated solutions.

While in many practical scenarios, the transformation

matrix Rc′

c can be known a priori via extrinsic calibration,

we, however, assume it is not available and estimate it using

predicted 3D poses and Procrustes analysis as follows:

Rc′

c = argmin
R

∑

j∈J

φj,cφj,c′‖p̂j,c −Rp̂j,c′‖
2

2
. (10)

During training, we follow [34] and do not back-propagate

through the optimization of transformation matrix (10),

since it leads to numerical instabilities arising due to sin-

gular value decomposition. Note that the gradients from

LMC not only influence the depth estimates, but also affect

heatmap predictions due to the calculation of ẑroot in (3).

Therefore, LMC can also fix the errors in 2D pose estimates

as we will show in our experiments.

Limb Length Loss (LB) measures the deviation of the

limb lengths of predicted 3D pose from the mean bone

lengths:

LB =
∑

j,j′∈E

φjφj′(‖p̂j − p̂j′‖ − µ̂L
j,j′)

2, (11)

where E corresponds to the used kinematic structure of the

human body and µ̂L
j,j′ is the scale normalized mean limb

length for joint pair (j, j′). Since the limb lengths of all peo-

ple will be roughly the same after scale normalization (1),

this loss ensures that the predicted poses have plausible limb

lengths. During training, we found that having a limb length

loss leads to faster convergence.

Additional Regularization We found that if a large

number of samples in multi-view data have a constant back-

ground, the network learns to recognize these images and

starts predicting same 2D pose and relative depth values

for such images. Interestingly, it predicts correct values

for other samples. In order to prevent this, we incorporate

an additional regularization loss for such samples. Specif-

ically, we run a pre-trained 2D pose estimation model and

generate pseudo ground-truths by selecting joint estimates

with confidence score greater than a threshold τ = 0.5.

These pseudo ground-truths are then used to enforce the

2D heatmap loss LH, which prevents the model from pre-

dicting degenerated solutions. We generate the pseudo

ground-truths once at the beginning of the training and keep

them fixed throughout. Specifically, we use the regulariza-

tion loss for images from Human3.6M [10] and MPII-INF-

3DHP [22] that are both recorded in controlled indoor set-

tings. While the regularization may reduce the impact of

LMC on 2D poses, the gradients from LMC will still influ-

ence the heatmap predictions of body joints that were not

detected with high confidence (see Fig. 2).

4. Experiments

We evaluate our proposed approach for weakly-

supervised 3D body pose learning and compare it with the
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state-of-the-art methods. Additional training and imple-

mentation details can be found in the supplementary ma-

terial.

4.1. Datasets

We use two large-scale datasets, Human3.6M [10]

and MPII-INF-3DHP [22] for evaluation. For weakly-

supervised training, we also use the MannequinChallenge

dataset [18] and MPII Human Pose dataset [1] . The details

of each dataset are as follows.

Human3.6M (H36M) [10] provides images of actors per-

forming a variety of actions from four views. We follow the

standard protocol and use five subjects (S1, S5, S6, S7, S8)

for training and test on two subjects (S9 and S11).

MPII-INF-3DH (3DHP) [22] provides ground-truth 3D

poses obtained using markerless motion-capture system.

Following the standard protocol [22], we use five chest

height cameras for training. The test-set consists of six se-

quences with actors performing a variety activities.

MannequinChallenge Dataset (MQC) [18] provides in-

the-wild videos of people in static poses while a hand-held

camera pans around the scene. The videos do not come

with any ground-truth annotations, however, the data is very

adequate for our proposed weakly-supervised approach us-

ing multi-view consistency. The dataset consists of three

splits for training, validation and testing. In this paper, we

use ∼3300 videos from training and validation set as pro-

posed by [18], but in practice one could download an im-

mense amount of such videos from YouTube (#Mannequin-

Challenge). We will show in our experiments that using

these in-the-wild videos during training yields better gener-

alization, in particular, when there is a significant domain

gap between the training and testing set. Since the videos

can have multiple people inside each frame, they have to

be associated across frames to obtain the required multi-

view data. To this end, we adopt the pose based tracking

approach of [49] and generate person tracklets from each

video. For pose estimation, we use a HRNet-w32 [38]

model pretrained on MPII Pose dataset [1]. In order to avoid

training on noisy data, we discard significantly occluded or

truncated people. We do this by discarding all poses that

have more than half of the estimated body joints with confi-

dence score lower than a threshold τ=0.5. We also discard

poses in which neck or pelvis joints have confidence lower

than τ=0.5 since both joints are important for ẑroot recon-

struction using (3). Finally, we discard all tracklets with

the length lower than 5 frames. This gives us 11,413 multi-

view tracklets with 241k images in total. The minimum and

maximum length of the tracklets is 5 and 140 frames, re-

spectively.

MPII Pose Dataset (MPII) [1] provides 2D pose annota-

tions for 28k in-the-wild images.

Method

Supervision Error

2D 3D MV 2D px 3D mm

FS H+M H - 5.9 55.5

WS + R H+M - H 6.1 57.2

WS H+M - H 6.1 59.3

2d-only M - - 8.9 -

WS + R M - H 8.3 62.3

WS M - H 8.4 69.1

WS M - I 9.0 106.2

WS M - I+Q 9.1 93.6

WS M - H+I+Q 8.4 67.4

WS + R M - H+I+Q 8.4 60.3

Table 1. Ablative study: We provide results when different levels

of supervision are used to train the proposed weakly-supervised

method. FS: Fully-Supervised, WS: Weakly-Supervised, MV:

Multi-View, H: H36M, M: MPII, I: 3DHP, Q: MQC. No 3D su-

pervision is used for all experiments except FS.

4.2. Evaluation Metrics

For evaluation on H36M, we follow the standard proto-

cols and use MPJPE (Mean Per Joint Position Error), N-

MPJPE (Normalized-MPJPE) and P-MPJPE (Procrustes-

aligned MPJPE) for evaluations. MPJPE measures the

mean euclidean error between the ground-truth and esti-

mated location of 3D joints after root alignment. While

NMPJPE [34] also aligns the scale of the predictions with

ground-truths, PMPJPE aligns both the scale and rotations

using Procrustes analysis. For evaluation on 3DHP dataset,

we follow [22] and also report PCK (Percentage of Correct

Keypoints) and Normalized-PCK as defined in [34]. PCK

measures the percentage of predicted body joints that lie

within the radius of 150mm from their ground-truths. 3DHP

evaluation protocol uses 14 joints for evaluation excluding

the pelvis joint which is used for alignment of the poses.

4.3. Ablation Studies

Tab. 1 evaluates the impact of different levels of super-

vision for training with the proposed approach. We use

H36M for evaluation. We start with a fully-supervised set-

ting (FS) which uses 2D supervision from H36M and MPII

(2D=H+M) datasets and 3D pose supervision from H36M

(3D=H). No multi-view (MV) data is used in this case.

The fully-supervised model yields a MPJPE of 5.9px and

55.5mm for 2D and 3D pose estimation, respectively. We

then remove the 3D supervision and instead train the net-

work using the proposed approach for weakly-supervised

learning (WS+R). The MV data is taken from H36M

(MV=H). For this experiment, we assume that the 2D pose

annotations for MV data are available (2D=H+M) and the

camera extrinsics R are known. This setting is essentially

similar to fully-supervised case since the 2D poses from dif-

ferent views can be triangulated using the known R. Train-
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Figure 2. Impact of using MQC dataset. We run the trained models on the tracks taken from MQC dataset and align the estimated 3D poses

using (10). Since people in MQC dataset do not move, the aligned poses should be very similar. Adding MQC dataset for training (right)

yields more consistent 3D pose estimates as compared to when only H36M is used (left) for multi-view consistency loss. Note that our

proposed approach can also fix the errors in 2D pose estimates in the unlabeled multi-view data.

ing the network under this setting, however, serves as a

sanity check that the proposed weakly-supervised approach

works as intended which can be confirmed by the obtained

3D pose error of 57.2mm. If R is unknown (WS) and is

obtained from estimated 3D poses using (10), the error in-

creases slightly to 59.3mm.

All of the aforementioned settings assume that the MV

data is annotated with 2D poses which is infeasible to col-

lect in large numbers. Therefore, we have designed the pro-

posed method to work with MV data without even 2D an-

notations. Next, we remove the 2D supervision from MV

data and only use MPII dataset for 2D supervision (2D=M).

For reference, we also report the error of a 2D-only model

trained on MPII dataset which yields a 2D pose error of

8.9px. Training without 2D pose annotations for MV data

with and without ground-truth R yields errors of 62.3mm

(WS+R) and 69.1mm (WS), respectively, as compared to

57.2mm and 59.3mm when the 2D pose annotations are

available. While using ground-truth R always yields bet-

ter performance, for the sake of easier applicability, in the

rest of this paper, we assume it to be unknown unless speci-

fied otherwise. It is also interesting to note that the 2D pose

error decreases from 8.9px to 8.3px when the multi-view

consistency loss (8) is used. Some qualitative examples of

improvements in 2D poses can be seen in Fig. 2.

We also evaluate the case when the training data is

recorded in different settings than testing data. For this, we

use 3DHP for training (MV=I) and test on H36M. Since

the images of 3DHP are very different from H36M, it leads

to a very high error of 106.2mm. Adding the generated

training data from MQC dataset (MV=I+Q) significantly

reduces the error to 93.6mm which demonstrates the effec-

tiveness of in-the-wild data from MQC. Combining all three

datasets (MV=H+I+Q) reduces the error further to 67.4mm

as compared to 69.1mm when only H36M dataset was used

for training. We also provide the results when ground-

truth R is known (WS+R) for H36M and 3DHP datasets

(MV=H+I+Q) which shows a similar behaviour and de-

creases the error from 62.3mm to 60.3mm.

In our experiments, we found that training only on MQC

dataset is not sufficient for convergence and it has to be

combined with another dataset which provides multi-view

data from more distant viewing angles. This is likely be-

cause most videos in MQC dataset do not capture same per-

son from very different viewing angles, whereas datasets

such as H36M and 3DHP provide images from cameras

with sufficiently large baselines.

4.4. Comparison with the State­of­the­Art

Tab. 2 compares the performance of our proposed

method with the state-of-the-art on H36M dataset. We

group all approaches in three categories; fully-supervised,

semi-supervised, and weakly-supervised, and compare the

performance of our method under each category. While

fully-supervised methods use complete training set of

H36M for 3D supervision, semi-supervised methods use

3D supervision from only one subject (S1) and use other

subjects (S5, S6, S7, S9) for weak supervision. Weakly-

supervised methods do not use any 3D supervision. Some

methods also use ground-truth information during infer-
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Methods MPJPE ↓ NMPJPE ↓ PMPJPE ↓

Fully-Supervised Methods

Rogez et al. [36] (CVPR’17) 87.7 - 71.6

Habibie et al. [8] (ICCV’19) - 65.7 -

Rhodin et al. [34] (CVPR’18) 66.8 63.3 51.6

Zhou et al. [52] (ICCV’17) 64.9 - -

Martinez et al. [21] (ICCV’17) 62.9 - 47.7

Sun et al. [39] (ICCV’17) * 59.6 - -

Yang et al. [50] (CVPR’18) 58.6 - -

Pavlakos et al. [27] (CVPR’18) 56.2 - -

Sun et al. [40] (ECCV’18)* 49.6 - 40.6

Kocabas et al. [14] (CVPR’19)* 51.8 51.6 45.0

Ours - H - baseline 55.5 51.4 41.5

Ours* - H - baseline 50.2 49.9 36.9

Ours - H+I+Q 56.1 52.7 45.9

Semi-Supervised Methods - only Subject-1 is used for training

Rohdin et al. [33] (ECCV’18) 131.7 122.6 98.2

Pavlakos et al. [26] (ICCV’19) 110.7 97.6 74.5

Li et al. [19] (ICCV’19) 88.8 80.1 66.5

Rhodin et al. [34] (CVPR’18) n/a 80.1 65.1

Kocabas et al. [14] (CVPR’19) n/a 67.0 60.2

Ours - H 62.8 59.6 51.4

Ours - H+I+Q 59.7 56.2 50.6

Weakly-Supervised Methods - no 3D supervision

Pavlakos et al. [29] (CVPR’17) 118.4 - -

Kanzawa et al. [13] (CVPR’18) 106.8 - 67.5

Wandt et al. [46] (CVPR’19) 89.9 - -

Tome et al. [42] (CVPR’17) 88.4 - -

Kocabas et al. [14] (CVPR’19) n/a 77.75 70.67

Chen et al. [4] (CVPR’19) - - 68.0

Drover et al. [7] (ECCV-W’18) - - 64.6

Kolotouros et al. [15] (ICCV’19) - - 62.0

Wang et al. [47] (ICCV’19) 83.0 - 57.5

Ours - H 69.1 66.3 55.9

Ours - H+I+Q 67.4 64.5 54.5

Table 2. Comparison with the state-of-the-art on H36M dataset.

*use ground-truth depth of the root keypoint during inference.

ence [14, 39, 40]. For a fair comparison with those, we also

report our performance under the same settings. It is im-

portant to note that, many approaches such as [4, 7, 21, 33,

34, 36, 50] estimate root-relative 3D pose. Our approach,

on the other hand, estimates absolute 3D poses. While our

fully-supervised baseline (Ours-H-baseline) performs better

or on-par with the state-of-the-art fully-supervised methods,

our proposed approach for weakly-supervised learning sig-

nificantly outperforms other methods under both semi- and

weakly-supervised categories.

For a fair comparison with other methods, we report

results of our method under two settings: i) using H36M

and MPII dataset for training (Ours-H), and ii) with multi-

view data from 3DHP and MQC as additional weak su-

pervision (Ours-H+I+Q). In the fully-supervised case, us-

ing additional weak supervision slightly worsens the per-

formance (55.5mm vs 56.1mm) which is not surprising

on a dataset like H36M which is heavily biased to indoor

data and have training and testing images recorded with a

same background. Whereas, our approach, in particular the

data from MQC, is devised for in-the wild generalization.

The importance of additional multi-view data, however, can

be seen evidently in the semi-/weakly-supervised settings

where it decreases the error from 62.8mm to 59.7mm and

Methods MPJPE↓ NMPJPE↓ PCK↑ NPCK↑

Fully-Supervised Methods

Mehta et al. [23] - - 76.6 -

Rohdin et al. [34] n/a 101.5 n/a 78.8

Kocabas et al. [14]* 109.0 106.4 77.5 78.1

Ours 110.8 98.9 80.2 82.3

Ours* 99.2 97.2 83.0 83.3

Semi-Supervised Methods

Rhodin et al. [34] n/a 121.8 n/a 72.7

Kocabas et al. [14] n/a 119.9 n/a 73.5

Ours 113.8 102.2 79.1 81.5

Weakly-Supervised Methods

Kanazwa et al. [13] 169.5 - 59.6 -

Kolotouros et al. [15] 124.8 - 66.8 -

Ours 122.4 110.1 76.5 79.4

Kocabas et al. [14]* + R 126.8 125.7 64.7 71.9

Ours* + R 109.3 107.2 79.5 80.0

Table 3. Comparison with the state-of-the-art on 3DHP dataset.

*use ground-truth 3D location of the root joint during inference.

from 69.1mm to 67.4mm, respectively.

Compared to the state-of-the-art method [14] that also

uses multi-view information for weak supervision, our

method performs significantly better even though the fully-

supervised baselines of both approaches perform similar.

This demonstrates the effectiveness of our end-to-end train-

ing approach and proposed loss functions that are robust to

errors in 2D poses. While our weakly-supervised approach

does not outperform fully-supervised methods, it performs

on-par with many recent fully-supervised approaches.

Tab. 3 compares the performance of our proposed ap-

proach with the state-of-the-art on 3DHP dataset. We use

our models trained with Ours-H+I+Q setting, as described

above. We do not use any 3D pose supervision from 3DHP

dataset and instead use the same models used for evalua-

tion on H36M dataset. Our proposed approach outperforms

all existing methods with large margins under all three cat-

egories which also demonstrates the cross dataset general-

ization of our proposed method.

Some qualitative results of the proposed approach can be

seen in the supplementary material.

5. Conclusion

We have presented a weakly-supervised approach for 3D

human pose estimation in the wild. Our proposed approach

does not require any 3D annotations and can learn to es-

timate 3D poses from unlabeled multi-view data. This is

made possible by a novel end-to-end learning framework

and a novel objective function which is optimized to predict

consistent 3D poses across different camera views. The pro-

posed approach is very practical since the required training

data can be collected very easily in in-the-wild scenarios.

We demonstrated state-of-the-art performance on two chal-

lenging datasets.

Acknowledgments: We are thankful to Kihwan Kim and

Adrian Spurr for helpful discussions.

85250



References

[1] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and

Bernt Schiele. 2D human pose estimation: New benchmark

and state of the art analysis. In CVPR, 2014. 6

[2] Anurag Arnab, Carl Doersch, and Andrew Zisserman. Ex-

ploiting temporal context for 3d human pose estimation in

the wild. In CVPR, 2019. 2

[3] Ching-Hang Chen and Deva Ramanan. 3D human pose es-

timation = 2D pose estimation + matching. In CVPR, 2017.

2

[4] Ching-Hang Chen, Ambrish Tyagi, Amit Agrawal, Dy-

lan Drover, Rohith MV, Stefan Stojanov, and James M.

Rehg. Unsupervised 3d pose estimation with geometric self-

supervision. In CVPR, 2019. 2, 8

[5] W. Chen, H. Wang, Y. Li, H. Su, Z. Wang, C. Tu, D. Lischin-

ski, D. Cohen-Or, and B. Chen. Synthesizing training images

for boosting human 3d pose estimation. In 3DV, 2016. 2

[6] Rishabh Dabral, Anurag Mundhada, Uday Kusupati, Safeer

Afaque, Abhishek Sharma, and Arjun Jain. Learning 3d hu-

man pose from structure and motion. In ECCV, 2018. 1,

2

[7] Dylan Drover, Rohith M. V, Ching-Hang Chen, Amit

Agrawal, Ambrish Tyagi, and Cong Phuoc Huynh. Can 3d

pose be learned from 2d projections alone? In ECCV Work-

shops, 2018. 2, 8

[8] Ikhsanul Habibie, Weipeng Xu, Dushyant Mehta, Gerard

Pons-Moll, and Christian Theobalt. In the wild human pose

estimation using explicit 2d features and intermediate 3d rep-

resentations. In ICCV, 2019. 8

[9] Mir Rayat Imtiaz Hossain and James J. Little. Exploiting

temporal information for 3d pose estimation. In ECCV,

2018. 2

[10] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian

Sminchisescu. Human3.6M: Large scale datasets and predic-

tive methods for 3D human sensing in natural environments.

TPAMI, 36(7):1325–1339, 2014. 1, 5, 6

[11] Umar Iqbal, Andreas Doering, Hashim Yasin, Björn Krüger,
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