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Abstract

In late fusion, each modality is processed in a separate

unimodal Convolutional Neural Network (CNN) stream and

the scores of each modality are fused at the end. Due to its

simplicity, late fusion is still the predominant approach in

many state-of-the-art multimodal applications. In this pa-

per, we present a simple neural network module for lever-

aging the knowledge from multiple modalities in convolu-

tional neural networks. The proposed unit, named Multi-

modal Transfer Module (MMTM), can be added at different

levels of the feature hierarchy, enabling slow modality fu-

sion. Using squeeze and excitation operations, MMTM uti-

lizes the knowledge of multiple modalities to recalibrate the

channel-wise features in each CNN stream. Unlike other

intermediate fusion methods, the proposed module could

be used for feature modality fusion in convolution layers

with different spatial dimensions. Another advantage of

the proposed method is that it could be added among uni-

modal branches with minimum changes in the their net-

work architectures, allowing each branch to be initialized

with existing pretrained weights. Experimental results show

that our framework improves the recognition accuracy of

well-known multimodal networks. We demonstrate state-

of-the-art or competitive performance on four datasets that

span the task domains of dynamic hand gesture recognition,

speech enhancement, and action recognition with RGB and

body joints.

1. Introduction

Different sensors can provide complementary informa-

tion about the same context. Multimodal fusion is the

act of extracting and combining relevant information from

the different modalities that leads to improved performance

over using only one modality. This technique is widely

used in various machine learning tasks, such as video clas-

sification [1, 2], action recognition [3], emotion recogni-

tion [4, 5], and audio visual speech enhancement [6, 7].
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Figure 1. (a) early fusion (b) late fusion (c) intermediate fusion

with Multimodal Transfer Module (MMTM). MMTM operates

between CNN streams and uses information from different modal-

ities to recalibrate channel-wise features in each modality.

In general, fusion can be achieved at the input level (i.e.

early fusion), decision level (i.e. late fusion), or intermedi-

ately [8]. Although studies in neuroscience [9, 10] and ma-

chine learning [1, 3] suggest that mid-level feature fusion

could benefit learning, late fusion is still the predominant

method utilized for mulitmodal learning [11–13]. This is

mostly due to practical reasons. For example, a simple pool-

ing operator [14, 15] or an attention mechanism [16] can be

used to fuse 1-dimensional prediction scores of each stream.

However, intermediate level features of different modalities

have different or unaligned spatial dimensions making the

intermediate fusing more challenging. Another reason for

the popularity of late fusion is that the architecture of each

unimodal stream is carefully designed over years to achieve

state-of-the-art performance for each modality. This also

enables the CNN streams of a multimodal framework to

be initialized by weights that have been pretrained with a

large number of unimodal training samples. However, in-

termediate fusion requires major changes in the base net-

work architecture, which complicates the use of pretrained

weights in most cases and requires the network to be re-

trained from randomly initialized states [17, 18]. Figure 1

illustrates three common multimodal fusion techniques.

The goal of the proposed method is to overcome the

aforementioned problems of intermediate fusion. Inspired

by the squeeze and excitation (SE) module [19] for uni-

modal convolutional neural networks, we propose a mul-

timodal transfer module to recalibrate the channel-wise fea-
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tures of different CNN streams. MMTMs can be inserted

into intermediate levels of any late fusion backbone ar-

chitecture. Each MMTM has two units: a) a multimodal

squeeze unit that receives the features from all modalities

at a given level of representation across the branches, gen-

erating a global joint representation of these features, and

b) an excitation unit that uses this joint representation to

adaptively emphasize on more important features and sup-

press less important ones in all modalities. The squeeze unit

aggregates spatial dimensions, allowing information with

global receptive fields from all modalities to be used in the

global representation. It also enables learning a joint repre-

sentation from modalities with different spatial dimensions.

Although the module design is generic and could poten-

tially be added at any level in the network hierarchy, the

optimal locations and number of modules are different for

each application. We design application specific networks

for gesture recognition, audio-visual speech enhancement,

and action recognition tasks and study the benefit of adding

MMTM in their architectures. We make the following em-

pirical observations from these applications. Firstly, adding

MMTM to intermediate and high-level features is benefi-

cial, whereas the same is not true about low-level features.

We believe that is because intera-modality correlation in

low-level features is lower compared to intermediate and

high-level features. This is also highlighted in previous re-

search [20]. Secondly, even in gesture recognition where

RGB and depth modalities are spatially aligned and fusion

can be done without the squeeze operation, squeezing con-

siderably improves the performance by providing informa-

tion with a global receptive field. Lastly, excitation by gat-

ing operation outperforms the sum operation that is usually

used in residual learning, highlighting the importance of the

emphasis and suppression mechanisms.

In summary, this paper makes the following contribu-

tions: First, we propose a new neural network module called

MMTM to fuse knowledge from intermediate features of

unimodal CNNs. Second, we design different network ar-

chitectures for three different multimodal fusion applica-

tions: gesture recognition using multiple visual modalities,

audio-visual speech enhancement, and action recognition

with RGB and body joints. We demonstrate through experi-

ment on these tasks that MMTM improves the performance

beyond the late fusion approach.

2. Related Work

In late fusion, the prediction of each unimodal stream

are fused to make the final prediction. Fusion can be via

element-wise summation, a weighted average [15], a bilin-

ear product [21], or a more sophisticated rank minimiza-

tion [22] method. Another approach to late fusion utilizes

attention to pick the best expert for each input signal [16].

The gated multimodal units [23] extends this method by en-

abling gating at intermediate feature levels. More recently,

Hu et al. [24] propose a dense multimodal intermediate fu-

sion network for hierarchical joint feature learning. Similar

to [23], the dense fusion operator in [24] assumes identi-

cal spatial dimensions for different streams. Despite the

similarity of these approaches to our work, their applica-

bility is limited to layers where the multimodal features’

spatial dimensions are the same, or at the very end of the

network where spatial dimensions are already aggregated.

The squeeze operation proposed in this work allows the fu-

sion of modalities with different spatial dimensions at any

level of the feature hierarchy.

In a related multimodal learning topic, called cross-

modal learning, information from multiple modalities are

used to improve the learning performance within any indi-

vidual modality. It is assumed that data from all the modali-

ties are present during training but the performance is tested

on only one modality [25]. MTUT [12] uses spatiotempo-

ral semantic alignment loss to improve the performance of

each stream in gesture recognition. We believe cross-modal

learning approaches are orthogonal to our work since the

improved unimodal networks learned by these methods can

initialize weights of the CNN streams in our model.

Multimodal Action Recognition in Videos Video [1, 14,

26] and skeleton [11, 27, 28] modalities have been exten-

sively used for the action recognition task. Each of these

approaches have their own drawbacks. With the lack of

explicit human body model, video based action recogni-

tion methods deal poorly with background clutter and non-

action movements [11]. On the other hand, by solely relying

on body pose most of contextual and global cues present in

the video will be lost. Recent methods develop architectures

to fuse these modalities to further improve the performance

of action recognition. In [28], an end-to-end trainable mul-

titask network for joint pose estimation and action recogni-

tion is proposed. PoseMap [11] utilizes a two stream net-

work to process spatiotemporal pose heatmaps and skeleton

separately, and uses late fusion for the final prediction. A

bilinear pooling block that separately pools input features

in modality and time directions is employed in [29].

Audio-Visual Speech Enhancement (AVSE) Work in

AVSE is strongly motivated by the cocktail party effect,

which refers to humans’ ability to selectively attend to audi-

tory signals of interest within a noisy environment. Experi-

ments in neuroscience have demonstrated that cross-modal

integration of audio-visual signals may improve the percep-

tual quality of the targeted acoustic signal [30–32]. Inspired

by the results from biological research, recent studies fo-

cus on augmenting audio only speech enhancement meth-

ods with visual information, such as lip movement. State-

of-the-art results have been achieved by recent AVSE mod-

els that use deep neural networks [6, 7, 33, 34]. The pre-

dominant approach taken for AV fusion is late fusion [13],
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where the audio and visual information is processed sepa-

rately then integrated at a singular point via channel-wise

concatenation.

Hand Gesture Recognition Interpreting hand gestures via

machine learning algorithms is significantly important in

human-computer interaction. We review the 3D convo-

lutional neural network based gesture recognition algo-

rithms [35–39] that are designed for processing time se-

ries data among other branches [40–43]. In [35], a novel

3D CNN is proposed to integrate depth and image gradi-

ent values to recognize dynamic hand gestures. Molchanov

et al. [36] employ a multistream 3D CNN to fuse streams

of data from multiple sensors including short-range radar,

color, and depth sensors for recognition. A real-time

method is presented in [37] to simultaneously detect and

classify gestures in videos. Camgoz et al. [38] present a

late fusion approach for fusing the scores of unimodal 3D

CNN streams. Miao et al. propose ResC3D [39], a 3D CNN

architecture that combines multimodal data using an atten-

tion model. MFFs [44] develops a data level fusion method

for RGB and optical flow. FOANet [45] proposes a sparse

fusion technique for hand gesture recognition. FOANet de-

composes each input modality (RGB, depth, and 2 types

of optical flow) into separate focus channels (global, right

hand, left hand) and processes each of these 12 focus chan-

nels in an independent unimodal network. Finally, it learns

a sparsely connected late fusion network to avoid overfit-

ting. Unlike our method, FOANet relies on the output of a

detector to find the focus areas in the video.

Squeeze and Excitation (SE) Network [19] Our proposed

method can be seen as a generalization to the SE module,

which is proposed for unimodal deep neural networks. The

SE modules uses self excitation to adaptively recalibrate

channel-wise feature responses. Our work adopts the SE

module for multimodal feature recalibrations.

3. Multimodal Transfer Module

In this section, we discuss the simplest case of fusion be-

tween two disjoint CNN streams, CNN1 and CNN2. Let

A ∈ R
N1×···×NK×C and B ∈ R

M1×···×ML×C′

repre-

sent the features at a given layer of CNN1 and CNN2, re-

spectively. Here, Ni and Mi represent the spatial dimen-

sions1, and C and C ′ represent the number of channels

of the corresponding features in CNN1 and CNN2 respec-

tively. MMTM receives features A and B as input, learns

a global multimodal embedding from them, and uses this

embedding to recalibrate the input features. This is done in

a two-step multimodal squeeze and excitation process de-

scribed below.

1In general, it is possible to have more than two (e.g. time dimension in

3D convolutions could be treated as a spatial dimension) or no (e.g. fully

connected layers) spatial dimensions.
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Figure 2. Architecture of MMTM for two modalities. A and B,

that represent the features at a given layer of two unimodal CNNs,

are the inputs to the module. For better visualization we limit the

number of their spatial dimensions to 2. MMTM uses squeeze

operations to generate global feature descriptor from each tensor.

Both tensors are map into a joint representation Z by using con-

catenation and fully-connected layer. The excitation signals EA

and EB are generated using the joint representation. Finally the

excitation signals are used to gate the channel-wise features in

each modality.

Squeeze The information in the output features of convo-

lution layers are limited by the size of their receptive fields

and lacks global context. As suggested by [19], we first

squeeze the spatial information into the channel descriptors

via a global average pooling over spatial dimensions of the

input features:

SA(c) =
1

∏K

i=1 Ni

∑

n1,...,nK

A(n1, . . . , nK , c) (1)

SB(c) =
1

∏L

i=1 Mi

∑

m1,...,mL

B(m1, . . . ,mL, c). (2)

Importantly, the squeeze operation enables fusion between

modalities with features of arbitrary spatial dimension.

Note that while we use simple average pooling, more so-

phisticated pooling methods could be used at this step.

Multimodal Excitation The function of this unit is to gen-

erate the excitation signals, EA ∈ R
C and EB ∈ R

C′

,

which can be used to recalibrate the input features, A and

B, by a simple gating mechanism:

Ã = 2× σ(EA)⊙A

B̃ = 2× σ(EB)⊙B,

where σ(.) is the sigmoid function and ⊙ is the channel-

wise product operation. This allows the suppression or

excitation of different filters in each stream. Note that

the MMTM weights are regularized in order to control the

proximity of EA and EB to zero. Specifically, increasing
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the regularization weight of EA pushes the gating signal

2 × σ(EA) closer to the identity vector, limiting the effect

of gating on feature A.

The gating signals must apply different calibration

weights to different modalities based on the same input rep-

resentation. We achieve this by first predicting a joint rep-

resentation Z ∈ R
CZ from the squeezed signals

Z = W[SA, SB] + b, (3)

and then predicting excitation signals for each modality

through two independent fully-connected layers

EA = WAZ + bA, EB = WBZ + bB. (4)

Here, [·, ·] represents the concatenation operation, W ∈
R

CZ×(C+C′),WA ∈ R
C×CZ ,WB ∈ R

C′
×CZ are the

weights, and b ∈ R
CZ , bA ∈ R

C , bB ∈ R
C′

are the biases

of the fully connected layers. As suggested in [19], we use

CZ = (C + C ′)/4 to limit the model capacity and increase

the generalization power. For fusing more than two modal-

ities, we simply generalize this approach by concatenating

squeezed features from all the modalities in Equation 3 and

predict excitation signals for each modality with an inde-

pendent fully-connected layer like in Equation 4.

Learning the joint representation in this way allows the

features of one modality to recalibrate the features of an-

other modality. For instance, in gesture recognition when a

gesture is blurry in RGB camera and more apparent in depth

modality, MMTM cross-modal recalibration affords more

efficient processing in the RGB stream. Figure 2 summa-

rizes the overall architecture of the proposed MMTM.

4. Applications

The MMTM is generic and can be easily integrated to

any multimodal CNN architectures. In this section, we ex-

plore a few applications that can benefit from MMTM and

describe the architecture changes necessary to support mul-

timodal fusion. We evaluate the performance of the pro-

posed multimodal models in the experiment section.

4.1. Hand Gesture Recognition

Hand gesture recognition is a video classification task.

It is shown that complementary sensory information, such

as depth and optical flow, improves the performance of the

gesture recognition [12, 37, 41, 44]. There are multiple mul-

timodal datasets available for this task [37, 41, 46, 47] and

several previous fusion methods have reported their results

on these datasets [36–39].

We design a gesture recognition network for fusing

RGB, depth, and optical flow video streams via MMTM.

To process the temporal inputs, we use I3D network archi-

tecture [48] with an inflated inception-v1 [49] backbone for

all the streams. In I3D network, convolution and pooling

kernels of the backbone network are expanded into 3D, en-

abling efficient spatial-temporal feature processing. We ap-

ply MMTM after the last 6 inception modules (the connec-

tivity is similar to figure 1). Note that the output of 3D con-

volutions has a time dimension in addition to height, width,

and channel dimensions. We empirically find that the best

performance is achieved when the squeeze operation is ap-

plied over all the dimensions except for the channel dimen-

sion.
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Figure 3. An overview of our AVSE architecture.

4.2. Audio­Visual Speech Enhancement

The predominant method for AV speech enhancement

combines audio and visual signals via channel-wise con-

catenation (CWC) using the late fusion approach. As an

application of MMTM, we explore AV fusion for speech en-

hancement tasks using MMTM instead of the CWC-based

late fusion. Model details are provided below, and an

overview of our AVSE architecture can be found in Fig-

ure 3.

Visual Network We use the spatio-temporal residual net-

work proposed by [50], which consists of a 3D spatio-

temporal convolution followed by a 2D ResNet-18 [51].

Processing 3D features in a 2D convolution operation is

achieved by packing the temporal dimension, t, into the

batch dimension. The network is randomly initialized and

trained concurrently with the AVSE task.

Audio Network Our audio network is an autoencoder with

skip connections; we follow the design detailed in [52]. Fig-

ure 3 (top) depicts the audio processing strategy, which fol-

lows the audio processing procedures of [6] and is detailed

in Section 5.2. The network takes a log-mel mixture magni-

tude spectrogram, log-mel(Xmix), as input and outputs the

predicted ideal ratio mask, M . The enhanced magnitude

spectrogram, Xenh, is obtained via Xenh = M ⊙ Xmix,

where ⊙ denotes element-wise multiplication. The network

is trained by minimizing the reconstruction loss between

the enhanced magnitude, Xenh, and the target magnitude,
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Xspec, where Xspec is obtained via short-time Fourier trans-

form (STFT) from the target waveform. The optimization

objective is given by L = ||Xenh −Xspec||1.

Audio-Visual Fusion via MMTM Let F j
a denote the audio

feature at layer j of the autoencoder with F j
a ∈ R

b×t×f×ca ,

where b, t, f , and ca are the batch, temporal, frequency,

and audio channel dimensions, respectively. Let F i
v denote

visual feature at layer i of the visual network’s ResNet-18

with F i
v ∈ R

b·t×h×w×cv , where h, w are spatial dimen-

sions and b, t, cv are the batch, temporal, and visual channel

dimensions, respectively. We unpack t from the batch di-

mension of F i
v via reshaping such that F i

v ∈ R
b×t×h×w×cv .

The MMTM takes Fa and Fv as input and carries out the

fusion procedure detailed in Section 3. For AVSE, the final

output is from audio tower; consequently, MMTM does not

gate on visual network.

4.3. Human Action Recognition

Recent methods in human activity recognition combine

video and 3D pose information to further improve the per-

formance of action recognition [11, 28, 29]. Following the

same approach, we utilize MMTM for intermediate fusion

between a visual and a skeleton based network. Similar

to the gesture recognition application, we use I3D for the

RGB video stream and HCN, as suggested by [53], for the

skeletal stream. Although HCN is not the sate-of-the-art

for skeleton-based action recognition, the simplicity of its

design makes it suitable for our approach.

As it is shown in Figure 4, HCN is comprised of two

2D convolution subnetworks: one branch processes the raw

skeleton data, and the other branch processes the motion–

the temporal gradients of the skeletal data. The two sub-

networks are fused via channel-wise concatenation and fol-

lowed by two convolution operations (conv5 and conv6),

and finally, a fully connected layer (fc7).

Figure 4 illustrates the complete network we are propos-

ing. We add 3 MMTMs that receive inputs from last three

inception modules of the I3D and conv5, conv6, and fc7 of

HCN network. Let A ∈ R
t×w×h×C represent an I3D fea-

ture, where t represents temporal dimension and w, h are

the spatial dimensions. Let B ∈ R
t×n×C′

represent HCN

features after conv5 and conv6 layers, where t is the tempo-

ral dimension and n is the body-joints dimension. The out-

put of the fully connected layer (fc7) in HCN network is a 1-

dimensional vector with no spatial dimension. In MMTMs,

we aggregate all the dimensions of the inputs A and B ex-

cept the channels. The dimensions of the I3D and HCN

features sent to the MMTMs (A and B) do not match, but

MMTM’s squeezing operation makes the fusion possible.

5. Experimental Results

In this section, we evaluate the performance of the pro-

posed method in gesture recognition, speech enhancement,

Conv6
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I3D Network
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Max-Pool
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Conv 1x1x1
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Conv1 Conv1
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Inc.

Inc. 

MMTM

MMTM

Figure 4. Proposed multimodal architecture for action recogni-

tion. Each “Inc.” block represents an inception module described

in [48].

and action recognition tasks. Due to the large number of

experiments, we use a simple rule to decide the number of

MMTMs in each architecture without an extensive architec-

ture tuning scheme. We use MMTMs after each module in

the second half of the network with minimum depth. This

is 6 MMTMs for hand gesture recognition experiments, 2
in speech enhancement, and 3 in action recognition exper-

iment. Refer to Section 5.4 for the study of the number of

MMTMs in hand gesture recognition task.

5.1. Hand Gesture Recognition

In this section, we evaluate our method against state-of-

the-art dynamic hand gesture methods. We conduct experi-

ments on two recent publicly available multimodal dynamic

hand gesture datasets: EgoGesture [41, 46] and NVGes-

tures [37] datasets. Figure 5 (a), (b) shows sample frames

from the different modalities of these datasets.

Implementation Details: In the design of our method, we

adopt the architecture of I3D network [48] as the backbone

network for each modality. The architecture details can be

found in Section 4.1. We start with the publicly available

ImageNet [56] + Kinetics [57] pretrained networks for all

of our experiments on I3D. We optimize the objective func-

tion with the standard SGD optimizer using a momentum

of 0.9. We start with the base learning rate of 10−2 and re-

duce it 10× when the loss is saturated. We use a batch size

of 4 containing 64-frames (32-frames for EgoGesture) snip-

pets in the training stage. We employ the following spatial

and temporal data augmentations during the training stage.

For spatial augmentation, videos are resized to 256 × 256
pixels, and then randomly cropped with a 224× 224 patch.

The resulting video is randomly flipped horizontally. For

temporal augmentation, 64 consecutive frames are picked

randomly from the videos. Shorter videos are zero-padded

on both sides to obtain 64 frames. During testing, we use

224×224 center crops, apply the models over the full video,

and average the predictions.
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Method Input Modalities Accuracy

I3D [48] RGB 90.33

I3D [48] Depth 89.47

VGG16 [58] RGB+Depth 66.5

VGG16 + LSTM [59] RGB+Depth 81.4

C3D [60] RGB+Depth 89.7

C3D+LSTM+RSTTM [41] RGB+Depth 92.2

I3D late fusion [48] RGB+Depth 92.78

Ours RGB+Depth 93.51

Table 1. Accuracies of different multimodal fusion hand gesture

methods on the EgoGesture dataset [41].

5.1.1 EgoGesture Dataset

EgoGesture dataset [41, 46] is a large multimodal hand

gesture dataset collected for the task of egocentric gesture

recognition. This dataset contains 24, 161 hand gesture

clips with 83 gesture classes being performed by 50 sub-

jects. Videos in this dataset include both static and dynamic

gestures captured with an Intel RealSense SR300 device in

RGB-D modalities across multiple indoor/outdoor scenes.

We assess the performance of our method along with

various hand gesture recognition methods published. Ta-

ble 1 compares unimodal test accuracies for I3D on sepa-

rate modalities and test accuracies of different hand gesture

methods by fusion of RGB and depth. VGG16 [58] pro-

cesses each frame independently and VGG16+LSTM [59]

combines this method with a recurrent architecture to lever-

age the temporal information. As can be seen, the 3D CNN-

based methods, C3D [60], C3D+LSTM+RSTMM [41], and

I3D [48] outperform the VGG16-based methods. However,

among the 3D CNN architectures, our method outperforms

the top performers I3D late fusion by 0.73%.

5.1.2 NVGesture Dataset

NVGestures dataset [37] was captured with multiple sen-

sors for studying human-computer interfaces. It contains

1532 dynamic hand gestures recorded from 20 subjects in-

side a car simulator with artificial lighting conditions. This

dataset includes 25 classes of hand gestures. The gestures

were recorded with SoftKinetic DS325 device as the RGB-

D sensor and DUO-3D for the infrared streams. In addition,

the optical flow and infrared disparity map modalities are

usually used to enhance the prediction results. Following

the previous works [37, 44], we only use RGB, depth, and

optical flow modalities in our experiments. The optical flow

Method Input Modalities Accuracy

I3D [48] RGB 78.42

I3D [48] Opt. flow 83.19

I3D [48] Depth 82.28

HOG+HOG2 [64] RGB+Depth 36.9

I3D late fusion [48] RGB+Depth 84.43

Ours RGB+Depth 86.31

Two Stream CNNs [14] RGB+Opt. flow 65.6

iDT [62] RGB+Opt. flow 73.4

R3DCNN [37] RGB+Opt. flow 79.3

MFFs [44] RGB+Opt. flow 84.7

I3D late fusion [48] RGB+Opt. flow 84.43

Ours RGB+Opt. flow 84.85

R3DCNN [37] RGB+Depth+Opt. flow 83.8

I3D late fusion [48] RGB+Depth+Opt. flow 85.68

Ours RGB+Depth+Opt. flow 86.93

Human [37] 88.4

Table 2. Accuracies of different multimodal fusion hand gesture

methods on the NVGesture dataset [37].

is calculated using the method presented in [61]. The RGB

and optical flow modalities are well-aligned in this dataset,

however, the depth map includes a larger field of view.

Table 2 presents the results of our method in comparison

with the recent state-of-the-art methods: HOG+HOG2, im-

proved dense trajectories (iDT) [62], R3DCNN [37], two-

stream CNNs [14] and MFFs [44]. We also report human

labeling accuracy for comparison. The iDT [62] method is

often recognized as the best performing method with hand-

engineered features [63]. Similar to the previous experi-

ment, we observe that the 3D-CNN-based methods outper-

form other hand gesture recognition methods, and among

them, Our method provides the top performance in all the

modalities. FOANet [45] method achieves 91.28% on this

dataset using a sparse fusion method. However, this result is

not comparable with the methods in Table 2 since FOANet

relies on a separate pre-trained network to detect the hand.

5.2. Audio­Visual Speech Enhancement

In this section, we evaluate our MMTM method on

audio-visual speech enhancement. Using PESQ and STOI

objective measures, we demonstrate that our slow fusion

MMTM method outperforms state-of-the-art late fusion,

channel-wise concatenation AVSE approaches. We use Vox-

Celeb2 [54], a large audio-visual dataset obtained from

YouTube that contains over 1 million utterances for 6,112

celebrities. The training, validation, and test datasets are

split by celebrity ID (CID) such that the sets are disjoint
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Method Fusion Method PESQ STOI

Target - 4.64 1.000

Mixed - 2.19 0.900

AVSE [6]† CWC 2.59 0.650

AO Baseline - 2.43 0.930

AV Baseline CWC 2.67 0.938

Ours MMTM 2.73 0.941

Table 3. Speech enhancement evaluations on the VoxCeleb2

dataset [54] for 3 simultaneous speakers. CWC: Channel-wise

concatenation. † for approximate reference only.

over CIDs. In addition, CHiME-1/3 [65, 66], NonStation-

aryNoise [67], ESC50 [68], HuCorpus [69], and private

datasets are used for additive noise.

Video frames are extracted at 25 FPS and S3FD [70] per-

forms face detection. Following [50], we discard redun-

dant visual information by cropping the mouth region via

facial landmarks obtained from Facial Alignment Network

[71]. Lip frames are resized to 122 × 122, transformed

to grayscale, then normalized using the global mean and

variance statistics from the training set. The audio wave-

form is extracted from the video following the methods of

[6, 72]. We specify a window length of 40ms, hop size of

10ms, and sampling rate of 16kHz to align one video frame

to four audio steps. Short-time Fourier transform (STFT)

with a Hanning window function converts the waveform to

spectrogram, Xspec ∈ R
T×F with a frequency resolution

of F = 321, representing frequencies from 0− 8kHz.

Training samples of batch size 4 are generated on-the-fly

as lip frame and spectrograms pairs, (Xvid, Xspec). Inter-

ference spectrograms, Xinter, are sampled from the Vox-

Celeb2 set. We progressively increase the number of inter-

ference speakers during training, beginning with one and

incrementing by one every 50 epochs until we reach the

max of four. A noise spectrogram, Xn, is randomly sam-

pled from the noise datasets. The mixture spectrogram is

constructed via Xmix = Xspec + αXinter + βXn, where

α, β are mixing coefficients that achieve a specific SNR.

Training and test SNRs are sampled from 0-20dB and 2.5-

17.5dB ranges, respectively. Xmix is transformed to a log-

mel representation, logXmel ∈ R
T×F , where T = 116 and

F = 80. We augment lip frames, Xvid, via random crop-

ping (± 5 pixels) and left-right flips. Augmented frames are

resized to 112× 112 and fed into the visual network.

Objective evaluation results are shown in Table 3. We

evaluate enhanced speech using the perceptual quality of

speech quality (PESQ) [73] and the short-time objective in-

telligibility (STOI) [74]. The audio only (AO) model is

trained without the visual network and establishes an AO

speech enhancement baseline. The AV baseline model es-

tablishes a baseline for predominant AVSE approaches that

perform late fusion via CWC of AV features. We closely

aligned the fusion mechanism in our AV baseline model ar-

chitecture to that of [6], and we matched the sample gen-

Method Input Modalities Accuracy

HCNours Pose 77.96

I3D [48] RGB 89.25

DSSCA - SSLM [75] RGB+Pose 74.86

Bilinear Learning [29] RGB+Pose 83.0

2D/3D Multitask [28] RGB+Pose 85.5

PoseMap [11] RGB+Pose 91.71

Late Fusion (I3D + HCNours) RGB+Pose 91.56

Ours RGB+Pose 91.99

Table 4. Accuracies of different multimodal fusion action recogni-

tion methods on the NTU-RGBD dataset [55].

eration and training procedure as best we could given the

information available. We report on [6] for reference only.

Our AVSE model outperforms the AO and AV base-

lines on both objective measures PESQ and STOI. We out-

perform the AO baseline by 0.3 PESQ and 0.01 in STOI,

demonstrating that visual information improves speech en-

hancement performance. Further, we outperform the AV

baseline with CWC fusion by 0.06 PESQ, indicating that

MMTM via slow fusion affords the greatest performance

improvement. Our model generalizes to speakers unseen

during training since CID is disjoint across train/test sets.

5.3. Action Recognition

NTU-RGBD dataset [55] is a well-known large scale

multimodal dataset. It contains 56, 880 samples captured

from 40 subjects performing 60 classes of activities at 80
view-points. Each action clip includes up to two people on

the RGB video as well as 25 body joints on 3D coordinate

space. We followed the cross-subject evaluation [55] that

splits the 40 subjects into training and testing sets. To have a

fair comparison with previous works, we only use RGB and

pose (skeleton) modalities. The architecture details can be

found in Section 4.3. We followed section 5.1 for training

settings as well as RGB data preparation and augmentation.

Table 5 shows the result of our method in comparison

with the recent state-of-the-art methods on NTU-RGBD

dataset. The first part of the table shows our unimodal

baselines with I3D on RGB and HCN [53] on skeletons.

We use 3D skeletons and follow the 32 frame subsampling

method from the original paper. For simplicity in the fu-

sion mechanism, we implemented multi-person slow fusion

method [53]. Consequently, our reported accuracy on HCN

is lower than the result in [53]. The second part shows state-

of-the-art methods specifically design for action recogni-

tion by integrating RGB and skeleton. Our proposed fu-

sion method outperforms all the recent action recognition

algorithms. To our knowledge this is a new state-of-the-art

result for RGB+Pose on the NTU-RGBD dataset [55].

Next, we use the recently released code of [17] to com-

pare several general purpose multimodal fusion algorithms

on this dataset. We implement and train the proposed

method within this framework. To have an identical set-
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ting with other methods, we use inflated Resnet-50 [76] for

video processing and the implementation of HCN [53] pro-

vided in this framework for skeleton processing. Table 4

illustrates the performance of these unimodal networks as

well as different state-of-the-art multimodal fusion meth-

ods. MFAS [17] is an architecture search algorithm that

leverages a sequential architecture exploration method to

find an optimal fusion architecture. In addition to the two

stream CNN [14], which is a late fusion algorithm, we

also report the results of two intermediate fusion algorithms

Gated Multimodal Units (GMU) [23] and CentralNet [18].

Our method outperforms the state-of-the-art MFAS method

without an extensive model search on this dataset. We be-

lieve this performance could be further improved by a com-

prehensive architecture tuning.

Method Input Modalities Accuracy

HCN [53] Pose 85.24

Infalated Resnet-50 [76] RGB 83.91

Two Stream [14] RGB+Pose 88.60

GMU [23] RGB+Pose 85.80

CentralNet [18] RGB+Pose 89.36

MFAS [17] RGB+Pose 90.04

Ours RGB+Pose 90.11

Table 5. Comparison of state-of-the-art multimodal fusion algo-

rithms on the NTU-RGBD dataset [55]. All methods use HCN

and Infalated Resnet-50 backbone unimodal architectures.

5.4. Analysis of the Network

To understand the effects of some of our model choices,

we explore the performance of some variations of our model

on the NVGesture dataset [37]. In particular, we compare

our fusion method with different architectures in the transfer

layer. We also explore using a different number of transfer

layers when all the implementation details are the same as

RGB+Depth gesture recognition network described in Sec-

tion 5.1.2.

Since the spatial dimensions are aligned in this problem,

we can directly concatenate the convolutional features with-

out squeezing them in the MMTM. In order to keep the spa-

tial dimensions of these features across the module, we also

need to change all the fully connected layers in MMTM to

convolution layers with kernel size 1. This ensures that the

number of parameters remains the same. We refer to this

approach as convolutional MMTM. In addition, we also

use a variation of the convolutional MMTM that utilizes

a sum operation instead of the gating operation. This ap-

proach is closely related to residual learning [51] and has

been proposed for multimodal fusion with aligned spatial

dimensions [77]. Finally, we evaluate the performance of

the original Squeeze and Excitation (SE) approach in which

each unimodal stream uses self excitation to recalibate its

own channel-wise features. The scores of these unimodal

Method Accuracy #FLOPS #Parameters

Early Fusion 78.84 247M 12.3M
Late Fusion 84.43 405M 24.6M
Convlutional MMTM 84.43 25.24G 31.6M
Convlutional MMTM (with sum op.) 84.65 25.24G 31.6M
SE [19] + Late Fusion 85.06 472M 31.6M
MMTM 86.31 472M 31.6M

Table 6. Comparison of different MMTM architectures on the

NVGesture dataset.

networks are fused by late fusion at the end.

Table 6 compares the accuracy of these variations, as

well as their FLOPS and number of parameters with the late

fusion and MMTM. Surprisingly, the convolutional MMTM

variations do not show any noticeable improvement over the

late fusion method. This result highlights the importance of

extracting information with global receptive field informa-

tion in the squeeze unit. We also note that not using the

squeeze blocks increase the number of FLOPS by about 5
times. Finally, the result of self excitation approach with

no intermediate fusion clearly shows that the most of per-

formance gain in MMTM is due to the slow fusion of the

modalities rather than pure squeeze and excitation method.

As we mentioned in Section 4.1, we use MMTM after

the last 6 inception modules. In the last study, we eval-

uate the performance of the RGB+Depth gesture recogni-

tion network with MMTM applied to a different number of

inception modules. Figure 6 shows how the performance

changes with respect to the number of MMTMs. This ex-

periment indicates that the best performance is achieved

when the output of half of the last inception modules (6 out

of 12) are fused by MMTM. This suggests that mid-level

and high-level features benefit more than low-level features

from this approach.

1 6 12

84.5

85.5

86.5
MMTM

Late Fusion

Figure 6. Accuracy vs. #MMTMs on the NVGesture dataset.

6. Conclusion

We present a simple neural network fusion module for

leveraging the knowledge from multiple modalities in con-

volutional neural networks. The proposed module can be

added at different levels of the feature hierarchy, allowing

slow modality fusion. A wide range of experiments on ap-

plications with different types of modalities show applica-

bility of the proposed module to gesture recognition, audio-

visual speech enhancement, and human action recognition.
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and Fabio A González. Gated multimodal units for infor-

mation fusion. ICLR Workshops, 2017. 2, 8

[24] Di Hu, Chengze Wang, Feiping Nie, and Xuelong Li. Dense

multimodal fusion for hierarchically joint representation. In

ICASSP, 2019. 2

[25] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam,

Honglak Lee, and Andrew Y Ng. Multimodal deep learn-

ing. In ICML, 2011. 2

[26] Mehran Khodabandeh, Hamid Reza Vaezi Joze, Ilya

Zharkov, and Vivek Pradeep. DIY human action dataset gen-

eration. In CVPR Workshops, 2018. 2

[27] Pengfei Zhang, Cuiling Lan, Junliang Xing, Wenjun Zeng,

Jianru Xue, and Nanning Zheng. View adaptive neural net-

works for high performance skeleton-based human action

recognition. TPAMI, 2019. 2

[28] Diogo C Luvizon, David Picard, and Hedi Tabia. 2D/3D

pose estimation and action recognition using multitask deep

learning. In CVPR, 2018. 2, 5, 7

[29] Jian-Fang Hu, Wei-Shi Zheng, Jiahui Pan, Jianhuang Lai,

and Jianguo Zhang. Deep bilinear learning for RGB-D action

recognition. In ECCV, September 2018. 2, 5, 7

[30] Asif A Ghazanfar and Nikos K Logothetis. Neuroperception:

Facial expressions linked to monkey calls. Nature, 2003. 2

[31] Sarah Partan and Peter Marler. Communication goes multi-

modal. Science, 1999.

[32] Candy Rowe. Sound improves visual discrimination learn-

ing in avian predators. Proceedings of the Royal Society of

London. Series B: Biological Sciences, 2002. 2

[33] Triantafyllos Afouras, Joon Son Chung, and Andrew

Zisserman. My lips are concealed: Audio-visual

speech enhancement through obstructions. arXiv preprint

arXiv:1907.04975, 2019. 2

[34] Jen-Cheng Hou, Syu-Siang Wang, Ying-Hui Lai, Yu Tsao,

Hsiu-Wen Chang, and Hsin-Min Wang. Audio-visual speech

enhancement using multimodal deep convolutional neural

networks. IEEE Transactions on Emerging Topics in Com-

putational Intelligence, 2018. 2

[35] Pavlo Molchanov, Shalini Gupta, Kihwan Kim, and Jan

Kautz. Hand gesture recognition with 3D convolutional neu-

ral networks. In CVPR workshops, 2015. 3

[36] Pavlo Molchanov, Shalini Gupta, Kihwan Kim, and Kari

Pulli. Multi-sensor system for driver’s hand-gesture recog-

13297



nition. In IEEE International Conference and Workshops on

Automatic Face and Gesture Recognition, 2015. 3, 4

[37] Pavlo Molchanov, Xiaodong Yang, Shalini Gupta, Kihwan

Kim, Stephen Tyree, and Jan Kautz. Online detection and

classification of dynamic hand gestures with recurrent 3D

convolutional neural network. In CVPR, 2016. 3, 4, 5, 6, 8

[38] Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, and

Richard Bowden. Using convolutional 3D neural networks

for user-independent continuous gesture recognition. In In-

ternational Conference on Pattern Recognition. IEEE, 2016.

3

[39] Qiguang Miao, Yunan Li, Wanli Ouyang, Zhenxin Ma, Xin

Xu, Weikang Shi, Xiaochun Cao, Zhipeng Liu, Xiujuan

Chai, Zhuang Liu, et al. Multimodal gesture recognition

based on the ResC3D network. In ICCV Workshops, 2017.

3, 4

[40] Liang Zhang, Guangming Zhu, Peiyi Shen, Juan Song,

Syed Afaq Shah, and Mohammed Bennamoun. Learn-

ing spatiotemporal features using 3DCNN and convolutional

LSTM for gesture recognition. In CVPR, 2017. 3

[41] Congqi Cao, Yifan Zhang, Yi Wu, Hanqing Lu, and Jian

Cheng. Egocentric gesture recognition using recurrent 3D

convolutional neural networks with spatiotemporal trans-

former modules. In CVPR, 2017. 4, 5, 6

[42] Runpeng Cui, Hu Liu, and Changshui Zhang. Recurrent

convolutional neural networks for continuous sign language

recognition by staged optimization. In CVPR, 2017.

[43] Guangming Zhu, Liang Zhang, Peiyi Shen, and Juan Song.

Multimodal gesture recognition using 3-D convolution and

convolutional LSTM. IEEE Access, 2017. 3

[44] Okan Kopuklu, Neslihan Kose, and Gerhard Rigoll. Mo-

tion fused frames: Data level fusion strategy for hand gesture

recognition. In CVPR Workshops, 2018. 3, 4, 6

[45] Pradyumna Narayana, Ross Beveridge, and Bruce A. Draper.

Gesture recognition: Focus on the hands. In CVPR, 2018. 3,

6

[46] Yifan Zhang, Congqi Cao, Jian Cheng, and Hanqing Lu.

EgoGesture: A new dataset and benchmark for egocentric

hand gesture recognition. IEEE Transactions on Multime-

dia, 2018. 4, 5, 6

[47] Hamid Reza Vaezi Joze and Oscar Koller. MS-ASL: A large-

scale data set and benchmark for understanding american

sign language. BMVC, 2019. 4

[48] Joao Carreira and Andrew Zisserman. Quo vadis, action

recognition? a new model and the kinetics dataset. In CVPR,

2017. 4, 5, 6, 7

[49] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015. 4

[50] Themos Stafylakis and Georgios Tzimiropoulos. Combining

residual networks with lstms for lipreading. arXiv preprint

arXiv:1703.04105, 2017. 4, 7

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 4, 8

[52] Daniel Michelsanti, Zheng-Hua Tan, Sigurdur Sigurdsson,

and Jesper Jensen. On training targets and objective func-

tions for deep-learning-based audio-visual speech enhance-

ment. In ICASSP, 2019. 4

[53] Chao Li, Qiaoyong Zhong, Di Xie, and Shiliang Pu. Co-

occurrence feature learning from skeleton data for action

recognition and detection with hierarchical aggregation. IJ-

CAI, 2018. 5, 7, 8

[54] Joon Son Chung, Arsha Nagrani, and Andrew Zisserman.

Voxceleb2: Deep speaker recognition. arXiv preprint

arXiv:1806.05622, 2018. 6, 7

[55] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang.

NTU RGB+D: A large scale dataset for 3D human activity

analysis. In CVPR, 2016. 6, 7, 8

[56] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, 2009. 5

[57] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,

Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,

Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-

man action video dataset. arXiv preprint arXiv:1705.06950,

2017. 5

[58] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. ICLR,

2015. 6

[59] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama,

Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko,

and Trevor Darrell. Long-term recurrent convolutional net-

works for visual recognition and description. In CVPR, 2015.

6

[60] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3D convolutional networks. In ICCV, 2015. 6
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