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Abstract

Deep visual models are susceptible to extremely low

magnitude perturbations to input images. Though care-

fully crafted, the perturbation patterns generally appear

noisy, yet they are able to perform controlled manipula-

tion of model predictions. This observation is used to ar-

gue that deep representation is misaligned with human per-

ception. This paper counter-argues and proposes the first

attack on deep learning that aims at explaining the learned

representation instead of fooling it. By extending the input

domain of the manipulative signal and employing a model

faithful channelling, we iteratively accumulate adversarial

perturbations for a deep model. The accumulated signal

gradually manifests itself as a collection of visually salient

features of the target label (in model fooling), casting ad-

versarial perturbations as primitive features of the target

label. Our attack provides the first demonstration of sys-

tematically computing perturbations for adversarially non-

robust classifiers that comprise salient visual features of ob-

jects. We leverage the model explaining character of our

algorithm to perform image generation, inpainting and in-

teractive image manipulation by attacking adversarially ro-

bust classifiers. The visually appealing results across these

applications demonstrate the utility of our attack (and per-

turbations in general) beyond model fooling.

1. Introduction

Deep visual models have provided breakthroughs in nu-

merous computer vision tasks, including image classifica-

tion [24, 43], object detection [37, 38], semantic segmen-

tation [27, 9] and image captioning [49]. However, despite

their impressive performance, deep models are found vul-

nerable to adversarial perturbations to inputs [45]. These

perturbations are weak additive signals that manipulate

model predictions while remaining imperceptible to the hu-

man visual system. The intriguing susceptibility of deep

models to adversarial perturbations is currently being ac-

tively investigated by the research community [2].

Dictated by the original ‘adversarial’ perspective [45],

Figure 1. Top: Using an image distribution, our attack iteratively

generates and refines a perturbation p for a standard deep visual

classifier (VGG-16 here) that extracts geometric patterns deemed

salient visual features of a label by the classifier. Bottom: Apply-

ing our attack to adversarially robust classifiers (ResNet-50 here)

enables visually appealing interactive image manipulation (here),

image generation (Fig. 6) and inpainting (Fig. 7).

research in this direction has taken a natural bicephalous

approach. One stream of works aims at generating pertur-

bations with modest visual perceptibility and high transfer-

ability to fool known and unknown models [16, 25, 13, 42,

11, 30]. While the other focuses on defending the mod-

els against such perturbations [50, 36, 26, 1, 34]. There

are very few exceptions that deviate from the ‘adversarial’

brand of perturbations and cast these signals as a fooling

tool for deep learning. Santurkar et al. [41] presented a no-

table contribution along this line by using perturbations for

image synthesis with adversarially robust networks.

Investigating adversarial perturbations, Ilyas et al. [19]

claimed that the existing large datasets (e.g. ImageNet [12])

admit to brittle yet highly predictive features that remain
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imperceptible to humans. It is argued that deep visual

models rely on these non-robust features for high accuracy,

which also makes them susceptible to adversarial perturba-

tions. Reliance of deep models on these ‘apparently’ in-

comprehensible features is also argued to indicate a mis-

alignment between deep visual representation and human

perception [14]. To remove this misalignment, Engstorm

et al. [14] proposed to learn deep models under robust opti-

mization framework. However, this entails a significant per-

formance loss for the original model and a drastic increase

in the computational complexity of model induction.

It is paradoxical that a representation misaligned with

human perception still performs human-meaningful visual

tasks with high accuracy. To investigate this phenomenon,

we delve deep into the composition of perturbation signals

with an alternate objective of model explanation instead of

model fooling. We discover that under appropriate condi-

tions, adversarial perturbations eventually emerge as salient

visual features of the target label even for the non-robust

models, see Fig. 1 (top). Within the context of adversar-

ial perturbations, this observation drastically weakens the

argument of misalignment between human perception and

deep representation. Rather, it places adversarial perturba-

tions as human-meaningful geometric features of the target

label, albeit in a primitive and subtle form.

Our perturbation estimation algorithm stochastically

maximizes the prediction probability of an image distribu-

tion’s perturbed samples for a given target label. Anchored

by a seed image, the maximization takes place by iteratively

stepping in the Expected gradient direction of the classi-

fier’s loss surface w.r.t. the input samples. The optimization

is guided by gradient moments and adjusting the step di-

rection to achieve the ultimate objective more efficiently.

We further channel the perturbation signal to focus more

on its regions that cause high activity of the neurons in the

deeper layers of the classifier. This refinement is purely

based on the intermediate perturbations computed by our

algorithm, which makes our technique model faithful - a

desirable property for model explanation [14].

Besides explaining deep models in terms of salient vi-

sual features for class labels and highlighting the alignment

of deep representation with human perception, our attack

naturally suits to the low-level vision tasks of e.g. image

generation, inpainting and interactive image manipulation

using ‘classifiers’ [41]. We affirm the utility of our tech-

nique (and perturbations in general) beyond the adversarial

objective by achieving significant visual improvements for

these tasks over [41]. The major contributions of this work

are summarized as:

• We propose the first attack on deep learning with input

perturbation that explains a model instead of fooling it.

• By manifesting salient visual features of class labels in

perturbations for ‘non-robust’ models, we drastically

weaken the argument that deep representation is mis-

aligned with the human perception.

• We demonstrate visually appealing image generation,

inpainting and interactive image manipulation by at-

tacking robust classifiers. Our results affirm the utility

of perturbations beyond model fooling.

2. Related work

Adversarial perturbations are being actively investigated

along the lines of attacking deep models and defending

them against the adversarial attacks [2]. We first discuss

the key contributions along these lines and then focus on

the non-adversarial perspective of input perturbations.

Adversarial attacks: Additive adversarial perturbations

that can arbitrarily alter the decisions of deep models made

their first appearance in the seminal work of Szegedy et

al. [45]. This discovery fueled the development of nu-

merous techniques to attack deep visual models. Good-

fellow et al. [16] devised the Fast Gradient Sign Method

(FGSM) to craft adversarial perturbations in a single gra-

dient ascent step over the model’s loss surface for the in-

put. Later, Kurakin et al. [25] advanced this scheme by

introducing a mutli-step version called Iterative FGSM (I-

FGSM). Further instances of the follow-up iterative algo-

rithms for adversarial attacks include Momentum I-FGSM

(MI-FGSM) [13], Diverse Input I-FGSM (DI2-FGSM) [51]

and Variance-Reduced I-FGSM (vr-IGSM) [48] etc.

The above-mentioned algorithms and other recent

works [30, 42, 39, 11, 52, 15] compute image-specific ad-

versarial perturbations. These perturbations appear noise to

humans but completely fool the models. Moosavi-Dezfooli

et al. [29] first demonstrated the possibility of fooling deep

models simultaneously on a large number of images with

Universal Adversarial Perturbations. Later, [33, 5, 22, 31]

also devised techniques for computing effective universal

perturbations. The pervasive susceptibility of deep mod-

els to adversarial perturbations is seen as a serious threat to

practical deep learning [2] - an idea currently fueling the

very high level of research activity in this area.

Adversarial defenses: On the flip side, numerous tech-

niques have also surfaced to counter the adversarial at-

tacks [20, 34, 36, 50, 44, 35, 1, 26]. These techniques aim

at protecting deep model against both image-specific [34]

and universal perturbations [1]. This is commonly done by

either detecting the perturbation in an input image, or dilut-

ing the adversarial effects of perturbation signals by modi-

fying the model or the input itself. Nevertheless, Carlini et

al. [7, 6, 8] and later Athalye et al. [3] demonstrated that it is

often possible to break the adversarial defenses by stronger

adversarial attacks.

Non-adversarial perspective: Currently, there are also

contributions in the literature (albeit very few) that hint to-

wards the utility of perturbations beyond model fooling. For
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instance, Tsipras et al. [46] observed the presence of salient

visual features of the target class in the perturbation signals

that fool ‘adversarially robust’ models. A similar observa-

tion is made by Woods et al. [47] for the models robustified

with regularized gradients. Existence of salient visual fea-

tures in perturbations indicate the potential of these signals

in model explanation [28, 47]. However, their manifestation

uniquely in the case of robustified models is interpreted as a

misalignment between (non-robust) deep representation and

the human perception [14, 46]. Potentially, the re-alignment

is only achievable by adversarially robustifying the models

at a serious cost of performance loss and amplified compu-

tational complexity [14, 46].

3. Attacking to explain

Let I ∈ R
m be a sample of a distribution I over the nat-

ural images and K(I) be a deep visual classification model

that maps I to its correct label ℓtrue. The common aim of

generating perturbations in adversarial settings is to com-

pute p ∈ R
m that satisfies the constraint

K(I + p)→ ℓtarget s.t. ℓtarget 6= ℓtrue, ||p||p ≤ η, (1)

where ||.||p denotes the ℓp-norm that is restrained by a fixed

‘η’. In (1), restricting ℓtarget to a pre-defined label results in

a targeted adversarial attack.

According to (1), p can also be expressed as a func-

tion over I and K(.)1. Given a fixed K(.), the objective

of computing an image-specific perturbation confines the

domain of p, say Dom(p) to the extreme case of a single

image. With such restrictions the perturbation signal can

only reflect peculiarities of a single data point w.r.t. K(.),
that is hardly indicative of any general character of the clas-

sifier. This also calls into question the relevance of claim-

ing human perceptual misalignment with deep representa-

tion by alluding to image-specific perturbations. To bet-

ter encode the classifier information in the perturbation, the

signal needs to be invariant to the input samples, which is

achievable by broadening the domain of p.

Incidentally, universal perturbations [29] are computed

with a broader domain as per our formulation. Inline with

our reasoning, those perturbations exhibit much more reg-

ular geometric patterns as compared to the image-specific

perturbations. However, those patterns still remain far from

salient visual features of any object. This is because univer-

sal perturbations map all the input images to random class

labels. For a given K(.), broadening the perturbation do-

main with a ‘targeted’ objective is more likely to induce the

geometric patterns in p that are actually considered salient

features of ℓtarget by K(.).
Further to the above argument, we can alternately de-

scribe the objective of (1) as maximizing the probability of

1We assume that the algorithm to generate p is fixed.

a perturbed sample being mapped to ℓtarget by K(.). For

|Dom(p)| > 1, where |.| is the set cardinally, this maxi-

mization must incorporate all the relevant samples. Hence,

we re-cast (1) into the following constraint for our objective

of explaining a deep model with p:

E
[

P (K(I + p)→ ℓtarget)
]

≥ γ, s.t. (2)

Dom(p) = {∀I|I ∼ I}, |Dom(p)| ≫ 1, ||p||p ≤ η,

where P (.) denotes probability and γ ∈ [0, 1] is a pre-

defined constant. As compared to the commonly computed

adversarial perturbations, a p satisfying (2) is expected to

reveal clear information about e.g. what constitutes discrim-

inative visual features of objects for a model?, what seman-

tics are attached to a given label index of the model?, and do

these features and semantics are human-meaningful? etc.

4. Algorithm

We compute the desired perturbations in two phases. In

the first phase of perturbation estimation, discriminative

features of the target class (as perceived by the classifier)

are induced in the perturbation in a holistic manner. Later,

in the phase of perturbation refinement, the technique fo-

cuses more on the image regions that cause high neural ac-

tivity in the model to refine the perturbation.

Perturbation estimation: To expand our perturbation do-

main, we need to sample a distribution of images. Consid-

ering I, we define a set ℑ = {d} ∪ D of the samples from

that distribution. Here, d ∈ R
m denotes a ‘seed’ image,

whereas each element of D is also a sample from I. We

adopt this formalization to explicate the role of distribution

and seed choice in the subsequent text.

The procedure to estimate the perturbation is summa-

rized as Algorithm 1, that solves the optimization problem

below with a guided stochastic gradient descent strategy

max
p

℘= E
I∼ℑ

[

P (K(I + p)→ℓtarget)
]

s.t. ||p||2≤η. (3)

At its core, the algorithm employs mini-batches of the dis-

tribution samples for a multi-step traversal of the visual

model’s cost surface to solve (3). We bias this traversal with

the seed image. The algorithm iteratively steps in the direc-

tion of increasing ‘℘’ by computing the gradient of the sur-

face w.r.t. mini-batches and utilizing the gradient moments

for efficient optimization. Instead of aiming at the optimal

solution, based on (2), we accept any solution for which

℘ ≥ γ. Below, we describe this procedure in detail, follow-

ing the sequence in Algorithm 1.

We compute the desired perturbation expecting the in-

puts mentioned in Algorithm 1. Briefly ignoring the initial-

ization on line-1, the algorithm first randomly selects b− 1
samples to form a set D and clips these samples and the in-

put seed d after perturbing them with the current estimate

of the perturbation (line 3&4). The clipping is performed to
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Algorithm 1 Perturbation estimation

Input: Classifier K, seed d, raw samples D, target label

ℓtarget, perturbation norm η, mini-batch size b, probabil-

ity threshold γ.

Output: Perturbation p ∈ R
m.

1: Initialize p0, µ0, σ0 to 0 ∈ R
m and t = ℘ = 0

Set α = 0.9, β = 0.999 and d = d.

2: while ℘ < γ do

3: D ∼ D, s.t. |D| = b− 1
4: D ← Clip (D ⊖ pt) , d← Clip (d⊖ pt),
5: t← t+ 1
6: ξ ← ||∇dJ (d,ℓtarget)||2

E
di∈D

[||∇di
J (di,ℓtarget)||2]

7: gt ← 1
2∇dJ (d, ℓtarget) +

ξ
2 E
di∈D

[

∇di
J (di, ℓtarget)]

8: µt ← αµt−1 + (1− α)gt

9: σt ← βσt−1 + (1− β)(gt ⊙ gt)

10: ρ←
(

µt

√

1− βt

)

⊙
(√

σt(1− αt)
)−1

11: D+
ρ ← D ⊖

(

pt−1 +
ρ

||ρ||∞

)

12: D−
ρ ← D ⊖

(

pt−1 − ρ
||ρ||∞

)

13: ̺+ ← E
[

P (K(D+
ρ )→ ℓtarget)]

14: ̺− ← E
[

P (K(D−
ρ )→ ℓtarget)]

15: if ̺+ ≥ ̺− then

16: pt ← pt−1 + ρ

17: else

18: pt ← pt−1 − ρ

19: end if

20: pt ← pt ⊙min
(

1, η
||p

t
||2

)

21: ℑp ← Clip({d ∪ D} ⊖ pt)
22: ℘← E

[

P (K(ℑp)→ ℓtarget)
]

23: end while

24: return

confine the dynamic range of the resulting samples to [0, 1].
The ⊖ symbol indicates that perturbation is being applied

to a sample or individual elements of a set. For a given iter-

ation, clipped d ∪ D forms a mini-batch that is used by our

stochastic gradient descent strategy.

The seed is introduced in our algorithm to allow variation

in the perturbations by changing this input. We do not as-

sume any restrictions over the input samples, implying that

the elements of D and d can be widely different. This also

means that the gradients of di ∈ D in the direction of ℓtarget -

denoted by ∇di
J (di, ℓtarget) - can significantly differ from

their counterpart computed for d. To account for this dif-

ference, line-6 of the algorithm computes the ratio between

the gradient norm for d and the Expected gradient norm for

di ∈ D. The ratio is later used to fuse the gradients on

line-7, giving higher relevance to the seed gradient.

Given the fused gradient, we estimate its first and second

raw moment on line-8 & 9 using the exponential running

Figure 2. Visually salient geometric patterns emerge with more it-

eration of Algorithm 1 that are further refined with Algorithm 2.

The refined perturbation is shown after post-refinement 100 itera-

tions of the former. The ‘Nail’ patterns are computed for VGG-16

with η = 10. We follow [45] for perturbation visualization.

average controlled by the hyper-parameters ‘α’ and ‘β’.

In our algorithm, the use of adaptive moments is inspired

by the Adam algorithm [23] that employs this scheme for

model parameter optimization. After empirically verifying

the qualitative similarity between the effects of these hyper-

parameters on our algorithm and Adam, we fix their values

to those proposed in [23]. This is indicated on line-1, where

the other parameters are initialized to null values and a copy

of the seed is created for subsequent processing.

We combine the running averages on line-10 and then

perform a binary search for the resulting intermediate per-

turbation update signal ρ on lines 11-19. The search moni-

tors if changing the direction of ρ is more conducive for our

ultimate objective. Stochasticity can cause our optimiza-

tion to significantly deviate from the eventual objective in

a given iteration. On one hand, the binary search inhibits

this case. On the other, it introduces more variety in the

perturbation that is desirable for better model explanation.

We project the updated perturbation to the ℓ2-ball of radius

‘η’ on line-20, and estimate ‘℘’ on the perturbed clipped

distribution samples on line-21 & 22.

Whereas the ℓp-norm of perturbation is restricted in ad-

versarial settings for imperceptibility, this constraint plays a

different role in our technique. By iterative back-projection

and clipping, we keep amplifying those geometric patterns

in the perturbation that strongly influence K(.) to predict

ℓtarget as the label of all the input samples. With succes-

sive back-projections, visually salient feature of ℓtarget start

to emerge in our perturbations (Fig. 2) that are subsequently

refined for better visualization, as discussed below.

Perturbation refinement: The holistic treatment of per-

turbation in Algorithm 1 results in an unrestricted spread

of energy over the signal. To achieve finer patterns we let

the technique focus more on the relevant regions with an

adaptive filtration mechanism summarized in Algorithm 2.

A key property of this mechanism is that it upholds model

fidelity of the perturbation by assuming no external priors.

To refine the perturbation, it is fed to the convolutional

base K̄(.) of the classifier (line-2). The output Ω of the base

is a set of low resolution 2D signals, which is reduced to

an average signal a on line-3. This signal captures rough

9546



Algorithm 2 Perturbation refinement

Input: Classifier K, perturbation p ∈ R
m

Output: Refined perturbation p

1: Initialize f to 0 ∈ R
m

Set K̄ = convolutional base of K, scale factor λ = 5
2: Ω← K̄(p) : Ω ∈ R

H×W×C

3: a← 1
C

∑C

n=1 Ω
n

4: τ ← Ψ(a)
5: if a(x,y) > τ then a(x,y) = λ else a(x,y) = 0

6: f ← upsample (a) : f ∈ R
m

7: p← Clip(p⊙ f )

8: return

silhouette of the salient regions in the input perturbation,

which makes it a useful spatial filter for our technique. On

line-4, Ψ(.) computes the Otsu threshold [32] for the aver-

age signal, that is subsequently used to binarize the image

on line-5. We empirically set λ = 5 in this work. The re-

sulting image is up-sampled by bicubic interpolation [21]

on line-6 to match the dimensions of the input perturbation

p. The scaled mask is applied to the perturbation, which is

subsequently clipped to the valid dynamic range.

The output of Algorithm 2 is further processed by Al-

gorithm 1 to again highlight any salient patterns that might

be diminished with filtration. The final perturbation is com-

puted by iterating between the two algorithms.

5. Experimentation

We experiment with the proposed algorithm for model

explanation in § 5.1, and to perform low-level image pro-

cessing in § 5.2. The former uses standard ‘non-robust’

classifiers, whereas ‘adversarially robust’ classifiers are

used for the latter.

5.1. Model explanation

Setup: We assume I to be a distribution of natural im-

ages and create our set D by randomly sampling 256 im-

ages from the validation set of ILSVRC 2012 dataset [12].

Random samples are used for each experiments separately.

We consider visual models trained on the ImageNet as our

classifiers and arbitrarily select the target label ℓtarget. A

mini-batch size of b = 32 is used. To compute the per-

turbations, we set the probability threshold γ = 0.8 and

perturbation norm η = 10. The value of ‘γ’ is chosen based

on the visual clarity of salient patterns in the final perturba-

tions. Higher ‘γ’ tends to generate clearer patterns at higher

computational cost. We keep ‘η’ comparable to the existing

techniques for adversarial perturbation generation [29, 1].

NVIDIA Titan V GPU with 12 GB RAM is used.

To compute a perturbation, we first let Algorithm 1 run

to achieve the desired ‘℘’. Then, we apply Algorithm 2

for refinement. Subsequently, Algorithm 1 is again applied

such that a refinement is carried out after every 50th iteration

until 300 iterations.

Salient visual features: Model-gradient based adversar-

ial perturbations are known to generate noise-like pat-

terns [45, 16, 30] or motifs that seem meaningless to hu-

mans [29, 1]. However, by accumulating such perturba-

tions under a slightly different objective, our attack is able

to discover visually salient features of the target labels in

those signals. In Fig. 3, we show representative examples

of the perturbations computed by our algorithm for VGG-16

model. Notice the clear geometric patterns that humans can

associate with the target class labels. These patterns emerge

without assuming any priors on the perturbation, distribu-

tion samples (in D), or the model itself.

Firstly, from the figure, it is apparent that our tech-

nique can (qualitatively) explain a model in terms of ‘what

human-meaningful semantics are attached to its output neu-

rons?’. This is useful e.g. in the settings where an unknown

model is available and one must discover the labels of its

output layer. Secondly, the perturbations are explaining

‘what geometric patterns are perceived as the discrimina-

tive features of a given class by the classifier?’. Interest-

ingly, these patterns align very well with the human percep-

tion, and we compute them with the same tool (i.e. gradient

based perturbation) that is used to promote the argument of

misalignment between human perception and deep repre-

sentation [14, 46].

Diversity of the salient patterns: We provide two repre-

sentative perturbations for each target class in Fig. 3, where

the difference in the perturbations is caused by selecting

different seeds. Besides ascertaining the effective role of

seed in our algorithm, the diverse patterns that remain vi-

sually salient, affirm that the model has learned the general

(human-meaningful) semantics for the target label. We em-

phasize that we ignored the target class while creatingD for

Fig. 3. Hence, the patterns are completely based on the vi-

sual model, which also highlights the potential of standard

classifiers for the task of diverse image generation.

Region specific semantics: Intrigued by the spatial dis-

tribution of the salient patterns in perturbations, we also

explore the possibility of extracting model semantics as-

sociated with specific regions in the image space. This is

possible by increasing the correlation between the pixels in

those regions across the distribution samples that are input

to our algorithm. This leads the gradients for the individ-

ual samples to be in the same direction for the specified

regions. Which reinforces the signal for those regions with

back-projection while weak signals in the other regions get

suppressed with refinement. We emulate this scenario by

replacing the image regions of interest with 64×64 patches

for all the samples, where all patch pixels are generated with

the mean pixel value of the sampled images.

In Fig. 4, we show the perturbations for a representative
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Figure 3. Visually salient features of the target class (label given) emerge by accumulating the gradient based perturbations with explanation

objective. The shown perturbations are computed for VGG-16 with ImageNet samples, excluding the target class samples. Perturbations

for the same target are generated with different seeds for variety.

Figure 4. Obstructing samples with a uniform

patch (seed shown) lets the algorithm focus

on/near the pre-specified region for extracting

model semantics. Perturbations for ‘Centipede’

are computed for VGG-16.

Figure 5. Salient pattern emergence is a general phenomenon. Pat-

terns for two random labels are shown for different models.

label (‘Centipede’) with three random choices of regions. A

region of interest is depicted with seed only. As can be ob-

served, our attack is able to focus much better near the spec-

ified regions. Interestingly, the model is generally able to

associate similar discriminative features of the target label

to different regions in a coherent manner, further strength-

ening the notion of human perception alignment with the

deep representation.

Patterns for different models: Above, we mainly pre-

sented the patterns for VGG for their visual clarity after re-

sizing. However, emergence of the salient visual features

in our perturbations is a general phenomenon for the deep

visual classifiers. In Fig. 5, we also show representative

perturbations for ResNet-50 [17], DenseNet-121 [18] and

MobileNet-V2 [40] for two random classes used in our ex-

periments. The perturbations clearly depict the features of

the target labels for all these model.

To demonstrate perceptual alignment of deep represen-

tation over different models, we classify the ‘perturbations’

generated for one model with other models. High confi-

dence of multiple models for the intended target label indi-

cates that the extracted patterns are commonly seen as dis-

criminative visual features of the target class.

5.2. Leverage in low­level tasks

Santurakar et al. [41] recently showed that adversarially

robust deep classifiers can be exploited beyond classifica-

tion. They demonstrated image generation, inpainting and

image manipulation etc. by attacking a robust ResNet with

the PGD attack [28]. The key notion exploited by Santu-

rakar et al. is the presence of salient visual features in the

‘adversarial’ perturbations computed for the ‘robust’ clas-

sifiers. Relating this concept to our findings, their study

indicates an excellent test bed for our attack, where success-

ful results not only ascertain the implicit model explaining

nature of our perturbations, but also improves the state-of-
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Figure 6. Image generation by attacking adversarially robust ResNet. The generated images are adversarial examples of the shown seeds.

The intended class labels are mentioned. Setup of Santurkal et al. [41] is followed.

the-art for the newly found place of the robust classifiers in

the broader Machine Learning context.

To demonstrate improvements in the results, we follow

[41] closely in terms of the used classifier, perturbation bud-

get and the underlying evaluation procedure. In the exper-

iments to follow, we create the set D by sampling a multi-

variate Gaussian N (µI ,ΣI), where µI ∈ R
m is the mean

value of an image set Ii=1,...,n∼I target. Here, I target is the

distribution of a target class images, emulated by ImageNet.

We compute ΣI = E[(Ii − µI)
⊺(Ii − µI)]. For compu-

tational reasons, the multivariate Gaussian is computed by

4× downsampling of the original images. Random 256 dis-

tribution samples are later upsampled to match the network

input and used to create the set D. In the following ex-

periments, where the image processing tasks are performed

holistically, we do not use the refinement step.

5.2.1 Image Generation

In Fig. 6, we show representative examples of images gen-

erated by our technique and compare those with Santurkal

et al. [41]. We use the author-provided code for [41] and

strictly follow the guidelines to achieve the best results of

their method. In the context of adversarial attacks, the gen-

erated images are adversarial examples of the seed images.

We show two images per class, generated with the shown

seeds for the mentioned target label. Our technique is

clearly able to generate more refined and coherent images.

Notice the details in the backgrounds as well. Theoretically,

Santurkar et al. [41] used the strongest gradient-based iter-

ative adversarial attack [28] in their method. Hence, our

improved performance can be easily attributed to the model

explaining nature of the perturbations computed by the pro-

posed attack. We use the same perturbation budget η = 40
for both the techniques.

The variety in the images generated with different

seeds, their textural details and clear semantic coherence

strengthen the broader idea that robust classifiers are capa-

ble of more than simple classification [41] - a worth explor-

ing venue for the future research.

5.2.2 Inpainting

Image inpainting [4] restores information in large corrupt

regions of images while upholding the perceptual consis-

tency. We demonstrate improved inpainting performance

with robust classifiers using the proposed attack.

For this task, we treat the corrupted image as the seed,

where its corrupt region is identified as a binary mask

F ∈ {0, 1}m. Let ℑ contain the seed and samples form our

above-mentioned multivariate Gaussian distribution N (.).
Keeping the robust classifier parameters fixed, we minimize

the following loss:

L(p) = E
[

J (ℑp, ltarget) + β
(

p⊙ (1− F )
)]

, (4)

where ℑp = ℑ ⊖ p, J (.) is the cross-entropy loss of the

classifier and β = 10 is an empirically chosen scaling fac-

tor. The designed loss function allows the perturbation sig-

nal to grow freely for the corrupt region while restricting it

in the other regions.

In Fig. 7, we show representative examples of corrupt

images restored with our technique and Santurkar et al. [41]
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Figure 7. Representative inpainting results. The Masked image is the seed. Both approaches restore images using the same robust model

provided by Santurkar et al. [41]. using the same perturbation budget.

Figure 8. Representative examples of interactive image manipula-

tion. The seed is a raw image required to be manipulated into an

image of the target category. Both techniques use the same robust

classifier with perturbation budget 60, optimized for the images.

using the robust ResNet provided by the authors. We use the

same perturbation budget η = 21 for both techniques. The

restoration quality of our technique is visibly better. The

shown images and mask placements are randomly selected.

5.2.3 Interactive Image Manipulation

An interesting recent application of deep networks, espe-

cially GANs [10] is to turn crude sketches into realistic

images. Santurkar et al. [41] demonstrated the possibility

of such interactive image manipulation by attacking/fooling

robust classifiers. We advance this direction by demonstrat-

ing that our alternate objective of model explanation is more

suitable for the problem.

Using the raw sketch as the seed and creating the set

D with the multivariate Gaussian, we manipulate the seed

similar to image generation. However, this time we also

apply the refinement procedure. Representative results of

our attack are shown in Fig. 8. Compared to [41], images

generated with our technique appear much more realistic.

Such a refined manipulation of crude sketches with a clas-

sifier affirms the ability of our attack to highlight human-

meaningful visual patterns learned by the classifier.

The three low-level image processing tasks discussed

above not only demonstrate the utility of perturbations be-

yond model fooling (in general), but also ascertain that our

attack is a positive step forward in that direction.

6. Conclusion

We present the first attack on deep learning that has an

objective of explaining the model instead of fooling it. To

compute the perturbation, our attack performs a stochastic

gradient search on the cost surface of the model to increase

the log-probability of a ‘distribution’ of images to be clas-

sified as a particular target. By iterative back-projection of

the gradients and refinement with adaptive attention, our at-

tack finds geometric patterns in the perturbations that are

deemed salient by the classifier. We find that these patterns

align well with the human perception, which weakens the

argument of misalignment between human perception and

deep representation - in the context of adversarial pertur-

bations. Besides demonstrating perturbations with visually

salient features for multiple state-of-the-art classifiers, we

also perform low-level image manipulation with our tech-

nique using robust classifiers. Realistic image generation,

inpainting and interactive image manipulation ascertain the

model explaining nature of our attack, and advance the

state-of-the-art in these newly found classifier utilities.
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