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Figure 1. Given an RGBD sequence from a moving camera, we produce a 3D CAD recomposition of the scene. While a fused reconstruc-

tion (top) contains holes and noisy geometry, our recomposition (bottom) models the scene as a set of high quality 3D shapes from CAD

databases.

Abstract

By moving a depth sensor around a room, we compute

a 3D CAD model of the environment, capturing the room

shape and contents such as chairs, desks, sofas, and tables.

Rather than reconstructing geometry, we match, place, and

align each object in the scene to thousands of CAD models

of objects. In addition to the fully automatic system, the key

technical contribution is a novel approach for aligning CAD

models to 3D scans, based on deep reinforcement learning.

This approach, which we call Learning-based ICP, outper-

forms prior ICP methods in the literature, by learning the

best points to match and conditioning on object viewpoint.

LICP learns to align using only synthetic data and does not

require ground truth annotation of object pose or keypoint

pair matching in real scene scans. While LICP is trained

on synthetic data and without 3D real scene annotations, it

outperforms both learned local deep feature matching and

geometric based alignment methods in real scenes. The pro-

posed method is evaluated on real scenes datasets of Sce-

neNN [23] and ScanNet [14] as well as synthetic scenes of

SUNCG [56]. High quality results are demonstrated on a

range of real world scenes, with robustness to clutter, view-

point, and occlusion.

1. Introduction

3D scene reconstruction is a fundamental challenge of

computer vision. Most reconstruction techniques focus on

estimating surface geometry, in the form of meshes, point-

clouds, voxels, or other low-level representations. Suppose

that you had access to a database of 3D models of every ob-

ject in the world; then you could generate a scene model by

identifying which objects are in which locations and plac-

ing them there. We call this variant of the reconstruction

problem scene recomposition. While previously such an

approach was not feasible at scale, the advent of large CAD

repositories like ShapeNet [10] begins to make scene re-

composition tractable for real-world scenes.

Scene recomposition has a number of advantages over

scene reconstruction. First, whereas reconstruction meth-

ods often generate holes and capture only visible surfaces,

recomposition yields more complete models, including

back-facing and hidden geometry (see Figure. 1). Second,

CAD models are clean, segmented, and hand-optimized,

and thus better suited for applications like games, VR,

robotics, etc. And third, recomposed models can be eas-

ily edited by moving objects around, replacing objects, and

often come with semantic labels and annotated parts.

Recomposition is not a new idea, dating back to the first

“blocks world” methods from the 1960s [44], with a model-

based approach to more recent examples of SLAM++ [51]

and IM2CAD [25]. We introduce the first fully automatic

3D scene recomposition that takes an RGBD sequence as

input and produces a model of the scene composed of best-

matched CAD models from thousands of 3D CAD models.

In addition, we propose a novel learning-based ICP tech-

nique for aligning CAD models to scanned geometry.

930



Camera

Transformation

Policy	Network

3D	Fully	Conv

Geometry	Net

3D		Fully	Conv

Geometry	Net

3
D
	C
A
D
	m
o
d
e
l

D
e
p
th
	S
c
a
n

V
a
lu
e

Rotation

estimation

3D	Geometry	Network

Shared	weights

3D	voxel	

prediction

ICP

Reward

A
c
ti
o
n

Figure 2. LICP Network Architecture: The input to our network consists of a scanned object paired with a reference CAD model

(left) which are processed by the geometry network (middle). The geometry network is trained via a supervised loss to predict 3D voxel

labels (yellow). The input representations are then concatenated to form the input to the policy network (right) which is trained via policy

gradient to predict action distribution and value (orange) in order to maximize an ICP reward function. An auxiliary reward function

(yellow) that estimates the rotation degree of the 3D CAD model with respect to the scanned shape is also incorporated.

Aligning 3D object models to depth scans is a classical

problem in computer vision and geometry processing, and

a staple of many practical applications spanning mapping,

robotics, and visualization. The Iterative Closest Point al-

gorithm (ICP) [7] works by alternating between finding the

closest points between the model and the depth image (or

other sensor data), solving for the best transformation that

aligns the two point sets, and iterating until convergence.

ICP and its variants can robustly converge when the model

is initialized close to the solution, but suffer without good

initialization or in the presence of significant occlusions and

scene clutter. Matching discriminative local 3D features

[27, 17, 61, 49, 50] is an alternative which relaxes the initial-

ization requirements to be more robust, but is less effective

for matching synthetic CAD models to real scenes, where 1)

the models are simple and feature-poor, and 2) the shapes of

the model and real object only approximately agree.

To address these problems, we cast the problem of align-

ing 3D CAD models to RGBD scans in a reinforcement

learning framework which we call Learning-based ICP

(LICP). LICP is trained entirely on synthetic scenes without

requiring ground truth annotation of object pose alignment

or keypoint pairs in real scenes. Despite this fact, our quan-

titative evaluations show that LICP outperforms prior meth-

ods in real scenes. We demonstrate the application of our

approach for fully automatic scene recomposition of com-

plex real environments populated with different types of fur-

niture exhibiting a high degree of occlusion. Our recom-

posed scenes are comprised of best-matched CAD models

from thousands of 3D CAD models in ShapeNet.

2. Related work

Inferring 3D object pose and scene recomposition relates

to prior works in computer vision and graphics, as follows.

ICP: ICP was introduced by [13] and [7] and solves for the

transformation between two point sets. Much research has

been devoted to improving this method over the years, in-

cluding [47, 13, 46]. Where prior methods focus on feature

representation and optimization, we introduce a data-driven

and learning-based approach.

3D shape alignment, 3D features and keypoint match-

ing: An alternative to dense alignment via ICP is to de-

tect robust features (aka keypoints) to facilitate shape align-

ment. [27] proposed spin images and used RANSAC for

shape alignment. Other examples of geometric descrip-

tors are Geometry Histograms [17], Signatures and His-

tograms [61], Feature Histograms [49] and many more

available in Point Cloud Library [50]. However, keypoint

methods can be sensitive to noise and do not always per-

form well, particularly for matching CAD models which

are often piece-wise planar and feature-poor. Local fea-

tures are not robust to symmetries (e.g., all chair legs may

have the same features). Model-fitting approaches, also

known as registration approaches, try to align an input with

a training model but without using descriptors [7, 26, 65].

These approaches do not incorporate learning so that they

do not benefit from large amount of data to gain robust-

ness in keypoint detection and matching. Techniques like

[22, 55, 19, 31, 39, 35, 29] estimate complete scene geome-

try by fitting instance-level 3D mesh models to the observed

depth map. Compared to these methods, our model learns

global models over CAD shapes to align poses.

A recent approach for CAD to scan alignment [4], re-

quires manual annotation and curation of a large dataset of

3D keypoint correspondences between object CAD model

and real scans. [4] uses the collected annotation data for

learning correspondences between CAD models and scans.

However, our proposed method only uses available syn-

thetic data during training without needing annotated key-

point correspondences in both CAD and real scan domains.

While not needing annotated data, our proposed method

performs well in the real scene scenarios at the test time.

Also to find correspondences at the test time, [4] uses the

ground truth object set or a limited set of CAD models,

whereas our method can find corresponding CAD models

from an unconstrained set of objects.
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Object level RGBD scene reconstruction: Like our ap-

proach, SLAM++ [51] performs room scale semantic ob-

ject reconstruction using KinectFusion [40] followed by 3D

shape recognition. Also, SLAM++ only uses a handful of

3D object models (vs. the thousands in ShapeNet), and does

not incorporate a learning-based approach.

3D CAD scene model generation: Several prior works

proposed methods of generating CAD-based room mod-

els using a variety of techniques. Example of these ap-

proaches are CAD from text descriptions [11], example

based methods [16] or optimizing furniture arrangements

in a space [68, 37]. Scene models can also be generated by

matching 3D objects to a given image [52, 34], rendering a

low fidelity synthesize model using RGBD images [21] or

recomposing each scene by analyzing layout and furniture

and jointly optimizing their placements [25].

Voxel prediction and shape completion: Single object

shape completion and voxel category prediction has been

studied by several authors [45, 60, 66]. In this paper, we uti-

lize voxel category prediction as an auxiliary loss function

to learn 3D representation, but the output of our model is a

3D CAD model with correct pose instead of a voxel grid. As

such, we do shape completion, but compared to prior voxel-

wise shape completion methods, our method produces CAD

meshes with shape semantics.

Shape pose estimation: Single object 3D pose recogni-

tion from a photograph or depth image is also related to

our work [3, 28, 51, 33, 24, 62, 5, 64]. However our ap-

proach differs since we learn the best points to match by

conditioning on object viewpoint.

Deep feature learning and deep reinforcement learning:

A number of researchers have used deep neural networks to

learn 3D feature representations [56, 69]. Recently, deep

Reinforcement Learning (RL) approaches have gained con-

siderable attention due to their success in learning efficient

policies to play games [38, 53] and obtaining promising per-

formance in robotics [20, 2]. Part of the success of deep RL

is its applicability in solving black-box non-differentiable

optimization problems [59]. Our approach for selecting the

correct camera transformation action based on score ap-

proximation is closely related to a class of RL techniques

called policy gradients [6, 63]. In our method, we have a

non-differentiable reward function based on ICP scores of

two point clouds and we want to learn the policy that results

in receiving maximum reward by using stochastic gradient

decent and following a policy gradient update rule.

3. Proposed Method

We begin by describing our learning-based ICP (LICP)

approach. Then we explain how to use LICP for recompos-

ing a scene from an input point cloud. For scene recomposi-

tion, 3D object detection and 3D semantic segmentation are

incorporated for extracting the object instances in the scene.

Then, LICP is applied to match and align 3D object CAD

models to segmented regions of scene geometry.

LICP seeks to estimate the transformation parameters of

a scanned rigid object in natural real scenes. This is a chal-

lenging task due to inter-object occlusion, self-occlusion

and clutter. We train a deep neural network that takes in a

scanned shape (query) paired with a reference CAD model

as input and learns to infer the transformation that should

be applied to the reference CAD model to best align its

point cloud with the query scan (Figure. 2). To learn such a

model, we take advantage of the fact that we can apply any

transformation on the reference CAD object and simulate a

depth map (point cloud) of the transformed object using ray

tracing. To this end, we generate a training set of 3D scans,

each paired with a 3D object with known 6DoF parameters.

We pose the learning problem in an RL framework where

the task is to predict the best action that should be applied to

the reference shape such that we can generate the query in-

put scan. Each action encodes a possible 3D transformation

that will be applied to the reference 3D shape. By applying

each action, we produce a reward that reflects how much the

transformed 3D shape matches the query shape.

3.1. Shape Alignment by Deep RL

We pose the problem of 3D pose estimation with respect

to a reference shape in an RL framework. Suppose we have

a reference shape Xr which is presented in a reference pose

P r. Using this reference shape, we want to learn to predict

the 3D pose of any query 3D object scan Xq that is being

cropped out of a complete scene scan. The 3D scan can con-

tain a high amount of occlusion, complicating the alignment

process. For representing 3D models, we use a voxel-based

3D feature representation function Φ(X) for both reference

and query shapes. The goal of the RL agent is to select

transformation actions to the query object which maximize

the expected sum of future rewards. Our reward function,

shows the matching score of the query shape with the refer-

ence shape if point-to-point local closest point alignment is

performed (details in Section 3.2).

We consider a Markov Decision Process (MDP) defined

by states s ∈ S and actions a ∈ A. Each 3D rotational

camera transformation is an action a that the RL agent can

potentially apply to a 3D shape. We define each pair of

query object scan and reference object scan captured with

camera transformation ̺ as a state s : (Φτ (X
q),Φ̺(X

r)).
Each camera transformation action a can transit the agent to

a new state by capturing the 3D scan of the reference object

Xr. We uniformly discretise the action space of each di-

mension of rotation degrees into a list of 32 bins where each

bin corresponds to a rotation transformation with a fixed an-

gle. Reducing the action space complexity by discretization

accelerates learning and makes it more sample efficient.

3.2. ICP­based Rewards

Each training instance is composed of a 3D point cloud

of a scanned query object Φτ (X
q) captured with an un-

known camera pose τ paired with a reference 3D object
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Figure 3. Top retrieved CAD models for each object instance segmentation as query. Point cloud query is color-coded with surface normal.

Xr. After choosing an action a, we apply the corresponding

camera transformation a and render the transformed point

cloud Φa(X
r) of the reference shape Xr. Our reward func-

tion takes in the point cloud of the query object Φτ (X
q)

and the point cloud of the reference object Φa(X
r) cap-

tured under camera transformation imposed by a and pro-

duces a score value which reflects how well the two of the

point clouds can be matched. We leverage the ICP match-

ing score as the feedback to compute the reward function f .

r(s, a) = f(Φτ (X
q),Φa(X

r)) (1)

3.3. Learning by REINFORCE

Our reward function is non-differentiable. To solve this

black-box optimization problem we opt to use the RE-

INFORCE learning rule [63] where our goal is to find

a policy πθ(a|s) with parameters θ which maximizes the

expected sum of rewards: J(θ) = Eρθτ [Rt], where

Rt =
∑

t γ
t−1r(st, at). This expectation is with re-

spect to the distribution of rollout trajectories generated

by the policy πθ. The gradient of this objective with re-

spect to the parameters θ can be computed by ∇θJ =
Eθ[

∑
t ∇θ log π(st|at)(Rt− bt)] where bt is a baseline that

does not depend on at of the future states and actions. Fol-

lowing a well-known approach, we choose the baseline to

be E[Rt|st] and in practice we approximated it with the av-

erage value of rewards, updated over time.

To accelerate training, we augmented the loss function

obtained from the REINFORCE learning rule with an auxil-

iary reward function that is particularly tailored for our task

of shape pose estimation. This loss function encodes the er-

ror in estimating the rotation angles between the reference

CAD model and the shape query scan and corresponds to

sum of squared distance between the ground truth rotation

and the regressed rotation. We use stochastic action sam-

pling based on the probability produced by the current pol-

icy. We use dropout [57, 18] to incorporate stochastic action

selection and standard epsilon-greedy strategy in RL [59]

for providing exploration in learning.

3.4. LICP Network Architecture

Learning a complex shape representation from sparse re-

wards is very challenging and requires a large number of tri-

als. Instead, we learn the shape representation using dense

voxel category labels in a supervised approach, as follows.

Freezing the learned shape representation network, we com-

pute features of the 3D observation signal and use a separate

network to learn the policy for finding the object poses.

3D Geometry Network: For 3D geometry feature repre-

sentation, we use a 3D fully convolutional network that

takes in 3D volumes as input and learns to produce per-

voxel category labels in a supervised fashion, using softmax

loss function over object categories. Each tower of our ge-

ometry network uses the 3D fully convolutional architecture

of [56] which incorporates several 3D convolution layers.

Input volume generation: Our observation signal is in

the form of 2D depth maps, which we convert to a vol-

umetric grid of Truncated Distance Function (TDF) val-

ues. The TDF representation can encode both single depth

and multiple depth images. Specifically, each voxel takes

a value which indicates the distance between the center of

that voxel to the nearest 3D surface. Following [69], these

values are truncated, normalized and then inverted to be be-

tween 1 and 0, indicating on surface and far from surface,

respectively.

Policy Network: Our policy is learned via a fully connected

network consisting of three layers, each with 256 units fol-

lowed by dropout and ReLU, using the policy learning and

loss and reward function in Sections 3.2 and 3.3.

Training Details: We implement our model in Tensor-

Flow [1] and use stochastic gradient descent with a learn-

ing rate of 0.001 and decay factor of 0.95. We train both

3D geometry and policy network over more than 1 million

training samples in simulation.

3.5. Generate Training Data using Simulation

We generate synthetic training data using SUNCG

scenes [56]. In each room, we move the camera at a per-

son’s height while looking at different objects in the scene.

We generate a wide range of camera angles: yaw varies

between [−180, 180], pitch depends on the height of ob-

jects and varies between [−90, 90] and roll randomly takes

a value in [−10, 10] degrees. To produce a variety of view-

points, we jitter the camera with a small amount of noise.

For each view, we capture the depth image and crop the
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Figure 4. Qualitative examples of the recomposed CAD model of the scene. Each example shows a view of the camera in the scanned

scene on left and recomposed CAD from the same view on right. Our method can successfully recompose cluttered scenes with lots of

distractor objects (first row) and huge amount of occlusions in scenes populated with many furniture objects and in confined spaces (second

and third Row). Less accurate CAD recomposition can occur due to ambiguous extent of scanned meshes with nearby objects (bottom row,

right), or lack of discriminative shape features in different views (cabinet in bottom row, middle)

box around the object which also contains some parts of

the other objects. We then pass the partial point cloud to

the network as input. We rasterize the mesh of the 3D CAD

model into a point cloud and use the produced point cloud as

the reference input of the network. The truncated distance

function of the point cloud is used as input to the network.

3.6. Scene Recomposition

Our scene recomposition pipeline takes in a point cloud

which is produced from RGBD video of a real scene. We

apply 3D object detection and semantic segmentation for

extracting 3D object instances. Then, we use the output of

our trained 3D geometry network (see Figure 2) for finding

the nearest 3D CAD model in the set of CAD models and

use it as reference 3D shape. Finally, we deploy LICP for

aligning the 3D CAD model to object instance segmenta-

tion, as described in Section 3.1.

3D Object Detection: We use the two-step object detec-

tion regime [43, 12, 30] as follows. We train a category

agnostic region proposal network which gives the object-

ness score for different 3D bounding boxes over the point

cloud. We simultaneously train another network for clas-

sification of 3D bounding boxes for each of the object cat-

egories. Both networks share the feature extraction layers

which are based on the VGG architecture [54]. We use cross

entropy loss for both region proposal and classification net-

works. We also learn the deviation of the 3D boxes using

regression loss in x and y dimensions and the zl and zh for

the lower and higher extent of the object along the Z axis or-

thogonal to the ground plane. We rectified the point cloud

in world coordinates by rotating the gravity direction and

then making it axis aligned with the dominant X-Y orien-

tation on the ground plane. To compute feature maps from

the point clouds we use the orthographic projection of the

point cloud representations and extract feature from planes

in different heights following [12]. For training, we use ren-

dered depth images from SUNCG [56] as explained in 3.5.

We use the entire scene composed of multiple objects in the

field of view for each camera pose. We set 0.5 as the thresh-

old for intersection over union (IoU) of 3D detection boxes

and use non-maximum suppression for removing low scor-

ing 3D boxes which have high overlap with higher scoring

detections. We find the translation and scale of the objects

via 3D object detection and apply the inferred translation

and scale to the CAD models.

3D Semantic Segmentation: Clean object instance seg-

mentation is important for the alignment stage of our

method. For instance, when a chair is next to a table the

3D bounding box of the chair may include some part of

table and vice versa. In order to remove such distractors

from the detection bounding box of each object detection

we incorporate the semantic segmentation inferred on the

point clouds. We take all points inside the 3D detection box

and remove the points with semantic label of other object

categories with overlapping detected bounding boxes. We

also remove the points with “floor” and “wall” labels. We

follow [41, 32, 42] for training semantic segmentation over

the point cloud and learn a model for all object categories
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Figure 5. Comparison of proposed LICP method with local feature matching and alignment methods on real data (lower values are better).

The legend is only shown on the right plot for better readability and the color of methods are the same for all plots.

as well as floor and wall classes.

Room Layout Estimation and Scene Visualization: We

use the inferred wall points from the 3D point cloud seg-

mentation to estimate the room layout. For each point on

the ground plane (X,Y ), we count the number of wall 3D

points, aggregating over the Z axis. The locations on the

ground plane with high frequency of wall voxels define the

boundary of the room. We use the extent of the floor voxels

wherever scan does not have wall in the boundary. Once all

wall voxels on the ground plane are computed we run the

concave hull algorithm to find the room boundary. We in-

fer the location of the floor plane to be at the Z which has

the highest frequency of floor voxels inferred via semantic

segmentation of 3D points. The color of each object is esti-

mated by medoid color of the point clouds belonging to the

object instance segmentation. The floor texture is selected

based on the feature similarity to a set of texture image.

4. Experiments

In our experiments we want to investigate: 1) How ac-

curate is our learning-based ICP compared to non-learning

previous approaches, 2) how does our method compare with

keypoint matching approaches based on deep features, and

3) how can our model be applied in scene CAD model re-

composition of unstructured and cluttered real world en-

vironments. To answer these questions, we evaluate the

performance of our method both quantitatively and qual-

itatively. For real-world evaluation, we use the publicly

available SceneNN [23] and ScanNet [14] datasets. Sce-

neNN and ScanNet test sets contain scans of 95 and 312

scenes from different real world indoor spaces, respectively.

These scene point clouds are scanned from various offices,

bedrooms, living room, kitchen, etc., and exhibit a diverse

collection of unstructured real world scenes populated with

various furniture types, styles, and types of clutter from

many distractor objects. These scenes are scanned with

commodity depth cameras and we use the fused output.

4.1. Quantitative Evaluation

We evaluate the accuracy of our method for 6DoF pose

estimation of furniture objects in both real and synthetic

scenarios. We compare our results with prior works of [13,

48, 69, 15, 8, 70, 67, 9, 36]. For the evaluation criteria,

we compute the alignment error between the scanned mesh

and the CAD model with the predicted pose. To compute

the alignment score, the closest point on the CAD model

is found for each point in the input scan and the cosine dis-

tance between surface normals is computed. In the synthetic

data experiment, we use the distance between points on ref-

erence CAD model and scan given that we have access to

the ground truth mesh of the object in simulation.

Quantitative evaluation on real data: To evaluate the ef-

fectiveness of LICP for 6DoF object pose estimation, we in-

corporate the ground truth point cloud segments and object

labels. We use the feature representation of our trained 3D

geometry network for finding the nearest 3D CAD model

from a database of 1550 CAD models from [56, 58] and

use it as the reference CAD model. The quality of the object

style match for retrieved CAD models is shown for several

examples in Figure 3.

We compare LICP with local feature matching and vari-

ants of ICP from the literature. For local feature matching,

we compare against the hand-designed geometric feature of

FPFH [48], learned local deep feature by 3DMatch [69] and

LORAX [15]. After matching the local features, we use

RANSAC for coarse registration followed by point-to-plane

ICP [13] for fine alignment of CAD model and input scan.

For comparing against LORAX, we use the released code

of [15] for super-point extraction and use local deep fea-

tures learned in an unsupervised fashion from point clouds

of synthetic object CAD models via GAN. We also com-

pare with Sparse ICP [8] (a variant of ICP that is robust

to input noise), and the PCL implementation of ICP. Fig-

ure 5 summarizes our quantitative comparison results. In

the plots of Figure 5 “ICP point-to-plane, geom feature”

refers to FPFH setting. As demonstrated in Figure 5, our

method outperforms all aforementioned prior methods.

We also compare LICP with other baselines and variants

of proposed LICP with different combinations of loss and

reward function. Rotation prediction only uses object ro-

tation estimation output of the learned network in Figure 2

and does not use our RL component. Rotation pred., ICP

point-to-plane uses the rotation estimation output of the

LICP network and applies ICP point-to-plane for finer ob-
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Figure 6. Comparison of proposed LICP method with robust and global alignment algorithms on synthetic data (lower values are better).

ject alignment. Visible point cloud, ICP only uses the vis-

ible points of the point cloud from predicted object pose for

ICP alignment. LICP w/o Pose Supervision uses a policy

network that is only trained with RL component and with-

out strong object pose supervision of auxiliary loss. All of

these variants have lower performance than our full LICP

model that combines ICP-based reward and auxiliary loss

for learning the policy network. Also the performance of

LICP only with RL is close to LICP which suggests that

LICP performance is mostly gained by RL learning rather

than strong object pose supervision.

We do not have access to the ground truth CAD model of

the shapes in the input scan and we use the surface normal

error between recomposed CAD and input scan. We plot the

surface normal error vs. recall for each category, which is

the percentage of samples with surface normal error lower

than each error value. Note that the smallest average ICP

distance between the pair of scan and CAD model never

goes to zero since the point cloud input pairs to the ICP

method are sampled differently and are never identical.

Quantitative evaluation on synthetic data: We test on the

SUNCG [56] test set where objects are placed in 3D scenes

with realistic furniture arrangements. This experiment is

performed on several input CAD models and input scans.

The alignment error is the mean surface point distance in

meters between the object surface in scan and the reference

CAD model. In this experiment we test on synthetic scans

where we have the ground truth surface of the scanned ob-

ject. Therefore, we can compute the distance between the

surface of the reference CAD and surface of the CAD in the

scan. We compare LICP with robust and global alignment

algorithms: Fast Global Registration [70], globally-optimal

algorithm Go-ICP [67], GOGMA [9], Super4PCS [36] and

Sparse ICP [8]. We also compare LICP against point-to-

plane ICP [13] with FPFH geometric feature and PCL im-

plementation of ICP. The results are summarized in Fig-

ure 6. Our LICP alignment outperforms other global and

robust alignment methods by a large margin.

We also evaluate the robustness of LICP against large

orientation differences between the object scan input and

the reference CAD model and compare against Chen and

Medioni ICP [13] in Figure 7. The reference CAD models

are initialized with different orientations for each experi-
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Figure 7. Evaluating the robustness of our proposed LICP method

for aligning 3D CAD models with drastic orientation differences

to the input scan using synthetic data.

ment. In Figure 7, the x-axis shows the initialization error

while the y-axis shows the final alignment error after ICP is

converged. While both methods reduce the alignment error,

LICP obtains lower final error compared to [13].

4.2. Qualitative Evaluation

Real scene shape alignment: Figure 4 demonstrates sev-

eral examples of scene CAD models recomposed (on right)

from the depth scan of real scenes (on left) by applying our

algorithm where best-matched CAD models and 6Dof ob-

ject poses are estimated. The first row in Figure 4 shows

several recomposed CAD scene models in the presence of

a high amount of scene clutter. For example, the surface

of the two chairs on the top left is filled with random ob-

jects, and the back cushion of the blue office-chair (first

row, middle figure) is occluded with a shirt. While such ar-

bitrary objects results in significant amount of noise in the

depth scans, our method can estimate the 6DoF pose and

object style reasonably well. Examples of the second row in

Figure 4 show scenarios with significant occlusions as the

result of a densely populated scene. As shown in the fig-

ure, our method handles such occlusions well and produces

CAD scene models with accurate object pose and styles.

Several failure cases are shown in the bottom row of Fig-

ure 4 where the estimated object poses are less accurate.

For example, in the middle example of the forth row, the

pose of the cabinet behind the blue chair is not estimated

correctly due to the lack of strong discriminative shape fea-

tures between the right face and the front face of the cabi-

net. Also the retrieved armchair style is not accurate in the

left example of the forth row, as the extent of the armchair

cannot accurately be obtained from the scanned point cloud
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Scene	1 Scene	2 Scene	3

Scan Recomposition Scan Recomposition Scan Recomposition

Figure 8. Scene recomposition using our proposed fully automatic method. Scene recomposition is shown for three different scenes. In

each scene, the top row shows the top-down view of the scene; the middle and bottom rows demonstrate two close-up views of each scene.

Camera location and pose is color coded on top-down view).

because of high level of occlusion with the nearby objects.

Real scene recomposition: We deploy our fully automatic

scene recomposition method on real scenes, with results

shown in Figure 8. For each scene, we render two differ-

ent close-up camera viewpoints and the top-down view of

the scene recomposed by our method and also show corre-

sponding views from the scan. As shown in Figure 8, these

scenes are densely populated with different furniture and the

scene scans contain many holes. Despite many occlusions

and holes, our method produces satisfying scene recompo-

sitions. Using TITAN Xp GPU, the computational time

for a typical scene with an average complexity is approxi-

mately 6.5 seconds for 3D object detection and 9.5 seconds

for 3D semantic segmentation. LICP 3D CAD alignment

takes 1.22 seconds per object instance which includes 0.65

seconds for 3D Geometry Net, 0.008 seconds for Policy Net

and 0.56 seconds for ICP Reward.

Surface point visualization during inference: LICP

learns to assign different weights to surface points of the

reference CAD model when queried with arbitrary posed

object scans. The assigned weights for surface points in the

reference CAD model are computed based on the visible

surface points. The visible surface points are captured via

ray tracing from the actions inferred, i.e., the camera trans-

formation multiplied with the value estimated by the value

function in our policy network. These weights reflect the

contribution of each surface point in inferring the correct

transformation action.

Figure 9 shows the surface point weights obtained for

different objects when queried with scans from various

viewpoints. The assigned weights are conditioned on the

viewpoint of the query shape. When LICP is queried with

a left-sided armchair, the visible surface points on the left

side of the reference armchair gain higher weights and vice

versa. Similarly, office chairs with different poses and oc-

Figure 9. Visualization of the learned weights (right) for differ-

ent samples and various query scan viewpoints (left). The learned

weights are shown from four different views of the reference CAD

model. Weight values are color-coded from low (blue) to high

(red). The first two rows show that the surface points of the same

reference CAD model are assigned with different weights depend-

ing on the query scan viewpoint.

clusion patterns are provided. LICP assigns higher weights

to the surface points that are not occluded and ignores the

contribution of the occluded surface points. The bottom row

of Figure 9 shows similar patterns in the produced weights

for surface points of desk and L-shaped sofa instances.

5. Conclusion
In this paper, we compute 3D scene recompositions from

a sequence of RGBD scans captured by a moving camera

from a real scene. We present a learning based approach

for shape alignment called Learning-based ICP (LICP).

LICP combines deep 3D feature learning with reinforce-

ment learning and is able to infer the 6DoF object trans-

formation with respect to a reference shape. By leveraging

large scale shape 3D databases and learning the transforma-

tion policy for various object poses, LICP becomes robust

to scene clutter and partial occlusions. Our experimental

results on diverse real world scans demonstrate high perfor-

mance of our method compared to various baselines.
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