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Abstract

We address the challenging task of occlusion-aware in-

door 3D scene understanding. We represent scenes by a set

of planes, where each one is defined by its normal, offset and

two masks outlining (i) the extent of the visible part and (ii)

the full region that consists of both visible and occluded parts

of the plane. We infer these planes from a single input image

with a novel neural network architecture. It consists of a two-

branch category-specific module that aims to predict layout

and objects of the scene separately so that different types of

planes can be handled better. We also introduce a novel loss

function based on plane warping that can leverage multiple

views at training time for improved occlusion-aware reason-

ing. In order to train and evaluate our occlusion-reasoning

model, we use the ScanNet dataset [1] and propose (i) a

strategy to automatically extract ground truth for both visi-

ble and hidden regions and (ii) a new evaluation metric that

specifically focuses on the prediction in hidden regions. We

empirically demonstrate that our proposed approach can

achieve higher accuracy for occlusion reasoning compared

to competitive baselines on the ScanNet dataset, e.g. 42.65%
relative improvement on hidden regions.

1. Introduction

Reasoning about occlusions occurring in the 3D world is

an ability at which human visual perception excels. While

we develop an understanding for the concept of object per-

manence already as toddlers, for instance by playing peek-a-

boo, it is a very challenging skill for machine intelligence to

acquire, since it requires strong contextual and prior knowl-

edge about objects and scenes. This is particularly true for

indoor scenes where the composition of objects and scenes is

highly complex and leads to numerous and strong occlusions.

And while several works exist that investigate this problem

for outdoor scenes [5, 13, 24], there has been comparatively

little work for indoor scenes. But indoor applications that

can potentially benefit from occlusion reasoning are ample,

like robot navigation or augmented reality.

∗Part of this work was conducted during a summer internship at NEC

Laboratories America.
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Figure 1: Given a single image as input, our model predicts

planes to describe both visible and occluded areas of the

scene with separate branches for objects and layout (top).

This model can be used for occlusion reasoning and novel

view synthesis (bottom).

To address the problem of occlusion reasoning, the first

step is to find a suitable representation to describe scenes.

Prior work has explored several representations like 3D

bounding boxes for objects [4, 28] or voxels [19]. How-

ever, the former representation is rather coarse for general

objects and is not suitable for scene layouts, while the latter

has a significant memory footprint. Most recently, layered

depth images (LDI) [18] have been leveraged for predicting

scene geometry in occluded areas [3, 22], which was also

extended to the object level [2]. We rely on planes as another

promising representation that shows several benefits over

the aforementioned ones. Planes can compactly describe

scenes in a semi-parametric way: each plane is defined by

a normal vector, an offset and a (non-parametric) mask to
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outline its extent. Liu et al. [10] have recently demonstrated

these benefits with their Plane-RCNN model, but it focuses

mainly on the visible part of the scene.

In this work, we extend Plane-RCNN [10] to infer a full

scene representation that also reasons about hidden areas

of the input scene. Starting with a Plane-RCNN model that

predicts both the visible and occluded extent of each plane,

we propose a novel network architecture that separates the

prediction of planes based on semantics, see Sec. 3.2. Given

the often stark difference in size and shape of planes on

“foreground” objects, like chairs or tables, and planes on

“background” stuff, like walls, separating the predictions

lowers output space variations and thus eases network op-

timization. With our proposed merging strategy, this novel

architecture design significantly boosts performance, par-

ticularly in hidden areas. Finally, we also present a novel

objective that is based on warping planes from one view

to another to obtain a training signal if multi-view input is

available, which additionally improves performance. Fig. 1

gives an overview of our approach.

In order to train such a model, however, training data

is required that contains ground truth about the geometry

and semantics in occluded areas. While several synthetic

datasets exist where full 3D information can be extracted [27,

20], no dataset with real images exists that provides such

ground truth. In this work, we demonstrate how to process

the ScanNet dataset [1] such that approximate but reliable

ground truth for the problem of occlusion reasoning can be

generated, which we will make publicly available.1

While we follow the standard evaluation proposed in

Plane-RCNN [10], average precision (AP), for the visible

part of planes, we found that it does not well capture the

impact of predictions in the hidden part. For this reason,

we propose a novel metric, average precision hidden (APH),

which is specifically designed for occluded areas and de-

scribed in Sec. 3.3.

Our results on the ScanNet dataset with our newly gener-

ated annotations show that each component of our approach

aids in better occlusion reasoning. Our model is competitive

with Plane-RCNN [10] for foreground areas and outperforms

strong baselines in occluded areas, see Sec. 4.

To summarize, our contributions are:

• Extend Plane-RCNN [10] to predict the occluded part of

planes in indoor scenes

• A novel network architecture (DualRPN) and training

objective (plane-warp) specifically designed for the task

of occlusion reasoning.

• Approximate ground truth of semantics and geometry in

occluded areas generated automatically from the ScanNet

dataset.

• An evaluation metric designed to analyze the prediction

quality of occlusions.

1Available at: www.nec-labs.com/˜mas/peekaboo/

2. Related Work

We focus our discussion of related work specifically on

occlusion reasoning in scene understanding.

Depth-ordering: Representing objects in an amodal fash-

ion (e.g., 3d boxes) and assigning them an ordering based

on depth is a simple way to reason about occlusions. For

instance, Yang et al. [26] explore layered representations to

express relative order. Specifically, an image will be decom-

posed into multiple regions and each region is associated

with its semantic class and relative order [21]. The main

problem lies in how to generate high quality semantically

complete and meaningful regions. An exemplar-based detec-

tor is utilized in [21] and other instance-level detection meth-

ods can also be applied when occlusion reasoning happens

among foreground objects. In contrast, our model is more

generic since we work on both object and background/stuff

classes and can be extended to unseen classes. Moreover, our

representation is more complete since we provide absolute

depth rather than just relative order.

Layout estimation: Many prior works have tried to esti-

mate the layout of a scene, both for outdoor [5, 9, 24] as

well as indoors [7, 8, 23]. The layout is typically described

by a parametric model, e.g., a cube for indoor rooms [8]

or by more complex attributes for outdoor scenes [5, 24].

All these works naturally address occlusion reasoning since

most scenes also contain foreground objects that occlude

the scene layout. In contrast, our work addresses both fore-

ground objects and the scene layout simultaneously.

Explicit representations for occlusion reasoning: An-

other direction that addresses the occlusion reasoning prob-

lem more directly is via predicting multiple depth and/or

semantic segmentation maps. Many works have been pro-

posed for completing depth with RGB-D input, including

ones that employ optimization of the Mumford-Shah func-

tional [12], background surface extrapolation [14] or deep-

learning based inpainting [17]. Similar works [3, 22] rely

on Layer Depth Images (LDI) by Shade et al. [18]. While

these methods separate foreground and background with two

distinct depth maps (and segmentation maps), multiple oc-

clusions of foreground objects are not representable. Most

recently, Dhamo et al. [2], successfully addressed this issue

by combining LDIs with the concept of object detection

frameworks [16]. One limitation of [2] is that the definition

of foreground objects is bound by the availability of object

detection datasets, whereas our proposed approach is more

generic and can generalize to arbitrary objects in a scene.

Plane-based representations: Planes are an alternative

representation of scenes, which have shown to be promis-

ing [10, 11, 25] due to their compactness and flexibility.

Essentially, each plane in the scene can be described by

a normal vector and an offset along with a mask that out-

lines the extent of the plane. Both [11] and [25] reconstruct
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(a) (b) (c) (d)

Figure 2: An illustration of our plane representation: (a)

complete layout masks (b) visible layout masks (c) complete

object masks (d) visible object masks. Separately showing

layout and object planes is for better visualization.

scenes as piecewise planar depthmap from a single RGB

image but are limited by the need to define a maximum num-

ber of planes. Very recently, Liu et al. [10] have proposed

Plane-RCNN, which is a deep-learning based model to pre-

dict a full scene description based on planes. Similar to [2],

Plane-RCNN leverages an object detection framework [16]

to predict an arbitrary number of planes. In this work, we

extend Plane-RCNN to explicitly do occlusion reasoning

with a plane representation, which are very suitable since

planes naturally extend to occluded areas.

3. Our Approach

In this section, we introduce our proposed approach for

occlusion reasoning and discuss four main aspects. First, we

introduce in Sec. 3.1 our procedure for generating ground

truth from the ScanNet dataset [1] that is required to train

our occlusion-reasoning model. We also discuss in that sec-

tion the plane-based representation that we build our model

upon. Given the plane representation, we then introduce

our main contributions in Sec. 3.2: A two-branch category-

specific module for predicting planes, the corresponding

fusion scheme for objects and scene layout, and a novel train-

ing objective based on plane warping. Finally, in Sec. 3.3,

we propose a novel metric to evaluate occlusion-reasoning

specifically for occluded areas.

3.1. Data generation and plane representation

Our dataset is built based on the RGB-D videos in

ScanNet [1]. We first convert the mesh of the room into

a set of multiple planes following the steps described in

PlaneNet [11]. In our work, we describe each plane with a

normal vector, an offset and two masks: one for the visible

part of the plane and one to outline the full extent of a plane

even if occluded by other objects. We denote these two

types of masks as “visible mask” and “complete mask”. The

normal vector indicates the direction of the plane, the offset

defines the closest distance from the camera to the plane, and

the masks indicate the size and shape of the plane (visible

and complete, respectively). Fig. 2 illustrates this plane rep-

resentation. For a full representation of the scene, we also

use (and predict) a depthmap for areas that are not covered

by any plane. To finally generate the data for every single

(a) (b) (c) (d)

Figure 3: Complete masks for ground truth generation before

(b) and after (c) applying the proposed filling method for

image in (a). We can observe that after the proposed filling

method, we are able to have a better complete mask for floor

(blue area). (d) highlights the filled regions. White area is

the original complete mask without filling. Red area shows

the filled area, where pixel value is set to -1.

view of the scene, we utilize the camera parameters to com-

pute the parameters and masks (both visible and complete)

of our plane representation.

However, due to the camera views as well as the noisy

meshes [2], there can be holes in the complete masks for

occluded areas. This would lead to a wrong training signal

for our prediction network since the holes are merely artifacts

of the data generation process. Observing that complete

planes like the wall, the floor or the top of a table are, in

most cases, of convex shape while holes generally occur

inside the full planes, we propose to fill the complete masks

to be the convex closure. However, since we cannot be

sure that each hole is actually surrounded by a mask that

corresponds to the same plane, assignment to masks becomes

ambiguous and can potentially lead to wrong training signals.

We thus choose to flag those filled areas as “ignore” (-1),

meaning they have no influence during training our model.

Fig. 3 shows comparisons of full masks before and after

filling. Note that the filled floor is set as “ignore” (red area)

in Fig. 3d. We also report quantitative results of with and

without the filling step later in our experiments (see Sec. 4

for more details.)

3.2. Occlusion­aware plane detection network

Our occlusion-aware plane detection network follows the

design of PlaneRCNN [10], which we briefly review in the

following paragraph before introducing our proposed model.

Plane-RCNN [10]: The main architecture of PlaneR-

CNN [10] follows the design of Mask R-CNN [6]. Specif-

ically, it detects planes by first depicting their enclosing

bounding boxes (bbox). Then it predicts the normal and

binary mask for each individual plane, indicating the cor-

responding orientation as well as the visible region of this

plane. Meanwhile, there is a depth branch that uses the

global feature map to predict per-pixel depth values. Given

the per-pixel depth and the plane (normal and visible mask)

predictions, it further estimates the offset of each plane. Note

that in the original paper of [10], the authors also propose

to add one more mask prediction module for inferring the
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Figure 5: The detailed flowchart of our DualRPN module.

complete mask to handle the occlusion reasoning. Although

no quantitative results are provided, we implement their pro-

posal and take this as one of our baselines, which we denote

as PlaneRCNN-OR.

DualRPN: With the introduction of both visible and com-

plete masks, the variation in shape, size and distribution

of planes belonging to different categories becomes larger

than only looking at visible masks as in PlaneRCNN [10].

A good example for this are categories like floor and wall,

where large differences can be observed compared to typical

foreground categories, but also between visible and com-

plete masks of the same plane. To this end, we propose to

handle background and foreground separately. Specifically,

we divide our classes into two, foreground and background,

and propose a category-specific network, which is referred

to as DualRPN in this paper. Compared to the baseline

(PlaneRCNN-OR), we aim to learn different priors for differ-

ent categories by employing separate RPNs with independent

mask prediction modules. As can be viewed in Fig. 4, we

have one object and one layout branch, for foreground and

background categories, respectively. The object branch is

trained with the object plane ground truth and vice versa. In

this way, we are able to handle and learn different priors for

both categories without adding too many parameters. Ide-

ally, given a single image, the layout branch predicts only the

masks for background classes, e.g. walls and floors, while

the object branch focuses only on foreground classes and

ignores others. The detailed flowchart is shown in Fig. 5.

Note that we also tried splitting at later stages in the network

architecture, however, it did not provide comparably good

results.

Semantic merging: The results of DualRPN are two sets

of predicted planes from object and layout branches, respec-

tively. In order to obtain the final representation for the entire

image, we should fuse the predictions from both. To achieve

that, one naive way is to take the union of the two sets and

use the full predictions as the final results. However, this

would lead to duplicated results. For instance, one region

can get predictions both from object and layout branch by

mistake since both of them believe this region should be

represented by their own category. To address this problem,
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one can apply non-maxima suppression (NMS) over the full

predictions. However, this simple NMS-based fusion can

lead to over-suppressing of planes. Fig. 9 gives an example.

If we directly apply NMS between predictions from object

and layout branch, we will suppress the plane for the table.

This is due to the heavy occlusion between table and floor

boxes and NMS would only keep one of them in this case.

This type of problem is even more severe for our task since

heavy occlusions happen frequently.

To this end, we propose a novel fusion method and denote

it as Semantic Merging. We firstly apply NMS separately on

each branch’s output planes. Then, we feed the suppressed

results from the two branches to our semantic merging mod-

ule. This module then utilizes semantic segmentation results

as reference to effectively fuse the results from both branches

(see Fig. 4). Specifically, we can check the overlap between

visible masks from object and layout branches. For those

pairs whose overlapping score is greater than the pre-defined

threshold θ, we further turn to the semantic segmentation

results to help determine which of the planes to keep. For

these paired visible masks, we compute their confidence

scores based on their overlapping score w.r.t. semantic seg-

mentation and leave the one that has higher confidence score

in our final predictions. The overlapping score of the layout

class can be computed by counting the percentage of pixels

that are inside the layout visible mask and belong to a layout

class in the segmentation map and vice versa. In practice,

we use an off-the-shelf semantic segmentation network [15]

to predict the per-pixel semantic segmentation map and set

the threshold θ to 0.3. More detailed algorithm can be found

in supplementary material.

Plane warping module: We now introduce a novel train-

ing objective specifically designed for our plane represen-

tation that leverages the availability of multiple views of

the same scene in the training dataset. The loss tries to en-

courage consistency between planes across different views,

which is useful since many planes are likely only occluded

in one view, but visible from another one. Different from

the warping loss introduced in [10], our warping loss can

enforce consistency also in hidden regions.

Given the camera transformation between two views, we

warp each predicted plane Pi. First, the plane normals and

offsets are projected by the camera rotation and translation.

With this information, we can then further project the mask

of the predicted plane Pi to the other view via bilinear in-

terpolation. We denote the warped plane as Pwi
. Then, we

match each warped prediction Pwi
with ground truth planes

Pgj , which can be formalized as

max
i,j

IoU(Pgi , Pwj
) , (1)

subject to

Dn(Pgi , Pwj
) ≤ ηdepth ∧ IoU(Pgi , Pwj

) ≥ ηiou , (2)

with

Dn(Pgi , Pwj
) =

∥

∥

∥
NPgi

· ogi −NPwj
· owj

∥

∥

∥

2

. (3)

where IoU(·) calculates the intersection-over-union overlap

between two planes and NP and o indicate the normal and

offset of a plane. The two thresholds ηdepth and ηiou are

hyper-parameters which are set to 0.5 and 0.3, respectively

for all experiments. Finally, the loss is calculated as the

cross entropy between the warped mask prediction and the

matched neighbor ground truth mask, which provides an

additional training signal and improves our results as we

empirically demonstrate in Sec. 4. A more detailed algorithm

can be found in the supplementary material.

3.3. Metric for occluded regions

To measure the performance of plane predictions, Liu et

al. [10] propose to utilize Average Precision (AP), as in

instance segmentation [6], but with an additional depth con-

straint. The metric AP0.4 only counts predicted masks as

correct if the intersection-over-union (IoU) between pre-

dicted and ground-truth masks is greater than 0.5 and the

average pixel-level depth difference for these two planes

is within 0.4 meter. However, directly applying this eval-

uation metric for our task is not desired. The main reason

is that this evaluation metric never explicitly measures the

performance on hidden regions, but only considers the com-

plete region as a whole. Since it often happens that the

area of a visible region is far larger than that of the corre-

sponding hidden/invisible region, a model can still have a

very high AP0.4 value even if it predicts the visible region

well and sacrifices the hidden one. To this end, we pro-

pose a novel evaluation metric, termed Average Precision

Hidden (APH), which complements AP0.4 specifically for

occlusion-reasoning. For calculating APH, the Fully Visible

planes {P FV
g } and their corresponding estimations {P FV

e }
need first to be removed. For the jth plane Pgj , it belongs

to {P FV
g } as long as its hidden mask Area(GHj

) < κarea.

Here GHj
is visible mask of Pgj . For the ith plane Pei , it

belongs to {P FV
e } as long as the output j of Equ. 4 satisfies

Pgj ∈ {P FV
g }.

argmaxjIoU(Mi, Gj) (4)

where Mi is the complete mask of the i-th plane esti-

mation Pei , Gj is the complete mask of the j-th ground

truth Pgj . A predicted plane must satisfy the following three

criteria to be considered as true positive:

IoU(Mi ∩GVj
, GHj

) ≥ κiou (5a)

D(Pei , Pgj ) ≤ κdepth , (5b)

Pgj /∈ {P FV
g }, Pei /∈ {P FV

e } , (5c)
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Figure 6: Data filling: The first column are input images.

Columns two and three show the Origin and Refined com-

plete mask of layout class, respectively. Columns four and

five show the Origin and Refined complete mask of object.

where GVj
is visible part of the complete mask Gj . The

function D(·) calculates the depth difference. κarea, κiou and

κdepth are thresholds that we set as κarea = 100 pixel, κiou =
0.5 for all experiments and κdepth = [0.4m, 0.6m, 0.9m] for

the three instantiation of the metric: [AP0.4, AP0.6, AP0.9].

By excluding visible region from the ground truth, this met-

ric focuses only on predictions in hidden regions and it can-

not be cheated by improving predicting the visible planes.

Jointly with AP on the complete masks, we now have a better

and more comprehensive understanding of the performance

of our occlusion reasoning method.

4. Experiments

4.1. Experimental setup

Dataset: Our dataset is built on the large-scale RGB-D

video dataset ScanNet[1]. It consists of 2.5 million views

in more than 1500 room scans. The annotation includes

3D camera poses, 3D room reconstructions and semantic

information. We follow [10] for assigning each scene to

training, validation and testing. Then we uniformly sample

each split and finally obtain 100k, 1k and 1k images for

training, evaluation and testing. To obtain the ground-truth

for object and layout categories, we first project the semantic

label of each plane to the NYU40 classes. Afterwards, ‘wall’,

‘ceiling’, ‘floor’ and ‘window’ are categorized as layout.

Others belong to the ‘object’ category.

Implementation details: We implement our network

with PyTorch. The pre-trained weights of PlaneRCNN [10]

are employed for initializing our model. Our models are

trained on an NVIDIA 1080 Ti GPU for 100k iterations with

batch size set to 1. Following the setting of PlaneRCNN,

input images are scaled to 640×480 and then padded with

zero values to be 640×640. The learning rate is set as 1e-4

when we start the training process and it decays to [5e-5,

2e-5, 1e-5] at [5k, 10k, 15k] iterations.

Baselines: We choose the modification of PlaneR-

CNN [10] for occlusion reasoning as the main baseline for

validating the effectiveness of the proposed method. And we

denote it as PlaneRCNN-OR (We refer the readers to Sec. 3.2

for more details). Please note that the original PlaneRCNN-

OR is proposed in [10] to address the occlusion problem for

indoor scenes. Since code for this version is not released,

we implement ourselves based on [10]. Moreover, to have a

fair comparison, we re-train this model on our dataset where

visible and complete masks are generated and report the

numbers.

Metric: We evaluate both the plane prediction and depth

prediction tasks. As for complete plane prediction, we fol-

low [11] and use AP with different depth constrains to mea-

sure the performance. As for performance measurement on

hidden regions, we employ the APH introduced in Sec. 3.3.

We further employ the following two metrics for depth mea-

surement:

• Root Mean Squared Error(RMSE):

√

1

T

∑

(di − gi)2

• Threshold accuracy: Percentage of di, such that

max(di

gi
, gi
di
) < λ

T stands for the number of pixels in the image, di and gi
indicate the depth value of pixel i in depth and ground truth

image. We adopt threshold accuracy with λ = [1.25, 1.252,

1.253] for Acc1, Acc2 and Acc3 respectively.

4.2. Evaluations on data generation

As can be seen in Tab. 2, evaluating model on the “Refine”

dataset always gives better results, especially for hidden

regions. This is mainly due to the fact that without hole

filling, the networks are required to learn to predict those

arbitrary holes in the masks (see the highlighted region in

Fig. 6), which can be very challenging. Another observation

is that models trained with the “Refine” dataset gives a better

performance w.r.t. that trained on “Origin”. Again, this is

mainly because that with the “Refine” dataset, the network

is more likely to learn something from meaningful complete

masks, especially for hidden regions. While if the network

is trained on “Origin”, it is harder for this network to learn

to predict masks due to these noises/holes.

4.3. DualRPN with semantic merging

DualRPN helps hidden mask prediction Employing

DualRPN enables our model to learn category-specific prior

knowledge. As shown in Fig. 9b, the baseline method is only

able to extend the visible region of floor by a small margin.

After introducing DualRPN, we can observe that a larger

hidden region of the floor can be predicted in Fig. 9c. We

demonstrate quantitative results in Tab. 1, where we can ob-

serve the proposed DualRPN greatly improving APH whiel

not harming AP. As we described in Sec. 3.2, this behaviour

is largely due to the over-suppressing of NMS. We report

below the effectiveness of our proposed fusion module.

Semantic merging surpasses NMS We now demon-

strate the superiority of the proposed semantic merging mod-

ule over NMS. Qualitative results are shown in Fig. 9c, where

the table is suppressed by NMS due to its heavy overlapping

w.r.t. the floor. Our proposed module is able to solve this
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Figure 7: Visualization of proposed method, The first column is the input image. The second column and third column show

the complete plane prediction from layout branch and that from object branch respectively. The fourth column demonstrates

visible planes and the last column is the novel view synthesis. As can be viewed in our examples, the proposed method is able

to predict both visible and complete area from single image, which provides a better representation for indoor scenes.

problem (see examples in Fig. 9d). We also report quan-

titative results in Tab. 1. Specifically, Semantic Merging

improves AP values by [1.6%, 1.8%, 1.9%] compared to

NMS. Combining DualRPN with the Semantic Merging,

we further pushes APH by [2.9%, 2.9%, 2.6%] and AP by

[1.2%, 1.1%, 0.9%].

DualRPN with semantic merging helps depth predic-

tion We further demonstrate that DualRPN benefits the depth

prediction. Specifically, we convert the output plane repre-

sentation to a depth map and report the depth prediction per-

formance on visible areas.As shown in Tab. 3, PlaneRCNN-

OR improves Acc1 by 1% and our proposed method further

boosts both RMSE and Acc1 by 2%. Our results prove

that occlusion reasoning and 3D understanding are mutually

beneficial.

4.4. Plane warping module

By enforcing the consistency with neighboring views, our

proposed plane warping module helps to improve precision

on predicting the complete mask on both visible and hidden

regions. As shown in Tab. 1, our proposed method improves

AP 0.9 and APH 0.9 by 1% and 0.4%, respectively.

We qualitatively compare our model with PlaneRCNN-

OR [10] in Fig. 8, where our model almost always performs
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Figure 8: Qualitatively comparison of our method with PlaneRCNN-OR. For each sample, Left: The input image. Right: From

top to bottom - ground truth, baseline prediction, proposed method prediction for visible and complete masks.

Table 1: Ablation study of proposed methods: Dual RPN, Semantic Merging, Channel-wise Attention Module and Occlusion-

aware Warping Module. The first row without any proposed modules denotes the PlaneRCNN-OR [10]. The adopted metrics

are AP and APH under κiou set as 0.5 and κdepth set as [0.4m, 0.6m, 0.9m]. A relative improment of 42.65% on APH0.4 is

achieved by comparing 0.068 (baseline) with 0.097 (our result).

Dual RPN Semantic

Merging

Plane Warping AP 0.4 AP 0.6 AP 0.9 APH 0.4 APH 0.6 APH 0.9

0.319 0.364 0.386 0.068 0.080 0.088

X 0.315 0.357 0.376 0.092 0.104 0.109

X X 0.331 0.375 0.395 0.097 0.109 0.114

X X X 0.334 0.382 0.405 0.097 0.111 0.118

Table 2: Evaluation of PlaneRCNN-OR [10] when training

and testing on different datasets with [AP0.4, AP0.6, AP0.9]

and [APH0.4, APH0.6, APH0.9]

Testing set Origin Refine

Training set Origin Refine Origin Refine

AP 0.4 0.284 0.284 0.314 0.327

AP 0.6 0.316 0.319 0.352 0.371

AP 0.9 0.334 0.338 0.374 0.395

APH 0.4 0.007 0.019 0.030 0.068

APH 0.6 0.009 0.021 0.035 0.080

APH 0.9 0.012 0.023 0.040 0.088

(a) (b) (c) (d)

Figure 9: Qualitative results for PlaneRCNN-OR [10] w/

or w/o DualRPN: (a) input image (b) w/o DualRPN (c) w/

DualRPN (d) w/ DualRPN and Semantic Merging.

Table 3: Results for depth prediction.

Method RMSE↓ Acc1↑ Acc2↑ Acc3↑

PlaneRCNN[10] 0.34 0.78 0.95 0.99

PlaneRCNN-OR[10] 0.34 0.79 0.95 0.99

DualRPN 0.32 0.81 0.95 0.99

better in terms of complete mask prediction.

5. Conclusion

This paper proposes to address the occlusion reasoning

problem in indoor scenes with efficient plane representations.

We firstly generate a dataset where the ground-truth of our

occlusion-aware representations are available. Our proposed

model separates the prediction for foreground and layout

planes for a more effective mask prediction in hidden regions.

When multiple views are available at train time, a novel plane

warping loss is also introduced to handle occlusion scenarios.

Finally, we propose a novel evaluation metric for measuring

the performance specifically on hidden regions. Compared

to existing methods, our proposed method achieves large

relative improvements in hidden regions.

120



References

[1] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber,

Thomas Funkhouser, and Matthias Nießner. Scannet: Richly-

annotated 3d reconstructions of indoor scenes. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5828–5839, 2017. 1, 2, 3, 6

[2] Helisa Dhamo, Nassir Navab, and Federico Tombari. Object-

driven multi-layer scene decomposition from a single image.

In Proceedings of the IEEE International Conference on Com-

puter Vision, pages 5369–5378, 2019. 1, 2, 3

[3] Helisa Dhamo, Keisuke Tateno, Iro Laina, Nassir Navab, and

Federico Tombari. Peeking behind objects: Layered depth

prediction from a single image. Pattern Recognition Letters,

125:333–340, 2019. 1, 2

[4] Vikas Dhiman, Quoc-Huy Tran, Jason J. Corso, and Man-

mohan Chandraker. A continuous occlusion model for road

scene understanding. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2016. 1

[5] Andreas Geiger, Martin Lauer, Christian Wojek, Christoph

Stiller, and Raquel Urtasun. 3D Traffic Scene Understanding

from Movable Platforms. PAMI, 2014. 1, 2

[6] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-

shick. Mask r-cnn. In The IEEE International Conference on

Computer Vision (ICCV), Oct 2017. 3, 5

[7] Varsha Hedau, Derek Hoiem, and David Forsyth. Recovering

the spatial layout of cluttered rooms. In 2009 IEEE 12th

international conference on computer vision, pages 1849–

1856. IEEE. 2

[8] Chen-Yu Lee, Vijay Badrinarayanan, Tomasz Malisiewicz,

and Andrew Rabinovich. Roomnet: End-to-end room lay-

out estimation. In Proceedings of the IEEE International

Conference on Computer Vision, pages 4865–4874, 2017. 2

[9] Buyu Liu, Xuming He, and Stephen Gould. Joint semantic

and geometric segmentation of videos with a stage model. In

IEEE Winter Conference on Applications of Computer Vision,

pages 737–744. IEEE, 2014. 2

[10] Chen Liu, Kihwan Kim, Jinwei Gu, Yasutaka Furukawa, and

Jan Kautz. Planercnn: 3d plane detection and reconstruction

from a single image. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2019. 2, 3, 4, 5,

6, 7, 8

[11] Chen Liu, Jimei Yang, Duygu Ceylan, Ersin Yumer, and Ya-

sutaka Furukawa. Planenet: Piece-wise planar reconstruction

from a single rgb image. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2579–2588, 2018. 2, 3, 6

[12] Miaomiao Liu, Xuming He, and Mathieu Salzmann. Building

scene models by completing and hallucinating depth and

semantics. In European Conference on Computer Vision,

pages 258–274. Springer, 2016. 2
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