
SDFDiff: Differentiable Rendering of Signed Distance Fields for 3D Shape

Optimization

Yue Jiang, Dantong Ji, Zhizhong Han, Matthias Zwicker

University of Maryland, College Park

{yuejiang, dji, h312h, zwicker}@cs.umd.edu

Abstract

We propose SDFDiff, a novel approach for image-based

shape optimization using differentiable rendering of 3D

shapes represented by signed distance functions (SDFs).

Compared to other representations, SDFs have the advan-

tage that they can represent shapes with arbitrary topology,

and that they guarantee watertight surfaces. We apply our

approach to the problem of multi-view 3D reconstruction,

where we achieve high reconstruction quality and can cap-

ture complex topology of 3D objects. In addition, we employ

a multi-resolution strategy to obtain a robust optimization

algorithm. We further demonstrate that our SDF-based dif-

ferentiable renderer can be integrated with deep learning

models, which opens up options for learning approaches on

3D objects without 3D supervision. In particular, we apply

our method to single-view 3D reconstruction and achieve

state-of-the-art results.

1. Introduction

The “vision as inverse graphics” or “inverse rendering”

strategy has long been attractive as a conceptual framework

to solve inverse problems such as recovering shape or ap-

pearance models from images. In this analysis-by-synthesis

approach, the goal is to reproduce given input images by

synthesizing them using an image formation model, possi-

bly including shape, appearance, illumination, and camera

parameters. Solving this problem implies finding suitable

model parameters (shape, appearance, illumination, cam-

era) that describe the underlying scene. While conceptually

simple, this approach can be challenging to use in practice,

because it requires a suitable parameterization of a powerful

image formation model, and effective numerical techniques

to solve the resulting optimization problem. Recently, auto-

matic differentiation has attracted renewed attention to im-

plement differentiable renderers or image formation models

that can be used in gradient-based optimization techniques.

In particular, it is attractive to combine differentiable ren-

dering with neural networks to solve highly ill-posed in-

verse problems, such as single-view 3D reconstruction.

In this paper, we advocate using signed distance fields

(SDFs) in a differentiable image formation model because

they have several advantages over other geometry represen-

tations. In contrast to triangle meshes, the surface topol-

ogy is not fixed in SDFs and can adapt to the actual scene

topology during optimization. Point clouds can also rep-

resent arbitrary topologies but they do not provide continu-

ous surface reconstructions. Instead, SDFs inherently repre-

sent continuous, watertight surfaces, which are required for

downstream applications such as 3D printing and physics-

based simulation. In addition, SDFs can easily be used in

a multi-resolution framework, which is important to avoid

undesired local minima during optimization.

The main contribution of our paper is SDFDiff, a differ-

entiable renderer based on ray-casting SDFs. Our renderer

is integrated with a deep learning framework such that it can

be combined with neural networks to learn how to solve

highly ill-posed inverse problems. Finally, we provide an

effective multi-resolution strategy to improve the robustness

of gradient-based optimization. We demonstrate the use-

fulness of our approach using several application studies,

including multi-view 3D reconstruction and learning-based

single-view 3D reconstruction. Our results demonstrate the

advantages of SDFs over other surface representations.

In summary, we make the following contributions:

• We introduce a differentiable renderer based on ray-

casting SDFs, and we describe an implementation that

is integrated into a standard deep learning framework.

Advantages of using SDFs for differentiable rendering

and shape optimization include that we can adapt the

topology freely, and that the resulting shapes are guar-

anteed to consist of watertight surfaces.

• We present results of a multi-view 3D reconstruc-

tion approach using shape optimization via differen-

tiable rendering. Using a multi-resolution approach,

our gradient-descent optimization reliably converges

1251

to high quality solutions. Our approach is able to re-

construct geometry with high level of detail and com-

plex topology, even with few input views.

• We leverage the SDF-based differentiable renderer to

train deep neural networks to perform single-view 3D

shape reconstruction without 3D supervision. We

demonstrate the advantages of our approach by recov-

ering accurate 3D shapes with arbitrary topology.

2. Related Work

Signed Distance Functions. A distance function is a level

set representation [39, 42] that, at each point in 3D, stores

the distance to the closest point on the 3D surface. Signed

distance fields (SDFs) [8] store a signed distance to distin-

guish between the inside and outside of objects. SDFs are

often discretized using uniform voxel grids [35, 38]. Com-

pared to meshes or parametric surfaces, the implicit surface

representation [32, 6] of SDFs has the advantage that it can

represent arbitrary topologies. In contrast to point clouds,

SDFs always represent watertight surfaces. SDFs recently

started attracting interest for shape analysis via deep learn-

ing. DeepSDF [41] was proposed to learn continuous SDF

representation of a class of shapes. Similarly, deep level

sets [33] were introduced as an end-to-end trainable model

that directly predicts implicit surfaces of arbitrary topol-

ogy. However, these methods require 3D supervision during

training, such as pairs of 3D coordinates and their corre-

sponding SDF values [41], or voxel occupancy maps [33].

Learning-based 3D Reconstruction. Reconstructing 3D

models from 2D images is a classic problem in computer

vision. Compared to traditional multi-view stereo and

shading-based approaches [46], learning-based 3D recon-

struction can achieve impressive performance even with

very few input views. Deep learning models for 3D shape

understanding have been proposed for different kinds of 3D

representations, including multiple views [13, 14], point

clouds [52, 18], triangle meshes [27, 28], voxel grids [54,

50], and signed distance functions (SDFs) [41]. However,

most learning-based methods [51, 49, 10, 1, 7, 19, 23] re-

quire 3D supervision. Although some methods [4, 16] do

not require supervised learning, they are often limited by

specific settings, such as restricted lighting conditions or

annotation of object orientation. In contrast, predicting 3D

shapes with differentiable renderers [25, 18, 19, 34, 29, 37]

has recently attracted increasing attention as it enables 3D

reconstruction without 3D supervision, that is, by optimiz-

ing neural networks only using images as training data.

Differentiable Rendering Voxel-based differentiable

renderers [50, 11, 17, 20, 54, 12, 55, 53, 36] first drew at-

tention performing volumetric ray marching, however, they

are limited to low-resolution voxel grids. To render SDFs

we use sphere tracing, also used in scene representation

networks (SRNs) [48]. SRNs learn how to sphere trace

novel views, but cannot produce full 3D shapes in a single

step. They do not reconstruct a view independent shape

representation and focus more on novel view synthesis

rather than 3D watertight surface reconstruction, which is

our goal. Starting with Loper and Black’s OpenDR [30],

much recent work focused on mesh-based differentiable

renderers [16, 40]. Kato et al. [21] proposed a neural

3D mesh renderer with hand-designed gradients. Pa-

parazzi [27] employed analytically computed gradients

to adjust the location of vertices. Similarly, SoftRas [28]

assigned each pixel to all faces of a mesh in a probabilistic

rasterization framework. Although these methods enable to

learn 3D mesh reconstruction without 3D supervision, they

are restricted to a fixed, usually spherical mesh topology.

Many of these mesh-based rendering approaches are differ-

entiable with respect to geometry [4, 21, 30, 26, 9, 45, 28],

lighting models [5], textures [26, 44, 2], or materials

[44, 31, 2]. Mesh-based differentiable rendering [43, 25]

has also been applied to real images, although current

results are rather limited and applying differentiable

rendering for real photographs remains an open challenge

as it requires a comprehensive global illumination model.

Differentiable rendering has also been applied to Monte

Carlo ray tracing [25] and point cloud rendering [19, 34].

Insafutdinov et al. [18] proposed a point cloud-based differ-

entiable renderer with visibility modeling by conducting or-

thogonal projection on voxelized 3D space holding the point

cloud. Surface splatting [52] was employed to model the

visibility in point cloud rendering. Although point clouds

can be easily acquired using range sensing technology, such

as Microsoft Kinect and LIDAR, they do not explicitly rep-

resent topology and require post-processing to produce wa-

tertight surfaces. Concurrent works [29, 37] proposed dif-

ferentiable rendering based on SDFs and on occupancy net-

works, further improving the quality of 3D reconstruction.

3. Overview

We propose a novel approach for image-based 3D shape

optimization by leveraging SDFs as the geometric represen-

tation to perform differentiable rendering. Given a set of pa-

rameters Θ representing the geometry description, lighting

model, camera position, etc, a renderer R can be written

as a forward operator that produces an image I by com-

puting I = R(Θ). In contrast, optimizing geometry and

other scene parameters from images is a backward process.

Given a desired target image I , our goal is to get the set

of parameters Θ = R−1(I) that produces the target image.

The rendering process itself is not invertible. Hence, in-

stead of solving the inverse rendering problem directly, we

1252

can formulate it as an energy minimization problem,

Θ∗ = argmin
Θ

Limg(R(Θ), I) (1)

where Limg is a loss function measuring the distance be-

tween the target image and the rendered image from the 3D

object. In practice, the loss is typically accumulated over

multiple target images. Getting the desired parameters Θ∗

is equivalent to minimizing the loss L. While all rendering

parameters including geometry, illumination, camera pose,

and surface appearance could in theory be recovered from

images this way, we focus on shape optimization in this pa-

per and assume the other parameters are known. To enable

gradient-based optimization, a key issue is to obtain the gra-

dient of Limg(R(Θ), I) with respect to the parameters Θ. A

differentiable renderer achieves this by producing not only

images from a description of the scene, but also the deriva-

tives of pixel values with respect to scene parameters.

In this paper, we propose a novel differentiable renderer

which uses signed distance functions (SDFs) and camera

pose as inputs and renders an image. Our SDF-based dif-

ferentiable renderer leverages the ray casting algorithm and

uses automatic differentiation to compute the derivatives.

4. Differentiable SDF Rendering

We represent discrete SDFs by sampling SDF values

on regular grids, and apply a standard ray casting algo-

rithm based on sphere tracing [15] to find the intersection

points between rays and the object surface. For this purpose

we employ trilinear interpolation to reconstruct continuous

SDFs that can be evaluated at any desired location. This al-

lows us to continuously represent the object surface, which

is given by the zero level set of the interpolated SDF.

A key observation is that the derivatives of a given pixel

with respect to rendering parameters only depend on a local

neighborhood of eight SDF samples that define the value of

the trilinearly interpolated SDF at the surface intersection

point. In other words, the sphere tracing process itself does

not need to be differentiable. Instead, only the local compu-

tations involving the local set of eight SDF samples around

the surface intersection need to be differentiable. There-

fore, our approach proceeds in two stages: first, we apply

sphere tracing to identify the eight samples nearest to the

surface intersection. This step is not differentiable. Second,

we locally compute the pixel color based on the local set of

SDF samples. This step is implemented using an automatic

differentiation framework to obtain the derivatives.

While differentiable ray marching of voxel grids has

been used before [54, 55, 36], these approaches are based on

voxel opacities, given by binary variables or continuous oc-

cupancy probabilities. In these cases ray marching through

the entire volume needs to be differentiated because all vox-

els along a ray may influence the corresponding pixel.

Sphere Tracing. We perform ray casting via sphere trac-

ing [15] in the first stage by starting from the ray origin,

and evaluating the SDF using trilinear interpolation to find

the minimum distance from the current point on the ray to

the object. Then we move along the ray by that distance.

Moving along the ray by the minimum distance to the ob-

ject guarantees that we will never move across the boundary

of the object, while allowing us to make a possibly large

step towards the surface. We repeat this process until we

reach the surface of the object, that is, until the SDF value at

our current position on the ray is small enough, or until we

leave the bounding box of the object. While the efficiency

of sphere tracing can be improved by increasing the step

size [29], we implemented sphere tracing directly in CUDA

without support for automatic differentiation. Hence, the

computation cost of this step is negligible in our approach.

Differentiable Shading. In the second stage, we compute

the pixel color as a function of the local SDF samples that

define the SDF at the intersection point, as determined by

the first stage. These computations are implemented in a

framework that supports automatic differentiation, allowing

us to easily obtain the derivatives of the pixel. For each

pixel, the input consists of the light and camera parame-

ters, and the eight SDF samples closest to the ray-surface

intersection point. The computations include: getting the

intersection point and the surface normal at the intersection

point as a function of the trilinear basis coefficients (i.e., the

eight SDF samples), and evaluating a shading model.

To take into account the dependence of the pixel value on

the ray-surface intersection point, we express the intersec-

tion point as a function of the eight local SDF samples. Let

us denote the local SDF values by d0, . . . , d7, the current

position on the ray (obtained from the ray casting stage)

by s ∈ R
3, and the unit ray direction by v ∈ R

3. To

express the intersection point as a function of d0, . . . , d7,

we use the same approximation as in the ray casting stage,

that is, the approximate intersection is p(d0, . . . , d7) =
s+trilinear(d0, . . . , d7; s)v, where trilinear(d0, . . . , d7; s)
is the trilinear interpolation of the SDF at location s and

considered as a function of d0, . . . , d7. This approximation

is conservative in the sense that it is accurate only if the SDF

represents a plane that is perpendicular to the ray direction

v. Otherwise, p(d0, . . . , d7) is guaranteed not to cross the

true intersection along the ray.

As an alternative to our conservative approximation, one

could express the intersection point exactly as the solution

of the intersection of the ray s + tv and the local trilinear

interpolation of the SDF. That is, we could express the so-

lution of trilinear(d0, . . . , d7; s + tv) = 0 with respect to

t ∈ R as a function of d0, . . . d7. However, this involves

finding roots of a cubic polynomial, and we found that our

much simpler approach works more robustly in practice.

1253

To evaluate a shading model, we need the surface normal

at the intersection point p(d0, . . . , d7). Considering that the

surface normal corresponds to the gradient of the SDF, we

first compute gradients at the grid vertices using central fi-

nite differencing, and then trilinearly interpolate them at the

intersection point p(d0, . . . , d7; s). In summary, this leads

to an expression of the normal at the intersection point as

a function of SDF coefficients within an 4 × 4 × 4 neigh-

borhood around the intersection (because of central finite

differencing). Surface normals are normalized after trilin-

ear interpolation. Finally, in our current implementation we

evaluate a simple diffuse shading model.

Implementation. We implemented SDF ray casting us-

ing CUDA to leverage the computational power of GPUs.

Differentiable shading is implemented with the Pytorch li-

brary, which supports automatic differentiation and allows

seamless integration of the renderer with neural network

training. Pytorch also leverages the GPU, and our im-

plementation directly accesses the output of the ray cast-

ing stage that is stored in GPU memory, avoiding any

unnecessary memory transfers. Our code is available at

https://github.com/YueJiang-nj/CVPR2020-SDFDiff.

5. Multi-view 3D Reconstruction

In this section we describe how to perform multi-view

3D reconstruction using our differentiable renderer. This is

a proof of concept, where we assume known camera poses,

illumination, and surface appearance, and we only optimize

over the 3D shape represented by the SDF. Our inputs are

synthetically rendered images from a fixed set of camera

poses. We set the camera poses to point from the center

of each face and edge, and from each vertex of the object

bounding box towards its center, where the bounding box

is a cube. Since the cube has 6 faces, 8 vertices, and 12

edges, we obtain 26 camera poses in total. Figure 1 shows

the input images we used to reconstruct the bunny in our

experiments. In addition, we initialize the SDF to a sphere.

5.1. Energy Function

For simplicity we choose the L2 distance between the

rendered and the target images as our image-based loss, that

is Limg(R(Θ), I) = ||R(Θ) − I||2. The loss is summed

over all target views. In this proof of concept scenario, the

optimization parameters Θ include only the SDF values, as

we assume the other rendering parameters are known. Min-

imizing the image-based loss by optimizing SDF values re-

quires differentiable rendering, where we compute the gra-

dient of the image loss w.r.t. the SDF values as in Section 4.

In addition, we impose a regularization loss that ensures

that the SDF values Θ represent a valid signed distance

function, that is, its gradient should have unit magnitude.

Figure 1. We use 26 input views in our multi-view reconstruction

experiments as shown here for the bunny.

Writing the SDF represented by Θ as a function f(x; Θ),
where x is a point in 3D, the regularization loss is

Lreg =

∫
||1− ||∇f(x; Θ)||2||2dx (2)

In practice, we obtain the gradients via finite differencing

and we compute a discrete sum over the SDF grid vertices.

5.2. Iterative Optimization

We apply gradient descent optimization using

ADAM [22] to iteratively optimize our SDF to match

the target images. Compared to straightforward gradient

descent, ADAM is more robust and faster in convergence.

In addition, we accelerate convergence by greedily select-

ing a single view in each gradient descent step to compute

the gradient, similar to active mini batch sampling. The

intuition is that some parts of the 3D model may have more

complex structures so it is more difficult to optimize SDF

values using some views than others. Different views may

incur image losses of varying magnitude, and we should

focus on the views with large losses to make sure all parts

of the object can be well-reconstructed. Our approach first

calculates the average loss for all the camera views from

the result of the previous iteration. If a loss for a view

is greater than the average loss, then during the current

iteration, we update the SDF until the loss for this view

is less than the average (with max. 20 updates). For the

other views, we update the SDF five times. If one update

increases the loss, then we switch to the next view directly.

We stop our optimization process when the loss is smaller

than a given tolerance or the step length is too small.

Reconstructing high-resolution 3D objects is challenging

because gradient descent takes many iterations to eliminate

low frequency errors. Therefore, we apply a coarse-to-fine

multi-resolution approach. We start by initializing the SDF

grid at a resolution of 83 to the SDF of a sphere. We then it-

erate between performing gradient descent optimization as

described above, and increasing the grid resolution. We in-

1254

GT

Ours

Error

DSS

[52]

Error

SMVS

[24, 47]

Error

Figure 2. Multi-view reconstruction results comparing to DSS [52]

and SMVS [24, 47] with the corresponding error visualizations

based on Hausdorff distance (red means zero and blue high error).

crease the resolution simply by performing trilinear inter-

polation and stop at a resolution of 643.

To further improve the efficiency of the multiresolution

scheme, we choose an appropriate image resolution for ren-

dering corresponding to the SDF resolution at each reso-

lution level. We determine the appropriate resolution by

ensuring that a sphere with a radius equivalent to the grid

spacing, and placed at the corner of the bounding box of the

SDF furthest from the camera, has a projected footprint of

at most the size of a 2× 2 pixel block.

5.3. Experimental Results

Qualitative Results. We compare our results with

Object Ours DSS [52] SMVS [24, 47]

Torus 0.015637 0.035398 N/A

Bunny 0.026654 0.109432 N/A

Dragon 0.074723 0.179456 0.097816
Table 1. Comparison of the symmetric Hausdorff distance be-

tween ground truth and reconstructed meshes for torus, bunny and

dragon. SMVS could not reconstruct torus and bunny because

camera pose estimation failed.

DSS [52], which is a differentiable renderer for point clouds

based on surface splatting [56]. We let both systems deform

a sphere to fit the target object given as input. When running

DSS, we adopt the same settings used in their original ex-

periments: the system randomly selects 12 from a set of 26

views of the target in each optimization cycle, and optimizes

for up to 16 cycles. We experimented with different num-

bers of 3D points and report the best result. For SDFDiff

we use our optimization technique from Section 5.2 using

the same set of 26 views. Figure 2 shows the comparison

between SDFDiff and DSS. DSS cannot recover geometric

details as accurately as SDFDiff.

We also compare our result with SMVS [24, 47], which

is a state-of-the-art shading-aware multi-view 3D recon-

struction approach. We use the default settings, and pro-

vide 1000 randomly sampled views of the dragon rendered

by our SDF renderer as input. Note that SMVS automati-

cally recovers camera parameters from the input images and

estimates surface albedo and illumination, hence the com-

parison is not entirely fair. As shown in Figure 2, however,

even with a large number of input views the SMVS output

can be overly smooth and lack details. SMVS may also fail

with fewer views due to inaccurate camera pose estimation.

In contrast, SDFDiff can obtain better results using only 26

views (with known camera poses, albedo, and illumination).

Quantitative Results. Table 1 compares the symmetric

Hausdorff distance between ground truth and reconstructed

meshes for torus, bunny and dragon. The visual results

of torus and bunny are in supplementary materials. For a

fair comparison, we report errors relative to the size of the

bounding boxes. We observe that SDFDiff leads to smaller

symmetric Hausdorff distances, which means our recon-

struction results are closer to the ground truth than the other

two approaches.

5.4. Parameter Study

Initial Resolution. Figure 3 shows the impact of the

initial resolution in our multi-resolution scheme. We fix

the number of multi-resolution steps and our target resolu-

tion being 64, and then set the initial resolution to be 8, 16,

32, and 48 respectively. We find that a lower initial resolu-

tion can reconstruct qualitatively better 3D shapes because

it more robustly captures large scale structures.

1255

init res=8 init res=16 init res=32 init res=48

Figure 3. Given different initial resolutions, with 4 resolution

stages, we can find that our 3D reconstruction results are better

if the initial resolution is lower.

1 step 4 steps 8 steps 15 steps

Figure 4. We fix the initial and target resolution to 8 and 64 respec-

tively, but use different numbers of intermediate resolution stages.

We find that more resolution stages can give us better results.

64x64 128x128 256x256 512x512

Figure 5. We show that the quality of reconstruction results are not

affected much by the image resolution.

Number of Multi-Resolution Steps. Figure 4 shows

that given fixed initial (init res=8) and target (target res=64)

resolutions, adding more multi-resolution steps can give us

better results. In particular, single-resolution optimization

(1 step) cannot reconstruct the object successfully, further

justifying our multi-resolution setup.

Image Resolution. Figure 5 shows that image resolution

does not significantly affect the quality of the results, where

we use images with various resolutions for optimization.

Noisy Data. As shown in Figure 6, when some noise is

added to target images or camera poses, our approach can

still maintain its robustness.

Noisy

views
Results

Perturbed

camera poses
Results

Figure 6. Experimental results with noisy data. All 26 input views

or camera poses are perturbed with Gaussian noise (variance=0.03

for views and variance=0.01 for camera poses). The third column

shows the view differences caused by perturbed camera poses.

6. Learning-based Single-view Reconstruction

In the following experiments, we leverage SDFDiff to

train a neural network to perform single-view 3D recon-

struction without 3D supervision. We use the same dataset

as [21, 28], which includes 13 categories of objects from

ShapeNet [3]. Each object has 24 rendered images from

different views at 64 × 64 resolution. We use the same

train/validate/test sets on the same dataset as in [21, 28, 54],

and the standard reconstruction metric, i.e., 3D intersection

over union (IoU) [28] for quantitative comparisons.

Network. Our network contains two parts as shown in

Figure 7. The first part is an Encoder-Decoder network

which takes images as input and outputs coarse SDF results.

The second part is a refiner network to further improve the

quality of the 3D reconstruction results. The network is

trained on all the 3D shapes in the dataset simultaneously.

Loss Function. In addition to the energy function as

shown in Section 5.1 containing the L2 image-based loss

Limg and the SDF loss Lreg ensuring the SDF values repre-

sent a valid signed distance function, we also add a geome-

try loss Lgeo that regularizes the finite difference Laplacian

of the predicted SDFs to obtain smooth outputs. Further-

more, we use a narrow band technique to control the effects

of the SDF and Laplacian losses since we care more about

these losses locally around the surfaces. Also, the SDF-

loss cannot be enforced everywhere on the discrete grid due

to singularities (e.g., the medial axis of the shape forms

a sharp crease) in the continuous SDF. The narrow-band

considers the SDF-loss only close to the surface, avoiding

SDF discretization issues elsewhere in the volume. We use

a distance-based binary mask M to zero them out further

away from the zero level-set. The mask is defined as

M = ||SDF || ≤ µ× voxelSize, (3)

1256

Category Airplane Bench Cabinet Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel Mean

NMR [21] 0.6172 0.4998 0.7143 0.7095 0.4990 0.5831 0.4126 0.6536 0.6322 0.6735 0.4829 0.7777 0.5645 0.6015

SoftRas (sil.) [28] 0.6419 0.5080 0.7116 0.7697 0.5270 0.6156 0.4628 0.6654 0.6811 0.6878 0.4487 0.7895 0.5953 0.6234

SoftRas (full) [28] 0.6670 0.5429 0.7382 0.7876 0.5470 0.6298 0.4580 0.6807 0.6702 0.7220 0.5325 0.8127 0.6145 0.6464

Ours 0.6874 0.6860 0.7735 0.8002 0.6436 0.6584 0.5150 0.6534 0.5553 0.7654 0.6288 0.8278 0.6244 0.6674

Table 2. Comparison of IoU with the state-of-the-art approaches [21, 28] on 13 ShapeNet categories.

Figure 7. Network structure for single-view SDF reconstruction.

where µ is a hyperparameter to define the width of the nar-

row band. We currently set it to be 1.6, which is determined

experimentally. The final loss function is a weighted sum of

the three losses with weights λ1 = λ2 = 0.02,

L = Limg +M⊗ (λ1Lreg + λ2Lgeo). (4)

Training Process. We first train the Encoder-Decoder

part of the network alone based on the three loss terms.

Then we fix the encoder and decoder and train the refiner

network on the same three loss terms to get refined SDF

shapes. In the end, we train all the three parts, i.e., encoder,

decoder, and refiner together to further improve the results.

We do not use the multi-resolution approach.

Qualitative Evaluation. Figure 8 shows that our

method can reconstruct detailed objects and accurately re-

cover complicated topologies. In contrast, SoftRaster-

izer [28] relies on a template mesh with spherical topology

and it cannot capture the complex topology of the chairs.

Quantitative Evaluation. We compare our method with

the state-of-the-art [21, 28] in terms of 3D IoU scores in Ta-

ble 2. Our method can reconstruct shapes with finer details

in the 13 categories. In addition, the IoU numbers show

that our results achieve higher accuracy, where our scores

surpass other approaches in most of the categories. A com-

parison to Chen et al. [5] is omitted because they use differ-

ent data preprocessing than the other methods [21, 28].

7. Discussion and Limitations

As a main advantage, SDFs can represent arbitrary

topologies, in contrast to triangle meshes that are restricted

to the topology of a template. In contrast to point clouds,

SDFs inherently represent continuous watertight surfaces.

We demonstrated applications of our approach in multi-

view shape reconstruction, and single view 3D reconstruc-

tion using deep learning. Our experimental results showed

that we can more robustly perform multi-view reconstruc-

tion than a state-of-the-art point-based differentiable ren-

derer. In addition, we achieve state-of-the-art results on sin-

gle view 3D reconstruction with deep learning models.

In our multi-view 3D reconstruction approach, our cur-

rent shading model is not sufficient to perform inverse ren-

dering from real images taken with a camera. For example,

we currently do not include effects such as shadows, inter-

reflections, texture, non-diffuse surfaces, or complex illumi-

nation. In contrast to rasterization-based differentiable ren-

derers, our ray tracing-based renderer could be extended to

include all such effects. A disadvantage of our deep learn-

ing approach is that we output a discrete SDF on a 3D grid.

Instead, we could learn a continuous signed distance func-

tion represented by a deep network like in DeepSDF [41].

This would be more memory efficient, but it might be com-

putationally too expensive for unsupervised 3D reconstruc-

tion with differentiable rendering, since it would require to

evaluate the network for each ray marching step.

8. Conclusion

We proposed a novel approach to differentiable ren-

dering using signed distance functions to represent water-

tight 3D geometry. Our rendering algorithm is based on

sphere tracing, but we observe that only the local shading

computation needs to be differentiable in our framework,

which makes the approach computationally more efficient

and allows for straightforward integration into deep learn-

ing frameworks. We demonstrate applications in multi-view

3D reconstruction and unsupervised single-view 3D recon-

struction using deep neural networks. Our experimental re-

sults illustrate the advantages over geometry representations

such as point clouds and meshes. In particular, we report the

state-of-the-art results in shape reconstruction.

1257

Method Input Image Rendered Views Input Image Rendered Views

GT

Ours

SoftRas[28]

GT

Ours

SoftRas[28]

GT

Ours

SoftRas[28]

GT

Ours

SoftRas[28]

GT

Ours

SoftRas[28]

Figure 8. Single-view reconstruction results for airplanes, chairs, and benches.

9. Acknowledgements

This project was supported by NSF IIS grant nr.

#1813583. We also appreciate active discussion with Qian

Zheng, Hui Huang, and Daniel Cohen-Or at Shenzhen Uni-

versity.

1258

References

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas J. Guibas. Representation learning and adversarial

generation of 3D point clouds. CoRR, abs/1707.02392, 2017.

[2] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin

Kwok. Synthesizing robust adversarial examples. In Pro-

ceedings of the 35th International Conference on Machine

Learning, pages 284–293, 2018.

[3] Angel X. Chang, Thomas A. Funkhouser, Leonidas J.

Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo Li, Silvio

Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong

Xiao, Li Yi, and Fisher Yu. ShapeNet: An information-rich

3D model repository. ArXiv, abs/1512.03012, 2015.

[4] Chengqian Che, Fujun Luan, Shuang Zhao, Kavita Bala, and

Ioannis Gkioulekas. Inverse Transport Networks. arXiv e-

prints, page arXiv:1809.10820, Sept. 2018.

[5] Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith,

Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-

ing to predict 3d objects with an interpolation-based differ-

entiable renderer. In Advances in Neural Information Pro-

cessing Systems 32 (NeurIPS 2019).

[6] Zhiqin Chen and Hao Zhang. Learning implicit fields for

generative shape modeling. IEEE Conference on Computer

Vision and Pattern Recognition, 2019.

[7] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin

Chen, and Silvio Savarese. 3D-R2N2: A unified approach

for single and multi-view 3D object reconstruction. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), 2016.

[8] Brian Curless and Marc Levoy. A volumetric method for

building complex models from range images. In Proceedings

of the 23rd annual conference on Computer graphics and

interactive techniques - SIGGRAPH ’96, 1996.

[9] Amaël Delaunoy and Emmanuel Prados. Gradient flows for

optimizing triangular mesh-based surfaces: Applications to

3D reconstruction problems dealing with visibility. Inter-

national Journal of Computer Vision, 95(2):100–123, Nov

2011.

[10] Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point

set generation network for 3D object reconstruction from a

single image. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), July 2017.

[11] Matheus Gadelha, Subhransu Maji, and Rui Wang. 3D shape

induction from 2D views of multiple objects. 2017 Inter-

national Conference on 3D Vision (3DV), pages 402–411,

2016.

[12] J. Gwak, C. B. Choy, M. Chandraker, A. Garg, and S.

Savarese. Weakly supervised 3D reconstruction with adver-

sarial constraint. In 2017 International Conference on 3D

Vision (3DV), pages 263–272, Oct 2017.

[13] Zhizhong Han, Mingyang Shang, Yu-Shen Liu, and Matthias

Zwicker. View Inter-Prediction GAN: Unsupervised repre-

sentation learning for 3D shapes by learning global shape

memories to support local view predictions. In AAAI, pages

8376–8384, 2019.

[14] Zhizhong Han, Mingyang Shang, Xiyang Wang, Yu-Shen

Liu, and Matthias Zwicker. Y2Seq2Seq: Cross-modal repre-

sentation learning for 3D shape and text by joint reconstruc-

tion and prediction of view and word sequences. In AAAI,

pages 126–133, 2019.

[15] John C. Hart. Sphere Tracing: a geometric method for the

antialiased ray tracing of implicit surfaces. The Visual Com-

puter, 12(10):527–545, Dec 1996.

[16] Paul Henderson and Vittorio Ferrari. Learning to generate

and reconstruct 3D meshes with only 2D supervision. In

Proceedings of the 29th British Machine Vision Conference

(BMVC 2018), 2018.

[17] P Henzler, N Mitra, and T Ritschel. Escaping Plato’s Cave

using adversarial training: 3d shape from unstructured 2d

image collections. In Proceedings of the International Con-

ference on Computer Vision 2019 (ICCV 2019), volume

2019. IEEE, 2019.

[18] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised

learning of shape and pose with differentiable point clouds.

In Advances in Neural Information Processing Systems

(NeurIPS 2018), pages 2807–2817, 2018.

[19] Li Jiang, Shaoshuai Shi, Xiaojuan Qi, and Jiaya Jia. GAL:

Geometric adversarial loss for single-view 3D-object recon-

struction. In The European Conference on Computer Vision

(ECCV), September 2018.

[20] Danilo Jimenez Rezende, S. M. Ali Eslami, Shakir Mo-

hamed, Peter Battaglia, Max Jaderberg, and Nicolas Heess.

Unsupervised learning of 3D structure from images. In

Advances in Neural Information Processing Systems 29

(NeurIPS 2016).

[21] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-

ral 3D mesh renderer. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. CoRR, abs/1412.6980, 2014.

[23] A. Kurenkov, J. Ji, A. Garg, V. Mehta, J. Gwak, C. Choy, and

S. Savarese. DeformNet: Free-form deformation network

for 3D shape reconstruction from a single image. In 2018

IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 858–866, March 2018.

[24] F. Langguth, K. Sunkavalli, S. Hadap, and M. Goesele.

Shading-aware multi-view stereo. In Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV), 2016.

[25] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-

nen. Differentiable monte carlo ray tracing through edge

sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia),

37(6):222:1–222:11, 2018.

[26] Hsueh-Ti Derek Liu, Michael Tao, Chun-Liang Li, Derek

Nowrouzezahrai, and Alec Jacobson. Adversarial geom-

etry and lighting using a differentiable renderer. CoRR,

abs/1808.02651, 2018.

[27] Hsueh-Ti Derek Liu, Michael Tao, and Alec Jacobson. Pa-

parazzi: Surface editing by way of multi-view image pro-

cessing. ACM Transactions on Graphics, 2018.

[28] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft Ras-

terizer: A differentiable renderer for image-based 3D rea-

soning. The IEEE International Conference on Computer

Vision, 2019.

1259

[29] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc

Pollefeys, and Zhaopeng Cui. DIST: Rendering deep im-

plicit signed distance function with differentiable sphere

tracing. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2020.

[30] Matthew M. Loper and Michael J. Black. OpenDR: An ap-

proximate differentiable renderer. In Lecture Notes in Com-

puter Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 2014.

[31] Abhimitra Meka, Maxim Maximov, Michael Zollhoefer,

Avishek Chatterjee, Hans-Peter Seidel, Christian Richardt,

and Christian Theobalt. LIME: Live intrinsic material es-

timation. In Proceedings of Computer Vision and Pattern

Recognition (CVPR), June 2018.

[32] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3D reconstruction in function space. In IEEE Con-

ference on Computer Vision and Pattern Recognition, 2019.

[33] Mateusz Michalkiewicz, Jhony K. Pontes, Dominic Jack,

Mahsa Baktashmotlagh, and Anders P. Eriksson. Deep Level

Sets: Implicit surface representations for 3D shape inference.

CoRR, abs/1901.06802, 2019.

[34] KL Navaneet, Priyanka Mandikal, Mayank Agarwal, and

R Venkatesh Babu. CAPNet: Continuous approximation

projection for 3D point cloud reconstruction using 2d super-

vision. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 8819–8826, 2019.

[35] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,

David Molyneaux, David Kim, Andrew J. Davison, Push-

meet Kohli, Jamie Shotton, Steve Hodges, and Andrew

Fitzgibbon. KinectFusion: Real-time dense surface mapping

and tracking. In 2011 10th IEEE International Symposium

on Mixed and Augmented Reality, ISMAR 2011, 2011.

[36] Thu Nguyen-Phuoc, Chuan Li, Stephen Balaban, and Yong-

Liang Yang. RenderNet: A deep convolutional network for

differentiable rendering from 3D shapes. In Advances in

Neural Information Processing Systems 31 (NeurIPS 2018),

2018.

[37] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and

Andreas Geiger. Differentiable volumetric rendering: Learn-

ing implicit 3d representations without 3d supervision. In

Proceedings IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), 2020.

[38] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and

Marc Stamminger. Real-time 3D reconstruction at scale us-

ing voxel hashing. ACM Transactions on Graphics, 2013.

[39] S Osher, R Fedkiw, and K Piechor. Level Set Methods and

Dynamic Implicit Surfaces. Applied Mechanics Reviews,

2004.

[40] Andrea Palazzi, Luca Bergamini, Simone Calderara, and

Rita Cucchiara. End-to-end 6-DoF object pose estimation

through differentiable rasterization. In The European Con-

ference on Computer Vision (ECCV) Workshops, September

2018.

[41] Jeong Joon Park, Peter Florence, Julian Straub, Richard

Newcombe, and Steven Lovegrove. DeepSDF: Learning

Continuous Signed Distance Functions for Shape Represen-

tation. arXiv e-prints, page arXiv:1901.05103, Jan 2019.

[42] Danping Peng, Barry Merriman, Stanley Osher, Hongkai

Zhao, and Myungjoo Kang. A PDE-Based Fast Local Level

Set Method. Journal of Computational Physics, 1999.

[43] Felix Petersen, Amit H. Bermano, Oliver Deussen, and

Daniel Cohen-Or. Pix2Vex: Image-to-geometry recon-

struction using a smooth differentiable renderer. CoRR,

abs/1903.11149, 2019.

[44] Ravi Ramamoorthi and Pat Hanrahan. A signal-processing

framework for inverse rendering. In Proceedings of the 28th

Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’01, pages 117–128, New York,

NY, USA, 2001. ACM.

[45] Elad Richardson, Matan Sela, Roy Or-El, and Ron Kimmel.

Learning detailed face reconstruction from a single image.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 5553–5562, 07 2017.

[46] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R.

Szeliski. A comparison and evaluation of multi-view stereo

reconstruction algorithms. In 2006 IEEE Computer Soci-

ety Conference on Computer Vision and Pattern Recognition

(CVPR’06), volume 1, pages 519–528, June 2006.

[47] Ben Semerjian. A new variational framework for multiview

surface reconstruction. In Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), 2014.

[48] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-

zstein. Scene Representation Networks: Continuous

3D-structure-aware neural scene representations. CoRR,

abs/1906.01618, 2019.

[49] S. Tulsiani, A. Kar, J. Carreira, and J. Malik. Learning

category-specific deformable 3D models for object recon-

struction. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 39(4):719–731, April 2017.

[50] Shubham Tulsiani, Tinghui Zhou, Alexei A. Efros, and Ji-

tendra Malik. Multi-view supervision for single-view recon-

struction via differentiable ray consistency. In IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

209–217, 2017.

[51] Qingxiang Wang, Cezary Kaliszyk, and Josef Urban. First

experiments with neural translation of informal to formal

mathematics. CoRR, abs/1805.06502, 2018.

[52] WangYifan, Felice Serena, Shihao Wu, Cengiz Öztireli, and

Olga Sorkine-Hornung. Differentiable surface splatting for

point-based geometry processing. ACM Transactions on

Graphics (proceedings of ACM SIGGRAPH ASIA), 38(6),

2019.

[53] Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun,

William T Freeman, and Joshua B Tenenbaum. MarrNet:

3D Shape Reconstruction via 2.5D Sketches. In Advances

In Neural Information Processing Systems (NeurIPS 2017),

2017.

[54] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and

Honglak Lee. Perspective Transformer Nets: Learning

single-view 3D object reconstruction without 3D supervi-

sion. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,

and R. Garnett, editors, Advances in Neural Information Pro-

cessing Systems 29 (NeurIPS 2016), pages 1696–1704. Cur-

ran Associates, Inc., 2016.

1260

[55] Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu,

Antonio Torralba, Joshua B. Tenenbaum, and William T.

Freeman. Visual Object Networks: Image generation with

disentangled 3D representations. In Advances in Neural In-

formation Processing Systems (NeurIPS 2018), 2018.

[56] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and

Markus Gross. Surface splatting. In Proceedings of the 28th

Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’01, pages 371–378, New York,

NY, USA, 2001. ACM.

1261

