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Abstract

Image retrieval methods that employ hashing or vec-

tor quantization have achieved great success by taking

advantage of deep learning. However, these approaches

do not meet expectations unless expensive label informa-

tion is sufficient. To resolve this issue, we propose the

first quantization-based semi-supervised image retrieval

scheme: Generalized Product Quantization (GPQ) net-

work. We design a novel metric learning strategy that pre-

serves semantic similarity between labeled data, and em-

ploy entropy regularization term to fully exploit inherent po-

tentials of unlabeled data. Our solution increases the gener-

alization capacity of the quantization network, which allows

overcoming previous limitations in the retrieval commu-

nity. Extensive experimental results demonstrate that GPQ

yields state-of-the-art performance on large-scale real im-

age benchmark datasets.

1. Introduction

The amount of multimedia data, including images and

videos, increases exponentially on a daily basis. Hence,

retrieving relevant content from a large-scale database has

become a more complicated problem. There have been

many kinds of fast and accurate search algorithms, and the

Approximate Nearest Neighbor (ANN) search is known to

have high retrieval accuracy and computational efficiency.

Recent ANN methods mainly focused on hashing scheme

[31], because of its low storage cost and fast retrieval speed.

To be specific, an image is represented by a binary-valued

compact hash code (binary code) with only a few tens of

bits, and it is utilized to build database and distance compu-

tation.

The methods using binary code representation can be

categorized as Binary hashing (BH) and Product Quanti-

zation (PQ) [13]. BH-based methods [34, 7, 26] employ a

hash function that maps a high-dimensional vector space to

a Hamming space, where the distance between two codes

can be measured extremely fast via bitwise XOR operation.

Figure 1. Above: an illustration of the overall framework of GPQ

and its three components: feature extractor F , PQ table Z, and

classifier C, where C contributes to build Z. Forward path shows

how the labeled and unlabeled data pass through the network, and

backward path shows the propagation of the gradients originated

from the training objectives. LN -PQ and Lcls train the network to

minimize errors using the labeled data, while LSEM trains the net-

work to simultaneously maximize and minimize entropy using the

unlabeled data. Below: a 2D conceptual Voronoi diagram show-

ing one of the codebooks in GPQ. After training, all codewords

are evenly distributed, and both labeled and unlabeled data points

are clustering around them.

However, BH has a limitation in describing the distance be-

tween data points because it can produce only a limited

number of distinct values. PQ, which is a kind of vector

quantization [8], has been introduced to alleviate this prob-

lem in information retrieval [13, 6, 15].

To perform PQ, we first need to decompose the input

feature space into a Cartesian product of several disjoint

subspaces (codebooks) and find the centroid (codeword) of

each subspace. Then, from the sub-vectors of the input fea-

ture vector, sub-binary code is obtained by replacing each

sub-vector with the index of the nearest codeword in the

codebook. Since codeword consists of real numbers, PQ

allows asymmetric distance calculation in real space using
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the binary codes, making many PQ-based approaches out-

perform BH-based ones.

Along with millions of elaborately labeled data, deep

hashing for both BH [35, 18, 11, 12, 14] and PQ [2,

19, 38, 16] has been introduced to take advantage of deep

representations for image retrieval. By employing super-

vised deep neural networks, deep hashing outperforms con-

ventional ones on many benchmark datasets. Neverthe-

less, there still is a great deal of potential for improvement,

since a significant amount of unlabeled data with abundant

knowledge is not utilized. To resolve these issue, some

recent methods are considering the Deep Semi-Supervised

Hashing, based on BH [40, 36, 10]. However, even if PQ

generally outperforms BH for both supervised and unsuper-

vised settings, it has not yet been considered for learning

in a semi-supervised manner. In this paper, we propose

the first PQ-based deep semi-supervised image retrieval ap-

proach: Generalized Product Quantization (GPQ) network,

which significantly improves the retrieval accuracy with lots

of image data and just a few labels per category (class).

Existing deep semi-supervised BH methods construct

graphs [40, 36] or apply additional generative models [10]

to encode unlabeled data into the binary code. However,

due to the fundamental problem in BH; a deviation that oc-

curs when embedding a continuous deep representation into

a discrete binary code restricts extensive information of un-

labeled data. In our GPQ framework, this problem is solved

by including quantization process into the network learning.

We adopt intra-normalization [1] and soft assignment [38]

to quantize real-valued input sub-vectors, and introduce an

efficient metric learning strategy; N-pair Product Quan-

tization loss inspired from [28]. By this, we can embed

multiple pair-wise semantic similarity between every fea-

ture vectors in a training batch into the codewords. It also

has an advantage of not requiring any complex batch con-

figuration strategy to learn pairwise relations.

The key point of deep semi-supervised retrieval is to

avoid overfitting to labeled data and increase the generaliza-

tion toward unlabeled one. For this, we suggest a Subspace

Entropy Mini-max Loss for every codebook in GPQ, which

regularizes the network using unlabeled data. Precisely, we

first learn a cosine similarity-based classifier, which is com-

monly used in few-shot learning [27, 32]. The classifier has

as many weight matrices as the number of codebooks, and

each matrix contains class-specific weight vector, which can

be regarded as a sub-prototype that indicates class repre-

sentative centroid of each codebook. Then, we compute

the entropy between the distributions of sub-prototypes and

unlabeled sub-vectors by measuring their cosine similar-

ity. By maximizing the entropy, the two distributions be-

come similar, allowing the sub-prototypes to move closer

to the unlabeled sub-vectors. At the same time, we also

minimize the entropy of the distribution of the unlabeled

sub-vectors, making them assemble near the moved sub-

prototypes. With the gradient reversal layer generally used

for deep domain adaptation [5, 24], we are able to simul-

taneously minimize and maximize the entropy during the

network training.

In summary, the main contributions of our work are as

follows:

• To the best of our knowledge, our work is the first deep

semi-supervised PQ scheme for image retrieval.

• With the proposed metric learning strategy and entropy

regularization term, the semantic similarity of labeled

data is well preserved into the codewords, and the un-

derlying structure of unlabeled data can be fully used

to generalize the network.

• Extensive experimental results demonstrate that our

GPQ can yield the state-of-the-art retrieval results in

semi-supervised image retrieval protocols.

2. Related Work

Existing Hashing Methods Referring to the survey [31],

early works in Binary Hashing (BH) [34, 7, 26, 30] and

Product Quantization (PQ) [13, 6, 15, 9, 21, 37, 29] mainly

focused on unsupervised settings. Specifically, Spectral

Hashing (SH) [34] considered correlations within hash

functions to obtain balanced compact codes. Iterative Quan-

tization (ITQ) [7] addressed the problem of preserving the

similarity of original data by minimizing the quantization

error in hash functions. There were several studies to im-

prove PQ, for example, Optimized Product Quantization

(OPQ) [6] tried to improve the space decomposition and

codebook learning procedure to reduce the quantization er-

ror. Locally Optimized Product Quantization (LOPQ) [15]

employed a coarse quantizer with locally optimized PQ to

explore more possible centroids. These methods might re-

veal some distinguishable results, however, they still have

disadvantage of not exploiting expensive label signals.

Deep Hashing Methods After Supervised Discrete Hash-

ing (SDH) [26] has shown the capability to improve using

labels, supervised Convolutional Neural Network (CNN)-

based BH approaches [35, 18, 11, 12, 14]are leading the

mainstream. For examples, CNN Hashing (CNNH) [35]

utilized a CNN to simultaneously learn feature represen-

tation and hash functions with the given pairwise similar-

ity matrix. Network in Network Hashing (NINH) [18] in-

troduced a sub-network, divide-and-encode module, and a

triplet ranking loss for the similarity-preserving hashing. A

Supervised, Structured Binary Code (SUBIC) [11], used

a block-softmax nonlinear function and computed batch-

based entropy error to embed the structure into a binary
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form. There also have been researches on supervised learn-

ing that uses PQ with CNN [2, 19, 38, 16]. Precisely, Deep

Quantization Network (DQN) [2] simultaneously optimizes

a pairwise cosine loss on semantic similarity pairs to learn

feature representations and a product quantization loss to

learn the codebooks. Deep Triplet Quantization (DTQ) [19]

designed a group hard triplet selection strategy and trained

triplets by triplet quantization loss with weak orthogonality

constraint. Product Quantization Network (PQN) [38] ap-

plied the asymmetric distance calculation mechanism to the

triplets and exploited softmax function to build a differen-

tiable soft product quantization layer to train the network

in an end-to-end manner. Our method is also based on PQ,

but we try a semi-supervised PQ scheme that had not been

considered previously.

Deep Semi-supervised Image Retrieval Assigning labels

to images is not only expensive but also has the disadvan-

tage of restricting the data structure to the labels. Deep

semi-supervised hashing based on BH is being considered

in the image retrieval community to alleviate this problem,

with the use of a small amount of labeled data and a large

amount of unlabeled data. For example, Semi-supervised

Deep Hashing (SSDH) [40] employs an online graph con-

struction strategy to train a network using unlabeled data.

Deep Hashing with a Bipartite Graph (BGDH) [36] im-

proved SSDH by using the bipartite graph, which is more

efficient in building a graph and learning the embeddings.

Since Generative Adversarial Network (GAN) had been

used for BH and showed good performance as in [14],

Semi-supervised Generative Adversarial Hashing (SSGAH)

also employed the GAN to fully utilize triplet-wise infor-

mation of both labeled and unlabeled data. In this paper, we

propose GPQ, the first deep semi-supervised image retrieval

method applying PQ. In our work, we endeavor to general-

ize the whole network by preserving the semantic similar-

ity with N-pair Product Quantization loss and extracting the

underlying structure of unlabeled data with the Subspace

Entropy Mini-max loss.

3. Generalized Product Quantization

Given a dataset X that is composed of individual im-

ages, we split this into two subsets as a labeled dataset

XL = {(ILi , yi)|i = 1, ..., NL} and an unlabeled dataset

XU = {IUi |i = 1, ..., NU} to establish a semi-supervised

environment. The goal of our work is learning a quantiza-

tion function q : I → b̂ ∈ {0, 1}B which maps a high-

dimensional input I to a compact B-bits binary code b̂, by

utilizing both labeled and unlabeled datasets. We propose a

semi-supervised deep hashing framework: GPQ, which in-

tegrates q into the deep network as a form of Product Quan-

tization (PQ) [13] to learn the deep representations and the

codewords jointly. In the learning process, we aim to pre-

serve the semantic similarity of labeled data and simultane-

ously explore the structures of unlabeled data to obtain high

retrieval accuracy.

GPQ contains three trainable components: 1) a standard

deep convolutional neural network-based feature extractor

F , e.g. AlexNet [17], CNN-F [3] or modified version of

VGG [12] to learn deep representations; 2) a PQ table Z
that collects codebooks which are used to map an extracted

feature vector to a binary code; 3) a cosine similarity-based

classifier C to classify both labeled and unlabeled data.

GPQ network is designed to train all these components in

an end-to-end manner. In this section, we will describe each

component and how GPQ is learned in a semi-supervised

way.

3.1. Semi­Supervised Learning

The feature extractor F generates D-dimensional feature

vector x̂ ∈ RD. Under semi-supervised learning condition,

we aim to train the F to extract discriminative x̂L and x̂U

from labeled image IL and unlabeled image IU , respec-

tively. Also, we leverage the PQ concept to utilize these

feature vectors for image retrieval, which requires appropri-

ate codebooks with distinct codewords to replace and store

the feature vectors. We introduce three training objectives

for our GPQ approach to fully exploit the data structure of

labeled and unlabeled images, and we illustrate a concep-

tual visualization of each loss function in Figure 2 for better

understanding.

Following the observation of [27, 32, 38, 19], we nor-

malize the feature vectors and constrain them on a unit

hypersphere to focus on the angle rather than the magni-

tude in measuring the distance between two different vec-

tors. In this way, every data is mapped to the nearest class

representative direction, and better performs for the semi-

supervised scheme because the distribution divergence be-

tween labeled and unlabeled data can be reduced within the

constraint. Especially for PQ, we apply intra-normalization

[1] for a feature vector x̂ by dividing it into M -sub-vectors

x̂ = [x1, ...,xM ], where xm ∈ Rd, d = D/M , and l2-

normalize each sub-vector as: xm ← xm/||xm||2. In the

rest of the paper, x̂ for GPQ denotes the intra-normalized

feature vector.

N-pair Product Quantization The PQ table Z collects M -

codebooks Z = [Z1, ...,ZM ] and each codebook has K-

codewords Zm = [zm1, ..., zmK ] where zmk ∈ Rd, which

are used to replace x̂ with the quantized vector q̂. Every

codeword is l2-normalized to simplify the measurement of

cosine similarity as multiplication. We employ the soft as-

signment sm(·) [38] to obtain a qm from xm as:
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Figure 2. A two class (+: blue, −: orange) visualized examples of our training objectives. 1) The left part shows the learning process

of N-pair Product Quantization loss LN -PQ. When we define an anchor as x̂+

1 , the semantically similar points (q̂+

1 , x̂
+

4 , q̂
+

4 ) are pulled

together while the semantically dissimilar points (x̂−

2 , q̂
−

2 , x̂
−

3 , q̂
−

3 ) are pushing the anchor. 2) The right part shows the learning process

of classification loss Lcls and subspace entropy mini-max loss LSEM . For the data points constrained on the unit hypersphere, the cross

entropy of labeled data points is minimized to find prototypes (white stars). Then, the entropy between the prototypes and the unlabeled

data points is maximized to move prototypes toward unlabeled data points and find new prototypes (yellow stars). Finally, the entropy of

the unlabeled data points is minimized to cluster them near the new prototypes.

qm =
K
∑

k

e−α(xm·zmk)

∑K

k′ e−α(xm·z
mk′ )

zmk (1)

where α represents a scaling factor to approximate hard as-

signment, and qm = sm(xm;α,Zm) is the sub-quantized

vector of q̂ = [q1, ...,qM ]. We multiply xm with the every

codeword in Zm to measure the cosine similarity between

them.

Quantization error occurs through the encoding process;

therefore, we need to find the codewords that will mini-

mize the error. In addition, the conventional PQ scheme

has a limitation that it ignores label information since the

sub-vectors are clustered to find codewords without any su-

pervised signals. To fully exploit the semantic labels and

reduce the quantization error, we revise the metric learning

strategy proposed in [28] from N-pair Product Quantization

loss: LN -PQ to learn the F and Z, and set it as one of the

training objectives.

Deep metric learning [33, 25] aims to learn an embed-

ding representation of the data with the semantic labels.

From a labeled image IL, we can generate a unique fea-

ture vector x̂L and its nearest quantized vector q̂L, which

can be regarded as sharing the same semantic informa-

tion. Thus, for randomly sampled B training examples

{(IL1 , y1), ..., (I
L
B , yB)}, the objective function which is

based on a standard cross entropy loss LCE , can be for-

mulated as:

LN -PQ =
1

B

B
∑

b=1

LCE(Sb,Yb) (2)

where Sb =
[

(x̂L
b )

T q̂L
1 , ..., (x̂

L
b )

T q̂L
B

]

denotes a cosine

similarity between b-th feature vector and every quantized

vector, and Yb =
[

(yb)
Ty1, ..., (yb)

TyB

]

denotes a sim-

ilarity between b-th label and every label in a batch. In

this case, y represents one-hot-encoded semantic label, and

column-wise normalization is applied to YB . LN -PQ has

an advantage in that no complicated batch construction

method is required, and it also allows us to jointly learn

the deep feature representation for both feature vectors and

the codewords on the same embedding space.

Cosine Similarity-based Classification To embed se-

mantic information into the codewords while reducing

correlation between each codebook, we learn a cosine

similarity-based classifier C containing M -weight matrices

[W1, ...,WM ], where each matrix includes sub-prototypes

as Wm = [cm1, ..., cmNc ], Wm ∈ Rd×Nc

and N c is the

number of class. Every sub-prototype is l2-normalized to
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hold a class-specific angular information. With the m-th

sub-vector xL
m of xL and m-th weight matrix Wm, we can

obtain the labeled class prediction as: pL
m = WT

mxL
m. We

use LCE again to train the F and C for classification using

p̂L = [pL
1 , ...,p

L
M ] computed from xL with the correspond-

ing semantic label y as:

Lcls =
1

M

M
∑

m=1

LCE(β · p
L
m, y) (3)

where β is a scaling factor and y is a label corresponding

to xL. This classification loss ensures the feature extractor

to generate the discriminative features with respect to the

labeled examples. In addition, each weight matrix in the

classifier is derived to include the class-specific representa-

tive sub-prototypes of related subspace.

Subspace Entropy Mini-max On the assumption that the

distribution is not severely different between the labeled

data and the unlabeled data, we aim to propagate the gra-

dients derived from the divergence between them. To cal-

culate the error arising from the distribution difference, we

adopt an entropy in information theory. In particular for

PQ setting, we compute the entropy for each subspace to

balance the amount of gradients propagating into each sub-

space. With the m-th sub-vector xU
m of the unlabeled fea-

ture vector xU , and the m-th weight matrix of C that em-

braces sub-prototypes, we can obtain a class prediction us-

ing cosine similarity as: pU
m = WT

mxU
m. By using it, the

subspace entropy mini-max loss is calculated as:

LSEM = −
1

M

M
∑

m=1

Nc

∑

l=1

(β · pUml) log(β · p
U
ml) (4)

where β is the same as that in Equation 3 and pUml de-

notes the probability of prediction to k′-th class; l-th ele-

ment of pU
m. The generalization capacity of the network

can increase by maximizing the LSEM because high en-

tropy ensures that the sub-prototypes are regularized toward

unlabeled data. Explicitly, entropy maximization makes

sub-prototypes have a similar distribution with the unla-

beled sub-vectors, moving sub-prototypes near the unla-

beled sub-vectors. To further improve, we aim to clus-

ter unlabeled sub-vectors near the moved sub-prototype,

by applying gradient reversal layer [5, 24] before intra-

normalization. Flipped gradients induce F to be learned

in the direction of minimizing the entropy, resulting in a

skewed distribution of unlabeled data.

From the Equations 2 to 4, total objective function LT

for B randomly sampled training pairs of IL and IU , can

be formulated as:

LT (B) = LN -PQ +
1

B

B
∑

b=1

(λ1Lcls − λ2LSEM ) (5)

where B = {(IL1 , y1, I
U
1 ), ..., (ILB , yB , I

U
B )} and λ1 and λ2

are the hyper-parameters that balance the contribution of

each loss function. We force training optimizer to mini-

mize the LT , so that the LN−PQ and Lcls is minimized

while the LSEM is maximized, simultaneously. In this

way, F can learn the deep representation of both labeled

and unlabeled data. However, to make the codewords ro-

bust against unlabeled data, it is necessary to reflect the

unlabeled data signals directly into Z. Accordingly, we

apply another soft assignment to embed sub-prototype in-

telligence of Wm into the of m-th codebook by updating

codewords as z′mk = sm (zmk;α,Wm). As a result, high

retrieval performance can be expected by exploiting the po-

tential of unlabeled data for quantization.

3.2. Retrieval

Building Retrieval Database After learning the entire

GPQ framework, we can build a retrieval database using

images in XU . Given an input image IR ∈ XU , we first

extract x̂R from F . Then, we find the nearest codeword

zmk∗ of each sub-vector xR
m from the corresponding code-

book Zm, by computing the cosine similarity. After that,

formatting a index k∗ of the nearest codeword as binary to

generate a sub-binary code bR. Finally, concatenate all the

sub-binary codes to obtain a M · log2(K)-bits binary code

b̂R, where b̂R = [bR
1 , ...,b

R
M ]. This procedure is repeated

for all images to store them as binary, and Z is also stored

for distance calculation.

Asymmetric Search For a given query image IQ, x̂Q is

extracted from F . To conduct the image retrieval, we take

the m-th sub-vector xQ
m as an example, compute the cosine

similarity between xQ
m and every codeword belonging to the

m-th codebook, and store measured similarities on the look-

up-table (LUT). Similarly, the same operation is done for

the other sub-vectors, and the results are also stored on the

LUT. The distance between the query image and a binary

code in the database can be calculated asymmetrically, by

loading the pre-computed distance from the LUT using a

sub-binary codes, and aggregating all the loaded distances.

4. Experiments

We evaluate GPQ for two semi-supervised image re-

trieval protocols against several hashing approaches. We

conduct experiments on the two most popular image re-

trieval benchmark datasets. Extensive experimental results

show that GPQ achieves superior performance to existing

methods.

3424



4.1. Setup

Evaluation Protocols and Metrics Following the semi-

supervised retrieval experiments in [40, 36, 10], we adopt

two protocols as follows.

- Protocol 1: Single Category Image Retrieval Assuming

all categories (classes) used for image retrieval are known

and only a small number of label data is provided for each

class. The labeled data is used for training, and the unla-

beled data is used for building the retrieval database and

the query dataset. In this case, labeled data and the unla-

beled data belonging to the retrieval database are used for

semi-supervised learning.

- Protocol 2: Unseen Category Image Retrieval In line

with semi-supervised learning, suppose that the informa-

tion of the categories in the query dataset is unknown, and

consider building a retrieval database using both known

and unknown categories. For this situation, we divide im-

age dataset into four parts: train75, test75, train25, and

test25, where train75 and test75 are the data of 75% cat-

egories, while train25 and test25 are the data of the re-

maining 25% categories. We use train75 for training,

train25 and test75 for the retrieval database, and test25

for the query dataset. In this case, train75 with labels,

and train25, test75 without labels are used for semi-

supervised learning.

The retrieval performance of hashing method is measured

by mAP (mean Average Precision) with bit lengths of 12,

24, 32, and 48 for all images in the query dataset. In par-

ticular, we set Protocol 1 as the primary experiment and

observe the contribution of each training objective.

Datasets We set up two benchmark datasets, different for

each protocol as shown in the Table 1, and each dataset is

configured as follows.

- CIFAR-10 is a dataset containing 60,000 color images

with the size of 32×32. Each image belongs to one of 10

categories, and each category includes 6,000 images.

- NUS-WIDE [4] is a dataset consisting nearly 270,000

color images with various resolutions. Images in the

dataset associate with one or more class labels of 81 se-

mantic concepts. We select the 21 most frequent concepts

for experiments, where each concept has more than 5,000

images, with a total of 169,643.

CIFAR-10 NUS-WIDE

Protocol 1 Protocol 2 Protocol 1 Protocol 2

Query 1,000 9,000 2,100 35,272

Training 5,000 21,000 10,500 48,956

Retrieval

Database
54,000 30,000 157,043 85,415

Table 1. Detailed composition of two benchmark datasets.

Implementation Details We implement our GPQ based on

the Tensorflow framework and perform it with a NVIDIA

Titan XP GPU. When it comes to conducting experiments

on non-deep learning-based hashing methods [34, 7, 26, 13,

6, 15], we utilize hand-crafted features as inputs following

[18], extracting 512-dimensional GIST [22] features from

CIFAR-10 images, and 500-dimensional bag-of-words fea-

tures from NUS-WIDE images. For deep hashing methods

[35, 18, 11, 2, 19, 38, 40, 36, 10], we use raw images as

inputs and adopt ImageNet pretrained AlexNet [17] and

CNN-F [3] as the backbone architectures to extract the deep

representations. Since AlexNet and CNN-F significantly

downsample the input image at the first convolution layer,

they are inadequate especially for small images. Therefore,

we employ modified VGG architecture proposed in [12] as

the baseline architecture for feature extractor of GPQ. For

a fair comparison, we also employ CNN-F to evaluate our

scheme (GPQ-F), and details will be discussed in the sec-

tion 4.2.

With regard to network training, we adopt ADAM al-

gorithm to optimize the network, and apply exponential

learning rate decay with the initial value 0.0002 and the

β1 = 0.5. We configure the number of labeled and unla-

beled images equally in the learning batch. To simplify the

experiment, we set several hyper-parameters as follows: the

scaling factors α and β are fixed for 20 and 4 respectively,

the codeword number K is fixed at 24 while M is adjusted

to handle multiple bit lengths, and the dimension d of the

sub-vector xm is fixed at 12. Detail analysis of these hyper-

parameters is shown in the supplementary. We will make

our code publicly open for further research and comparison.

4.2. Results and Analysis

Overview Experimental results for protocol 1 and proto-

col 2 are shown in Tables 2 and 3, respectively. In each

Table, the methods are divided into several basic concepts

and listed by group. We investigate the variants of GPQ for

ablation study, and the results can be seen in Figures 3 to

5. From the results, we can observe that our GPQ scheme

outperforms other hashing methods, demonstrating that the

proposed loss functions effectively improve the GPQ net-

work by training it in a semi-supervised fashion.

Comparison with Others As shown in Table 2, the pro-

posed GPQ performs substantially better over all bit lengths

than compared methods. Specifically, when we averaged

mAP scores for all bit lengths, GPQ are 4.8%p and 4.6%p

higher than the previous semi-supervised retrieval methods

on CIFAR-10 and NUS-WIDE respectively. In particular,

the performance gap is more pronounced as the number of

bits decreases. This tendency is intimately related to the

baseline hashing concepts. Comparing the results of the

PQ-based and BH-based methods, we can identify that PQ-
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Concept Method
CIFAR-10 NUS-WIDE

12-bits 24-bits 32-bits 48-bits 12-bits 24-bits 32-bits 48-bits

Deep Semi-supervised

GPQ (Ours) 0.858 0.869 0.878 0.883 0.852 0.865 0.876 0.878

SSGAH [10] 0.819 0.837 0.847 0.855 0.838 0.849 0.863 0.867

BGDH [36] 0.805 0.824 0.826 0.833 0.810 0.821 0.825 0.829

SSDH [40] 0.801 0.813 0.812 0.814 0.783 0.788 0.791 0.794

Deep Quantization

PQN [38] 0.795 0.819 0.823 0.830 0.803 0.818 0.822 0.824

DTQ [19] 0.785 0.789 0.790 0.792 0.791 0.798 0.808 0.811

DQN [2] 0.527 0.551 0.558 0.564 0.764 0.778 0.785 0.793

Deep Binary Hashing

SUBIC [11] 0.635 0.689 0.713 0.721 0.652 0.783 0.792 0.796

NINH [18] 0.600 0.667 0.689 0.702 0.597 0.627 0.647 0.651

CNNH [35] 0.496 0.580 0.582 0.583 0.536 0.522 0.533 0.531

Product Quantization

LOQP [15] 0.279 0.324 0.366 0.370 0.436 0.452 0.463 0.468

OPQ [6] 0.265 0.315 0.323 0.345 0.429 0.433 0.450 0.458

PQ [13] 0.237 0.265 0.268 0.266 0.398 0.406 0.413 0.422

Binary Hashing

SDH [26] 0.255 0.330 0.344 0.360 0.414 0.465 0.451 0.454

ITQ [7] 0.158 0.163 0.168 0.169 0.428 0.430 0.432 0.435

SH [34] 0.124 0.125 0.125 0.126 0.390 0.394 0.393 0.396

Table 2. The mean Average Precision (mAP) scores of different hashing algorithms on experimental protocol 1.
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Figure 3. The comparison results of GPQ and its variants.

based ones are generally superior for both deep and non-

deep cases especially for smaller bits. This is because un-

like BH, PQ-based methods have the codewords of real val-

ues which enable mitigating the deviations generated dur-

ing the encoding time, and they also allow more diverse

distances through asymmetric calculation between database

and query inputs. For the same reason, PQ-based GPQ with

these advantages is able to achieve the state-of-the-art re-

sults in semi-supervised image retrieval.

Ablation Study To evaluate the contribution and impor-

tance of each component and training objectives in GPQ,

we build three variants: 1) replace the feature extractor F
with CNN-F [3] for GPQ-F; 2) remove the classifier C and

learn the network only with the PQ table Z for GPQ-H;

3) exchange the N-pair Product Quantization loss LN -PQ

with a standard Triplet loss [25] for GPQ-T. We perform

retrieval experiments on protocol 1 for these variants, and

empirically determine the sensitivity of GPQ .

The mAP scores of these variants and the original GPQ

are reported in Figure 3. In this experiment, the hyper-

parameters are all set identically as defaults in section

4.1, and the balancing parameter λ1 and λ2 are all set to

0.1. GPQ-F employs all the training objectives and shows

the best mAP scores. It even outperforms other semi-
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Figure 4. The sensitivity investigation of two balancing parame-

ters: λ1 and λ2.

supervised retrieval methods including SSGAH [10] in all

experimental settings of protocol 1.

However, the modified VGG-based [12] original GPQ is

superior to GPQ-F on both datasets. It reverses the gen-

eral idea that CNN-F with more trainable parameters would

have higher generalization capacity. This happens because

high complexity does not always guarantee performance

gains, same as the observations in [39]. Therefore, in-

stead of increasing the network complexity, we focus on

network structures that can extract more general features,

and it results in high retrieval accuracy especially for semi-

supervised situation.

To determine the contributions of Classification lossLcls

and Subspace Entropy Mini-max loss LSEM , we carry out

experiments with varying the balancing parameters of each

loss function λ1 and λ2, respectively. GPQ-H is equivalent

to both λ1 and λ2 being zero, and the result is reported in

Figure 3. Experimental results for the different options for

λ1 and λ2 are detailed in Figure 4 for the bit lengths of 12

and 48. In general, high accuracy is achieved when the in-

fluences of Lcls and LSEM are similar, and optimal results

are obtained when both of two balancing parameters are set

to 0.1 for 12 and 48 bit lengths.

In order to investigate the effect of the proposed metric

learning strategy, we substitute N-pair Product Quantiza-
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(a) GPQ-T (b) GPQ-H (c) GPQ

Figure 5. The t-SNE visualization of deep representations learned by GPQ-T, GPQ-H and GPQ on CIFAR-10 dataset respectively.

Concept Method
CIFAR-10 NUS-WIDE

12-bits 24-bits 32-bits 48-bits 12-bits 24-bits 32-bits 48-bits

Deep Hashing

GPQ (Ours) 0.321 0.333 0.350 0.358 0.554 0.565 0.578 0.586

SSGAH [10] 0.309 0.323 0.341 0.339 0.539 0.553 0.565 0.579

SSDH [40] 0.285 0.291 0.311 0.325 0.510 0.533 0.549 0.551

NINH [18] 0.241 0.249 0.253 0.272 0.484 0.483 0.485 0.487

CNNH [35] 0.210 0.225 0.227 0.231 0.445 0.463 0.471 0.477

CNN features +

non-Deep Hashing

SDH [26] 0.185 0.193 0.199 0.213 0.471 0.490 0.489 0.507

ITQ [7] 0.157 0.165 0.189 0.201 0.488 0.493 0.508 0.503

LOPQ [15] 0.134 0.127 0.126 0.124 0.416 0.386 0.380 0.379

OPQ [6] 0.107 0.119 0.125 0.138 0.341 0.358 0.371 0.373

Table 3. The mean Average Precision scores (mAP) of different hashing algorithms on experimental protocol 2.

tion loss with triplet loss and visualize each result in Figure

5. While learning GPQ-T, the margin value is fixed at 0.1,

and anchor, positive and negative pair are constructed us-

ing quantized vectors of different images. We utilize t-SNE

algorithm [20] to examine the distribution of deep repre-

sentations extracted from 1,000 images for each category in

CIFAR-10. From the Figure where each color represents a

different category, we can observe that GPQ better separates

the data points.

Transfer Type Retrieval Following the transfer type in-

vestigation proposed in [23], we conduct experiments un-

der protocol 2. Datasets are divided into two partitions

of equal size, each of which is assigned to train-set and

test-set, respectively. To be specific with each dataset,

CIFAR-10 takes 7 categories and NUS-WIDE takes 15 cat-

egories to construct train75 and test75, and the rest cate-

gories for train25 and test25 respectively. For further com-

parison with hashing methods of non-deep learning concept

[26, 7, 15, 6], we employ 7-th fully-connected features of

pre-trained AlexNet as inputs and conduct image retrieval.

As we can observe in table 3, the average mAP score de-

creased compared to the results in protocol 1, because the

label information of unseen categories disappears. In conse-

quence, there is a noticeable mAP drop in supervised-based

schemes, and the performance gap between the supervised

and unsupervised learning concepts decreased. However,

our GPQ method still outperforms other hashing methods.

This is because, in GPQ, labeled information of known cat-

egories is fully exploited to learn the discriminative and ro-

bust codewords via metric learning algorithm, and at the

same time, unlabeled data is fully explored to generalize

the overall architecture through entropy control of feature

distribution.

5. Conclusion

In this paper, we have proposed the first quantiza-

tion based deep semi-supervised image retrieval technique,

named Generalized Product Quantization (GPQ) network.

We employed a metric learning strategy that preserves se-

mantic similarity within the labeled data for the discrimina-

tive codebook learning. Further, we compute an entropy for

each subspace and simultaneously maximize and minimize

it to embed underlying information of the unlabeled data for

the codebook regularization. Comprehensive experimental

results justify that the GPQ yields state-of-the-art perfor-

mance on large-scale image retrieval benchmark datasets.
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