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Abstract

Blind image deblurring remains a challenging problem

for modern artificial neural networks. Unlike other image

restoration problems, deblurring networks fail behind the

performance of existing deblurring algorithms in case of

uniform and 3D blur models. This follows from the diverse

and profound effect that the unknown blur-kernel has on the

deblurring operator.

We propose a new architecture which breaks the deblur-

ring network into an analysis network which estimates the

blur, and a synthesis network that uses this kernel to de-

blur the image. Unlike existing deblurring networks, this

design allows us to explicitly incorporate the blur-kernel in

the network’s training.

In addition, we introduce new cross-correlation layers

that allow better blur estimations, as well as unique com-

ponents that allow the estimate blur to control the action of

the synthesis deblurring action.

Evaluating the new approach over established bench-

mark datasets shows its ability to achieve state-of-the-art

deblurring accuracy on various tests, as well as offer a ma-

jor speedup in runtime.

1. Introduction

When taking a photo using a handheld device, such as a

smartphone, camera shakes are hard to avoid. If the scene

is not very bright, the movement during exposure results in

a blurry image. This becomes worse as the scene is darker

and a longer exposure time is needed.

The task of recovering a blur-free image given a single

blurry photo is called deblurring and is typically divided

into blind and non-blind cases, depending on whether the

blur-kernel is known and unknown respectively. Both cases

were studied extensively in the computer vision literature,

and were addressed using dedicated algorithms [26, 36, 17,

44, 31, 5] and using Artificial Neural Networks (ANNs),

which are either used for implementing parts of the de-

blurring pipeline [35, 43, 49, 1, 37] or carrying-out the en-

tire pipeline [28, 39, 19, 20, 29]. Due to the ill-posedness

of the blind deblurring case, classic methods use various

constraints and image priors to regularize the space of so-

lutions [7, 3, 26, 41, 9]. Typically these methods consist

of a time-consuming iterative optimization, where both the

sharp image and blur-kernel are recovered, as well as relay

on specific image priors that may fail on certain types of

images.

In these respects, the ANN-based solutions offer a clear

advantage. While they may require a long training time,

their subsequent application consists of a rather efficient

feed-forward procedure. Furthermore, using suitable train-

ing sets they achieve a (locally) optimal performance over

wide classes of images. It is worth noting that in this domain

the training sets are produced automatically by applying a

set of blur-kernels over a set of sharp images involving no

manual effort.

Nevertheless, unlike other image restoration problems,

such as denoising [50, 51], upscaling [6, 14, 24], and in-

painting [32, 45, 47], even the case of spatially-uniform

blind deblurring ANN-based approaches fail to show a clear

improvement over existing algorithms when it comes to the

accuracy of the deblurred image. This major shortcoming

stems from the fact that the space of blur-kernels, which

specifies the blur degradation, is very large and has a very

diverse effect over the inverse operator. Indeed, this is in

contrast to the one-dimensional space of noise amplitude

σ that governs denoising. While it is shown that a single

network trained over a wide range of σ can achieve a de-

noising accuracy over a specific σ∗ which is comparable to

a network trained over that particular value [50]. The ana-

log experiment shows that this is far from being the case for

image deblurring, as reported in [35] and demonstrated in

Figure 1.

In this paper we describe a novel network architecture

and training scheme that account for the unique nature of

the deblurring operation. The design of this new network

incorporates various components found in image deblurring

algorithms, and allows it to mimic and generalize their op-
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Figure 1. Different network configurations. Column 2 from the left shows the results obtained when training our synthesis network

without the analysis. Like existing deblurring-networks, this requires it cope with every possible blur-kernel. The results of our network

pair archives a better deblurring in Column 3. Providing the ground-truth (GT) kernel to the synthesis network achieves better results

(Column 4) suggesting that our synthesis network performs better than our analysis. Finally, the result of a network trained for a single

specific kernel is shown in Column 5, offering a moderate improvement. These configurations were tested on 1000 images and resulted in

the following mean PSNR: No analysis 23.7, our 26.6, GT kernel 28.28, Kernel-Expert 33.75.

eration. More specifically, similarly to blind-deblurring al-

gorithms that recover the blur-kernel, our architecture is di-

vided into a pair of analysis and synthesis networks, where

the first is trained to estimate the blur-kernel, and the sec-

ond uses it to deblur the image. Unlike existing ANN-based

architectures, this data path allows our training process to

explicitly utilize the ground-truth blur-kernel in the training

process.

Moreover, inspired by the success of recent algorithms

to recover the blur-kernel from irregularities in the auto-

correlation of the blurry image, we introduce this compu-

tation as a layer of the analysis network, allowing it to per-

form this recovery as well as generalize it.

Finally, the recovered blur-kernel governs the non-blind

deblurring operation globally and uniformly across the im-

age. This further motivates us to introduce an additional

component into the synthesis network, allowing it to encode

and spread the kernel globally across its layers.

Evaluation of this new approach over the case of

spatially-uniform blur (convolution) consistently demon-

strates its ability to achieve superior deblurring accuracy

compared to existing deblurring networks. These tests also

show that the new network compares favorably to existing

state-of-the-art deblurring algorithms.

2. Previous Work

Image deblurring has been the topic of extensive re-

search in the past several decades. Since this contribution

relates to the blind image deblurring, we will limit the sur-

vey of existing art to this case.

In case of 2D camera rotation, the blur is uniform across

the image and can be expressed by a convolution with a sin-

gle 2D blur-kernel. To resolve the ambiguity between the

blur and the image inherent to the blind deblurring case, as

well as to compensate for the associated data loss, differ-

ent priors are used for the recovery of the latent image and

blur-kernel. The image priors typically model the gradients

distribution found in natural images, and the blur-kernel is

often assumed to be sparse. Chan and Wong [2] use the to-

tal variation norm for image regularization. Fergus et al. [7]

employ a maximum a-posteriori estimation that uses a mix-

ture of Gaussians to model the distribution the image gradi-

ents and a mixture of exponential distributions to model the

blue-kernel. Shan et al. [36] suggest a different approxi-

mation for the heavy-tailed gradient distribution and add a

regularization term to promote sparsity in the blur-kernel.

Cho and Lee [3] accelerates the estimation by considering

the strong edges in the image. Xu and Jia [42] use edge

selection mask to ignore small structures that undermine

the kernel estimation. Following this work, Xu et al. [44]

add an L0 regularization term to suppress small-amplitude

structures in the image to improve the kernel estimation.

Another line of works exploit regularities that natural im-

ages exhibit in the frequency domain. Yitzhaky et al. [46]

assume a 1D motion blur and use auto-correlation over the

image derivative to find the motion direction. Hu et al. [12]

use 2D correlation to recover 2D kernels and use the eight-

point Laplacian for whitening the image spectrum. Gold-
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stein and Fattal [9] use an improved spectral whitening for

recovering the correlations in the images as well as use a re-

fined power-law model the spectrum. These method resolve

the power spectrum of the kernel, and use a phase retrieval

algorithm to recover its phase [8]. In order to allow our

analysis network to use such a kernel recovery process, we

augment it with special layers that compute the correlation

between different activations.

The case of a 3D camera rotation, the blur is no longer

uniform across the image but can be expressed by a 3D

blur-kernel. Gupta et al. [10] as well as Whyte et al. [41]

use the maximum a-posteriori estimation formulation to re-

cover these kernels. Finally, the most general case of blur

arise from camera motion and parallax or moving objects

in the scene, in which case a different blur applies to differ-

ent objects in the scene, and is addressed by segmenting the

image [25].

More recently the training and use of artificial neu-

ral networks, in particular Convolutions Neural Networks

(CNNs), became the dominant approach for tackling var-

ious image restoration tasks, including image deblurring.

Earlier works focused on the the non-blind uniform deblur-

ring, for example Schuler et al. [35] use a multi-layer per-

ceptron in order to remove the artifacts produced by a non-

blind deblurring algorithm. Xu et al. [43] based their net-

work on the kernel separability theorem and used the SVD

of the pseudo-inverse of the blur kernel to initialized the

weights of large 1D convolutions. Both those methods need

to be trained per kernel, which burdens their use at run-time.

Zhang et al. [49] managed to avoid per-kernel training

by first applying a non ANN based deconvolution module,

followed by a FCNN to remove noise and artifacts from the

gradients. This is done iteratively where the denoised gra-

dients are used as image priors to guide the image decon-

volution in the next iteration. However, this method is still

limited to the non-blind case for the initial deblurring step.

On the other hand, a few architecture were purposed for

blur estimation. Chakrabarti [1] train a network to estimate

the Fourier coefficients of a deconvolution filter, and used

the non-blind EPLL [53] method to restore the sharp image

and generate comparable performance to state-of-the-art it-

erative blind deblurring methods. Sun et al. [37] trained a

classification network to generate a motion field for non-

uniform deblurring. The classification is performed locally

and restricted to 73 simple linear blur-kernels, and therefore

limited to simple blurs. Both of the above methods [1, 37]

use a traditional non-blind method to deblur the image.

Most recent effort focuses on end-to-end (E2E) net-

works, trained over dataset containing non-uniform paral-

lax deblurring (dynamic scene). Nah et al. [28] proposed

an E2E multi-scale CNN which deblurs the image in a

coarse-to-fine fashion. This network tries to recover the la-

tent sharp image at different scales using a loss per level.

Following this work, Tao et al. [39] used a scale-recurrent

network with share parameters across scales to perform de-

blurring in different scales. This reduce the number of pa-

rameters and increase stability. Kupyn et al. [19] use a

discriminator-based loss, which encourages the network to

produce realistic-looking content in the deblurred image.

While capable of deblurring complex scenes with multiple

moving objects, those methods fall short in the uniform blur

case. As we show below, this case greatly benefits from

using the ground-truth kernels in the training. Nimisha et

al. [29] use an auto-encoder to deblur images, by mapping

their latent representation into a blur-free one using a ded-

icated generator network. While this approach provides an

E2E network, it was trained over a uniform blur.

3. Method

The construction of the new deblurring networks pair

that we describe here is inspired by the computation

pipeline of existing blind deblurring algorithms [9, 3]. Sim-

ilarly to these algorithms our deblurring process first recov-

ers the blur-kernel using a dedicated analysis network. The

estimated kernel, along with the input image, are then fed

into a second synthesis network that performs the non-blind

deblurring and recovers the sharp image. This splitting of

the process allows us to employ a blur-kernel reconstruction

loss over the analysis network, on top of the sharp image

reconstruction loss that applies to both networks. In Sec-

tion 3.4 we describe this training process.

Several deblurring algorithms [46, 9, 12] successfully re-

cover the blur-kernel based on the irregularities it introduces

to the auto-correlation of the input image. In order to uti-

lize this computational path in our analysis network, we in-

troduce in Section 3.1 a unique layer that computes these

correlations as well as generalizes them.

Finally, in case of the uniform 2D blur, i.e., convolu-

tion, that we consider (as well as the 3D non-uniform case),

the sharp image recovery consists of a global operator (de-

convolution) whose operation is dictated by the blur-kernel

across the entire image. This fundamental fact inspires an-

other design novelty that we introduce in the synthesis net-

work architecture. As we describe in Section 3.2, the syn-

thesis network consists of a fairly-standard U-Net architec-

ture which carries out the image sharpening operation. In

order to allow the estimated kernel to dictate its operation,

and do so in a global manner, we augment this network with

specialized components that encode the kernel into multipli-

ers and biases that affect the U-Net action across the entire

image domain and all the layers.

The derivation of our new approach, as well as its evalua-

tion in Section 4, assumes a uniform blur (2D convolution).

In Section 5 we discuss the option of generalizing this ap-

proach to handle more general blurring.
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Figure 2. Analysis Network Architecture. The first stage con-

sists of extracting features (activations) at multiple scales by ap-

plying convolution layers, and pooling operations. At the second

stage, the cross-correlation between the resulting activations are

computed at all scales. Finally, the estimated blur-kernel is re-

constructed from coarse to fine by means of un-pooling and con-

volution steps. The pooling and up-pooling operations apply x2

scaling. We use 64 filters in the feature extracting step, and re-

duce them to 32 channels before computing the cross-correlation

stage. This illustration shows only two spatial scalings, whereas

our implementation consists of three.

3.1. Analysis Network

The first network in our pipeline is the analysis network

which receives the input blurry image and estimates the un-

derlining blur-kernel. The novel layers that we introduce to

its architecture are inspired by previous works [46, 9, 12]

that describe how the Fourier power-amplitudes compo-

nents of the blur-kernel can be estimated from the auto-

correlation function of the blurry image. These methods

rely on the observation that natural images lose their spa-

tial correlation upon differentiation. Thus, any deviations

from a delta auto-correlation function can be attributed to

the blur-kernel’s auto-correlation (or power-amplitudes in

Fourier space).

Standard convolutional networks do not contain this

multiplicative step between its filter responses, and hence

mimicking this kernel-recovery pipeline may be difficult to

be learned. Rather than increasing the networks capacity

by means of increasing its depth, number of filters and non-

linearities, we incorporate these computational elements as

a new correlations layers that we add to its architecture.

Correlations Layers. The analysis network consists of

the following three functional layers: (i) a standard con-

volutional layer that receives the input image and extracts

(learnable) features from it. This process is applied recur-

sively to produce three spatial levels. Specifically, at each

level we use 3 convolution layers applying 64 filters of size

7-by-7, separated by x2 pooling, to extract feature maps for

the correlation layer that follows. By convolution layers

we imply also the addition of bias terms and a point-wise

application of a ReLU activation function. Since the cor-

relation between every pair of filters is quadratic in their

number, we reduce their number by half (at each level), by

applying 32 filters of size 1-by-1. Next, (ii) we compute the

cross-correlation, Cij(s, t) =
∑

x,y fi(x−s, y−t)fj(x, y),
between each pair of these activation maps fi at a limited

spatial range of 2−lm ≤ s, t ≤ 2−lm pixels, where m

is the spatial dimension of the recovered kernel grid, and

l = 0... is the level (scale). Note that since Cij(s, t) =
Cji(−s,−t), only half of these coefficients needs to be

computed. This stage results with a fairly large number

of channels, i.e., 32 × 31 = 992, which we reduce back

to 32 again, using 32 filters of size 1-by-1. Note that these

correlations are computed between activations derived from

the same data. Hence the standard auto-correlation function

can be carried out if the filters applied, at previous convo-

lution layer, correspond to delta-functions. In this case, the

correlation within each channel Cii will correspond to the

auto-correlation of that channel. Note that by learning dif-

ferent filters, the network generalizes this operation.

Finally, (iii) the maps of size (2−lm+ 1)-by-

(2−lm+ 1)-by-32, extracted from the correlations at

every scales l, and are integrated back to the finest scale.

This is done by recursively applying x2 un-pooling (up-

sampling), followed by a convolution with 32 filters of

size 5-by-5. This result is concatenated with the map of

the following level, and the number of channels is reduced

from 64 back to 32, by applying a convolution with 32

filters of size 1-by-1.

At the finest level, the 32 channels are reduced gradu-

ally down to a single-channeled 2D blur kernel. This is

done by a sequence of 3-by-3 convolution layers that pro-

duce intermediate maps of 24, 16, 8 and 1 channels. Fig-

ure 2 sketches the architecture of the analysis network. The

resulting m-by-m map is normalized to sum 1 in order to

provide an admissible blur-kernel estimate. We use an L1

loss between the true and estimated kernels when training

this network. Finally, we note that the analysis network is

trained to produce a monochromatic blur-kernel by consid-

ering the Y channel of the input image in YUV color-space.

3.2. Synthesis Network

A uniform 2D blur process is expressed via a convolu-

tion, B = I ∗k, where B is the blurry image, I the blur-free

image that we wish to recover, and k is the blur-kernel. In

this case, non-blind deblurring boils down to a deconvolu-

tion of B with k, i.e., a convolution with k−1. While the

blur-kernel is typically compact, its inverse is generally not

compact. Hence, the deconvolution operator is a global op-
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Figure 3. Synthesis Network Architecture. A standard U-Net is augmented with kernel guided convolutions at all its layers. As shown in

the red schematic, the activations in these convolutions are modulated and biased by vectors derived from the blur-kernel using FC layers.

Each convolution layer consists of 3 successive convolutions using 128 filters, separated by ReLU activations.

erator that operates the same across the image (translation-

invariant). This implies that the architecture of deconvo-

lution network should allow such global dependencies as

well as a sufficient level of translation-invariance. In these

respects, the spatial shrinking and expansion of convolu-

tional auto-encoders [23] or U-Nets architecture [34] fit the

bill. Indeed, the use of such architectures for non-blind de-

blurring is used in [28, 29]. It is important to note that a

typical blur-kernel is either non-invertable, due to singulari-

ties in its spectrum, or close to being so by falling below the

noise level. Hence, state-of-the-art non-blind deblurring al-

gorithms incorporate various image priors to cope with the

lost data, and the deconvolution networks [43] are expected

to employ their non-linearity to express an operator beyond

a linear deconvolution.

In view of these considerations, we opt for using a U-

Net as part of the synthesis network that synthesizes the

blur-free image given the blurry input. However, global and

stationary operation are not the only requirements the dis-

cussion above suggests. Being its inverse, the deconvolu-

tion kernel k−1’s action is completely defined by the blur-

kernel k itself, hence the U-Net’s action must be dictated

by the blur-kernel estimated by the analysis network. Thus,

an additional component must be introduced to the synthe-

sis network to accommodate this form of guided non-blind

deblurring.

Kernel Guided Convolution. The option of defining

the U-net’s filter weights as function of the blur-kernel will

require a large number of fairly large fully-connected layers

in order to model the non-trivial mapping between k, which

contains thousands of pixels, and the even larger number of

weights in the U-Net. Moreover, this additional dependency

between the learned weights will increase the degree of non-

linearity and may undermine the learning optimization.

A considerably simpler approach is to map the blur-

kernel k into a list of biases and multipliers that modulate

and shift the output of the convolutions at each layer of the

U-Net. More specifically, at each layer of the U-Net the

activations from other layers are concatenated together and

the first operation they undergo is a convolution. Let us de-

note the result of this convolution (at a particular layer) by

r. At this very step, we augment the synthesis network with

two vectors, namely the multipliers m(k) and biases b(k),
that depend on the blur-kernel k and operate on r by

r = r ⊙ (1 +m(k)) + b(k), (1)

where ⊙ denotes a point-wise multiplication. As prescribed

by the discussion above, this operation allows the blur-

kernel to affect the U-Net’s action uniformly across the en-

tire spatial domain.

The synthesis-guiding unit, that models the functional

dependency of m(k) and b(k) over the blur-kernel, is de-

picted in Figure 3 and consists of three layers of fully-

connected layers, biases and ReLU operations (except for

the last layer). The input dimension is the total number of

pixels in the blur-kernel, the intermediate dimension is set to

128, and the final dimensions equals to the number of chan-

nels at that layer. Each layer of the U-Net is augmented with

it own synthesis-guiding unit, as shown in Figure 3. We

note that a similar form of control units was recently sug-

gested in the context of image translation [13]. In Section 4

we report an ablation study that demonstrates the benefit in
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Figure 4. Estimated Kernels. We show here the kernel estimated

by the analysis network once it was pre-trained to estimate the

ground-truth kernel, and once it was further trained to minimize

the image loss in the end-to-end training step.

incorporating the guided convolution.

Architecture Details. The U-Net architecture we use is

the convolutional encoder-decoder one described in [34]

and depicted in Figure 3. This encoder-decoder architec-

ture has connections between every layer in the encoder and

the decoder at the same depth. The number of channels at

all the layers is set to 128. The un-pooling in the decoder

is followed by a convolution with 128 filters of size 5-by-5

pixels and the ones arriving from the corresponding encod-

ing are convolved with the same number of filters whose

size is 3-by-3. These activations are concatenated into a

256 channels tensor which is reduced back to 128 channels

by 128 filters of size 1-by-1 pixels. These activations as

well as the ones in the encoding layers go through the k-

dependent multiplicative and additive steps in Eq. 1 which

are produced by layer-specific synthesis-guiding units. The

resulting activations go through three steps of convolution

with 128 filters of size 3-by-3 interleaved with ReLU op-

eration as shown in Figure 3. The pooling and un-pooling

steps between the layers perform x2 scaling. Finally, the

synthesis network is trained to minimize L2 reconstruction

loss with respect to the corresponding sharp training images

3.3. Scale Optimized Networks

As we report in Section 4, a further increase in deblurring

accuracy is obtained by allowing the analysis and synthesis

networks to specialize on a narrower range of blur-kernel

sizes. Specifically, we split the kernel size range into three

segments [0, 31], (31, 61] and (61, 85] and train a network to

classify an input blurry image into one of these three classes

of kernel size. We then use the classification of this net-

work to train three pairs of analysis and synthesis network,

each trained over images belonging to the different class of

blur size. As a classification network we used a single scale

analysis network augmented with an output fully-connected

layer with three neurons and trained it using a categorical

cross entropy loss.

3.4. Training

There are several options for training the analysis and

synthesis networks. One possible approach is to train both

networks to optimize the final sharp image reconstruction

loss, which is our ultimate goal. Our experiments however

show that better convergence is attained using the following

training strategy.

Both the analysis and synthesis networks are first pre-

trained independently to optimize the kernel and image-

reconstruction losses respectively. Unlike in other ap-

proach, this stage makes use of the ground-truth blur-

kernels. We then train the entire network, i.e., the compo-

sition of the analysis and synthesize networks, to optimize

the output image reconstruction while omitting blur-kernel

reconstruction loss.

This end-to-end (E2E) training allows the synthesis net-

work to learn to cope with the inaccuracies in the estimated

kernel, as well as trains the analysis network to estimates

the blur under the metric induced by the image reconstruc-

tion loss. Furthermore, as shown in Figure 4, omitting the

kernel loss allows the networks to abstract its representa-

tion for achieving a better overall deblurring performance.

In Section 4 we report an ablation study exploring the ben-

efit in our training strategy versus alternative options.

4. Results

Implementation. We implemented the networks using

the Keras library [4] and trained them using two Geforce

GTX 1080 Ti GPUs running in parallel. The training was

performed using an ADAM optimizer [15] with an initial

learning-rate of 10−4 which was reduced by 20% whenever

the loss stagnated over 5 epochs. We used a small batch size

of 4 examples. This required us to perform a fairly large

number of training iterations, around 106 at the pre-training

stage, and another 105 iterations at the end-to-end stage. At

run time, its takes our trained network about 0.45 seconds

to deblur a 1024-by-768 pixels image.

Training Set. We obtained the sharp images from the

Open Image Dataset [21], and used random crops of 512-

by-512 pixels to produce the training samples. Each train-

ing example is produced on the fly and consists of a triplet

of a sharp image sample I , a blur-kernel k, and the resulting

blurred image B = I ∗ k + η, where η ∼ N (0, 0.022). As

noted in Section 3.1, the analysis network operates only on

Y channel of the input image. Normalizing this channel to

have a zero mean and unit variance does not effect the blur,

but appears to improve the convergence of its estimation.

The training set was produced from 42k images, and the

test set was produced from a separate set of 3k images.

The blur-kernels we used for simulating real-world camera

shake were produced by adapting the method in [1]. This

consists of randomly sampling a spline, mimicking camera

5816



Method
All Trajectories Excluding 8,9,10

PSNR MSSIM PSNR MSSIM

Deblurring Algos.

Cho [3] 28.98 0.933 30.39 0.953

Xu [42] 29.53 0.944 31.05 0.964

Shan [36] 25.89 0.842 27.57 0.905

Fergus [7] 22.73 0.682 24.06 0.756

Krishnan [18] 25.72 0.846 27.90 0.909

Whyte [40] 28.07 0.848 30.82 0.941

Hirsch [11] 27.77 0.852 30.01 0.945

Deblurring Nets.

DeepDeblur [28] 26.48 0.807 - -

DeblurGAN [19] 26.10 0.816 - -

DeblurGAN-v2[20] 26.97 0.830 28.87 0.921

SRN [39] 27.06 0.840 29.22 0.923

Ours 29.97 0.915 31.87 0.961

Ours scale opt. nets 30.22 0.915 32.24 0.961

Table 1. Table reports the mean PSNR and MSSIM obtained over

the Köhler dataset [16]. Note that DeepDeblur [28], Deblur-

GAN [19], DeblurGAN-v2 [20] and SRN [39] are network based

methods, whereas the rest are blind deblurring algorithms. The

scores were computed using the script provided in [16]. The out-

put images of DeepDelur and DeblurGAN were not available for

us for calculating the scores without the large trajectories.

motion speed and acceleration, as well as a various sensor

point spread functions. We make this code available along

with the implementation of our networks.

Finally, let us note that our networks were trained once,

over this training set, and were evaluated on test images ar-

riving from other benchmark datasets.

Köhler Dataset. This dataset [16] consists of 48 blurred

images captured by a robotic platform that mimics the mo-

tion of a human arm. While the blur results from 6D camera

motion, most of the images exhibit blur that ranges from be-

ing approximately uniform up to admitting a 3D blur model.

Trajectories 8,9, and 10 in this set contain blur which is

larger than the maximal kernel size we used in our train-

ing (m = 85). Hence, on these specific trajectories, we

first applied an x2 downscaling, applied our networks, and

upsampled the result back to the original resolution. This

interpolation reduced the reconstruction accuracy by 1.6dB

on average, and can be avoided by training a larger network.

As Table 1 shows, our network achieves an improvement

of 0.69dB in PSNR in comparison to state-of-the-art de-

blurring algorithm, which is made more substantial when

excluding the trajectories 8,9, and 10. Moreover, the use

of feed-forward networks also offers a speedup of x10 and

higher in deblurring time. Compared to state-of-the-art de-

blurring networks, Table 1 shows a significant improvement

of 3.16dB in deblurring accuracy, which we attribute to our

novel design of analysis and synthesis networks pair which

Method PSNR MSSIM

Deblurring Algos.

Sun [38] 20.47 0.781

Zhong [52] 18.95 0.719

Fergus [7] 15.60 0.508

Cho [3] 17.56 0.636

Xu [42] 20.78 0.804

Krishnan [18] 17.64 0.659

Levin [26] 16.57 0.569

Whyte [41] 17.444 0.570

Xu [44] 19.86 0.772

Zhang [48] 16.70 0.566

Michaeli [27] 18.91 0.662

Pan [30] 19.33 0.755

Perrone [33] 19.18 0.759

Deblurring Nets.

DeblurGAN-v2 [20] 17.98 0.595

SRN [39] 17.28 0.590

Ours 20.67 0.799

Ours scale optimized 20.89 0.819

Table 2. Mean PSNR and SSIM on the Lai synthetic uniform-blur

dataset [22]. DeblurGAN-v2 [20] and SRN [39] are deep learning

methods, whereas the other are classical blind deblurring methods.

The scores were computed by adapting the script provided in [16]

explicitly estimate the blur-kernel and use it to guide the

deblurred-image synthesis. Figure 5 shows some of the im-

ages produced by the SRN [39], DelburGAN-v2 [20] and

our networks.

Lai Dataset. This dataset [22] consists of real and syn-

thetic blurry images. The synthetic dataset is created by

both uniform and non-uniform blurs. We focus on the for-

mer, which was produced by blurring 25 high-definition im-

ages with 4 kernels. This dataset is more challenging due to

the strong blur and saturated pixels it contains.

Table 2 portrays a similar picture, where our method

achieves state-of-the-art deblurring accuracy, and outper-

forms existing deblurring networks. Finally, Figure 6 pro-

vide a visual comparison between the deblurring networks

and ours, on synthetic and real-world images respectively,

both taken from this dataset. Again, our resulting deblurred

images appear sharper where some of the letters are made

more readable.

Ablation study. Finally, Table 3 evaluates the contribu-

tion of different elements in our design. The table reports

the deblurring accuracy obtained by the synthesis network

with different implementations of the guided convolution,

as well as the inferior accuracy without it (-3.93dB). The

table also shows the added value of our end-to-end training,

where the analysis network’s output is plugged into the syn-

thesis network during training (+1.96dB). The importance

of initiating this training stage with pre-trained analysis and
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Input SRN [39] DeblurGAN-v2 [20] Ours

Figure 5. Visual comparison against alternative deblurring networks, over the Köhler dataset.

Input DeblurGAN-

v2[20]

SRN[39] Ours

Figure 6. Visual comparison on blurry images from Lai dataset.

The top two images are synthetically blurred, while the bottom

two are real-world blurry images.

synthesis networks is also evident from the table (+1dB). Fi-

nally, A small improvement can be achieved by using mul-

tiple networks, as described in 3.3.

5. Discussion

We presented a new deblurring network which, like ex-

isting deblurring algorithms, breaks the blind image deblur-

Configuration PSNR

Synthesis + GT Kernels

No guidance 24.80

Additive guidance 28.58

Multiplicative guidance 28.41

Additive+Multiplicative guidance 28.73

Training Strategy

Random initialization 25.70

Pre-training before E2E training 24.82

Pre-training after E2E training 26.78

scale opt. nets 27.12

Table 3. Ablation study. Table reports the mean PSNR obtained

by different elements of our design. Our validation set is used for

this evaluation. The guided convolution is explored in different

settings in which the multiplication and additive terms are omitted

from Eq. 1.

ring problem into two steps. Each step is tackled with a ded-

icated and novel task-specific network architecture. This

design allows us to explicitly make use of the blur-kernel

during the networks’ training. The analysis network con-

tains novel correlation layers allowing it to mimic and gen-

eralize successful kernel-estimation procedures. The syn-

thesis network contains unique convolution guided layers

that allow the estimated kernel to control its operation.

While we derived and implemented our approach for 2D

uniform blur, we believe that can be extended to 3D rota-

tional blur, which will require adding a third axis of rotation

into the cross-correlation layers.
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