Deblurring using Analysis-Synthesis Networks Pair

Adam Kaufman
adam.kaufman@mail.huji.ac.il
School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel

Raanan Fattal
raananf@cs.huji.ac.il
School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel

Abstract

Blind image deblurring remains a challenging problem for modern artificial neural networks. Unlike other image restoration problems, deblurring networks fail behind the performance of existing deblurring algorithms in case of uniform and 3D blur models. This follows from the diverse and profound effect that the unknown blur-kernel has on the deblurring operator.

We propose a new architecture which breaks the deblurring network into an analysis network which estimates the blur, and a synthesis network that uses this kernel to deblur the image. Unlike existing deblurring networks, this design allows us to explicitly incorporate the blur-kernel in the network's training.

In addition, we introduce new cross-correlation layers that allow better blur estimations, as well as unique components that allow the estimate blur to control the action of the synthesis deblurring action.

Evaluating the new approach over established benchmark datasets shows its ability to achieve state-of-the-art deblurring accuracy on various tests, as well as offer a major speedup in runtime.

1. Introduction

When taking a photo using a handheld device, such as a smartphone, camera shakes are hard to avoid. If the scene is not very bright, the movement during exposure results in a blurry image. This becomes worse as the scene is darker and a longer exposure time is needed.

The task of recovering a blur-free image given a single blurry photo is called deblurring and is typically divided into blind and non-blind cases, depending on whether the blur-kernel is known and unknown respectively. Both cases were studied extensively in the computer vision literature, and were addressed using dedicated algorithms [26, 36, 17, 44, 31, 5] and using Artificial Neural Networks (ANNs), which are either used for implementing parts of the deblurring pipeline [35, 43, 49, 1, 37] or carrying-out the entire pipeline [28, 39, 19, 20, 29]. Due to the ill-posedness of the blind deblurring case, classic methods use various constraints and image priors to regularize the space of solutions [7, 3, 26, 41, 9]. Typically these methods consist of a time-consuming iterative optimization, where both the sharp image and blur-kernel are recovered, as well as rely on specific image priors that may fail on certain types of images.

In these respects, the ANN-based solutions offer a clear advantage. While they may require a long training time, their subsequent application consists of a rather efficient feed-forward procedure. Furthermore, using suitable training sets they achieve a (locally) optimal performance over wide classes of images. It is worth noting that in this domain the training sets are produced automatically by applying a set of blur-kernels over a set of sharp images involving no manual effort.

Nevertheless, unlike other image restoration problems, such as denoising [50, 51], upsampling [6, 14, 24], and inpainting [32, 45, 47], even the case of spatially-uniform blind deblurring ANN-based approaches fail to show a clear improvement over existing algorithms when it comes to the accuracy of the deblurred image. This major shortcoming stems from the fact that the space of blur-kernels, which specifies the blur degradation, is very large and has a very diverse effect over the inverse operator. Indeed, this is in contrast to the one-dimensional space of noise amplitude σ that governs denoising. While it is shown that a single network trained over a wide range of σ can achieve a denoising accuracy over a specific σ^* which is comparable to a network trained over that particular value [50]. The analog experiment shows that this is far from being the case for image deblurring, as reported in [35] and demonstrated in Figure 1.

In this paper we describe a novel network architecture and training scheme that account for the unique nature of the deblurring operation. The design of this new network incorporates various components found in image deblurring algorithms, and allows it to mimic and generalize their op-
Figure 1. Different network configurations. Column 2 from the left shows the results obtained when training our synthesis network without the analysis. Like existing deblurring-networks, this requires it to cope with every possible blur-kernel. The results of our network pair archives a better deblurring in Column 3. Providing the ground-truth (GT) kernel to the synthesis network achieves better results (Column 4) suggesting that our synthesis network performs better than our analysis. Finally, the result of a network trained for a single specific kernel is shown in Column 5, offering a moderate improvement. These configurations were tested on 1000 images and resulted in the following mean PSNR: No analysis 23.7, our 26.6, GT kernel 28.28, Kernel-Expert 33.75.

2. Previous Work

Image deblurring has been the topic of extensive research in the past several decades. Since this contribution relates to the blind image deblurring, we will limit the survey of existing art to this case.

In case of 2D camera rotation, the blur is uniform across the image and can be expressed by a convolution with a single 2D blur-kernel. To resolve the ambiguity between the blur and the image inherent to the blind deblurring case, as well as to compensate for the associated data loss, different priors are used for the recovery of the latent image and blur-kernel. The image priors typically model the gradients distribution found in natural images, and the blur-kernel is often assumed to be sparse. Chan and Wong [2] use the total variation norm for image regularization. Fergus et al. [7] employ a maximum a-posteriori estimation that uses a mixture of Gaussians to model the distribution the image gradients and a mixture of exponential distributions to model the blur-kernel. Shan et al. [36] suggest a different approximation for the heavy-tailed gradient distribution and add a regularization term to promote sparsity in the blur-kernel. Cho and Lee [3] accelerate the estimation by considering the strong edges in the image. Xu and Jia [42] use edge selection mask to ignore small structures that undermine the kernel estimation. Following this work, Xu et al. [44] add an L_0 regularization term to suppress small-amplitude structures in the image to improve the kernel estimation.

Another line of works exploit regularities that natural images exhibit in the frequency domain. Yitzhaky et al. [46] assume a 1D motion blur and use auto-correlation over the image derivative to find the motion direction. Hu et al. [12] use 2D correlation to recover 2D kernels and use the eight-point Laplacian for whitening the image spectrum. Gold-
stein and Fattal [9] use an improved spectral whitening for recovering the correlations in the images as well as use a refined power-law model the spectrum. These method resolve the power spectrum of the kernel, and use a phase retrieval algorithm to recover its phase [8]. In order to allow our analysis network to use such a kernel recovery process, we augment it with special layers that compute the correlation between different activations.

The case of a 3D camera rotation, the blur is no longer uniform across the image but can be expressed by a 3D blur-kernel. Gupta et al. [10] as well as Whyte et al. [41] use the maximum a-posteriori estimation formulation to recover these kernels. Finally, the most general case of blur arises from camera motion and parallax or moving objects in the scene, in which case a different blur applies to different objects in the scene, and is addressed by segmenting the image [25].

More recently the training and use of artificial neural networks, in particular Convolutions Neural Networks (CNNs), became the dominant approach for tackling various image restoration tasks, including image deblurring. Earlier works focused on the non-blind uniform deblurring, for example Schuler et al. [35] use a multi-layer perceptron in order to remove the artifacts produced by a non-blind deblurring algorithm. Xu et al. [43] based their network on the kernel separability theorem and used the SVD of the pseudo-inverse of the blur kernel to initialized the weights of large 1D convolutions. Both those methods need to be trained per kernel, which burdens their use at run-time.

Zhang et al. [49] managed to avoid per-kernel training by first applying a non ANN based deconvolution module, followed by a FCNN to remove noise and artifacts from the gradients. This is done iteratively where the denoised gradients are used as image priors to guide the image deconvolution in the next iteration. However, this method is still limited to the non-blind case for the initial deblurring step. On the other hand, a few architecture were purposed for blur estimation. Chakrabarti [1] train a network to estimate the Fourier coefficients of a deconvolution filter, and used the non-blind EPLL [53] method to restore the sharp image and generate comparable performance to state-of-the-art iterative blind deblurring methods. Sun et al. [37] trained a classification network to generate a motion field for non-uniform deblurring. The classification is performed locally and restricted to 73 simple linear blur-kernels, and therefore limited to simple blurs. Both of the above methods [1, 37] use a traditional non-blind method to deblur the image.

Most recent effort focuses on end-to-end (E2E) networks, trained over dataset containing non-uniform parallax deblurring (dynamic scene). Nah et al. [28] proposed an E2E multi-scale CNN which deblurs the image in a coarse-to-fine fashion. This network tries to recover the latent sharp image at different scales using a loss per level. Following this work, Tao et al. [39] used a scale-recurrent network with share parameters across scales to perform deblurring in different scales. This reduce the number of parameters and increase stability. Kupyn et al. [19] use a discriminator-based loss, which encourages the network to produce realistic-looking content in the deblurred image. While capable of deblurring complex scenes with multiple moving objects, those methods fall short in the uniform blur case. As we show below, this case greatly benefits from using the ground-truth kernels in the training. Nimisha et al. [29] use an auto-encoder to deblur images, by mapping their latent representation into a blur-free one using a dedicated generator network. While this approach provides an E2E network, it was trained over a uniform blur.

3. Method

The construction of the new deblurring networks pair that we describe here is inspired by the computation pipeline of existing blind deblurring algorithms [9, 3]. Similarly to these algorithms our deblurring process first recovers the blur-kernel using a dedicated analysis network. The estimated kernel, along with the input image, are then fed into a second synthesis network that performs the non-blind deblurring and recovers the sharp image. This splitting of the process allows us to employ a blur-kernel reconstruction loss over the analysis network, on top of the sharp image reconstruction loss that applies to both networks. In Section 3.4 we describe this training process.

Several deblurring algorithms [46, 9, 12] successfully recover the blur-kernel based on the irregularities it introduces to the auto-correlation of the input image. In order to utilize this computational path in our analysis network, we introduce in Section 3.1 a unique layer that computes these correlations as well as generalizes them.

Finally, in case of the uniform 2D blur, i.e., convolution, that we consider (as well as the 3D non-uniform case), the sharp image recovery consists of a global operator (deconvolution) whose operation is dictated by the blur-kernel across the entire image. This fundamental fact inspires another design novelty that we introduce in the synthesis network architecture. As we describe in Section 3.2, the synthesis network consists of a fairly-standard U-Net architecture which carries out the image sharpening operation. In order to allow the estimated kernel to dictate its operation, and do so in a global manner, we augment this network with specialized components that encode the kernel into multipliers and biases that affect the U-Net action across the entire image domain and all the layers.

The derivation of our new approach, as well as its evaluation in Section 4, assumes a uniform blur (2D convolution). In Section 5 we discuss the option of generalizing this approach to handle more general blurring.
3.1. Analysis Network

The first network in our pipeline is the analysis network which receives the input blurry image and estimates the underlining blur-kernel. The novel layers that we introduce to its architecture are inspired by previous works [46, 9, 12] that describe how the Fourier power-amplitudes components of the blur-kernel can be estimated from the auto-correlation function of the blurry image. These methods rely on the observation that natural images lose their spatial correlation upon differentiation. Thus, any deviations from a delta auto-correlation function can be attributed to the blur-kernel’s auto-correlation (or power-amplitudes in Fourier space).

Standard convolutional networks do not contain this multiplicative step between their filter responses, and hence mimicking this kernel-recovery pipeline may be difficult to be learned. Rather than increasing the networks capacity by means of increasing its depth, number of filters and non-linearities, we incorporate these computational elements as new correlations layers that we add to its architecture.

Correlations Layers. The analysis network consists of the following three functional layers: (i) a standard convolutional layer that receives the input image and extracts (learnable) features from it. This process is applied recursively to produce three spatial levels. Specifically, at each level we use 3 convolution layers applying 64 filters of size 7-by-7, separated by x2 pooling, to extract feature maps for the correlation layer that follows. By convolution layers we imply also the addition of bias terms and a point-wise application of a ReLU activation function. Since the correlation between every pair of filters is quadratic in their number, we reduce their number by half (at each level), by applying 32 filters of size 1-by-1. Next, (ii) we compute the cross-correlation, \(C_{ij}(s,t) = \sum_{x,y} f_i(x-s,y-t)f_j(x,y) \), between each pair of these activation maps \(f_i \) at a limited spatial range of \(2^{-l}m \leq s,t \leq 2^{-l}m \) pixels, where \(m \) is the spatial dimension of the recovered kernel grid, and \(l = 0... \) is the level (scale). Note that since \(C_{ij}(s,t) = C_{ji}(-s,-t) \), only half of these coefficients needs to be computed. This stage results with a fairly large number of channels, i.e., \(32 \times 31 = 992 \), which we reduce back to 32 again, using 32 filters of size 1-by-1. Note that these correlations are computed between activations derived from the same data. Hence the standard auto-correlation function can be carried out if the filters applied, at previous convolution layer, correspond to delta-functions. In this case, the correlation within each channel \(C_{ii} \) will correspond to the auto-correlation of that channel. Note that by learning different filters, the network generalizes this operation.

Finally, (iii) the maps of size \((2^{-l}m + 1) \)-by-\((2^{-l}m + 1) \)-by-32, extracted from the correlations at every scales \(l \), and are integrated back to the finest scale. This is done by recursively applying x2 un-pooling (upsampling), followed by a convolution with 32 filters of size 5-by-5. This result is concatenated with the map of the following level, and the number of channels is reduced from 64 back to 32, by applying a convolution with 32 filters of size 1-by-1.

At the finest level, the 32 channels are reduced gradually down to a single-channeled 2D blur kernel. This is done by a sequence of 3-by-3 convolution layers that produce intermediate maps of 24, 16, 8 and 1 channels. Figure 2 sketches the architecture of the analysis network. The resulting \(m \)-by-\(m \) map is normalized to sum 1 in order to provide an admissible blur-kernel estimate. We use an \(L_1 \) loss between the true and estimated kernels when training this network. Finally, we note that the analysis network is trained to produce a monochromatic blur-kernel by considering the Y channel of the input image in YUV color-space.

3.2. Synthesis Network

A uniform 2D blur process is expressed via a convolution, \(B = I \ast k \), where \(B \) is the blurry image, \(I \) the blur-free image that we wish to recover, and \(k \) is the blur-kernel. In this case, non-blind deblurring boils down to a deconvolution of \(B \) with \(k \), i.e., a convolution with \(k^{-1} \). While the blur-kernel is typically compact, its inverse is generally not compact. Hence, the deconvolution operator is a global op-
Figure 3. Synthesis Network Architecture. A standard U-Net is augmented with kernel guided convolutions at all its layers. As shown in the red schematic, the activations in these convolutions are modulated and biased by vectors derived from the blur-kernel using FC layers. Each convolution layer consists of 3 successive convolutions using 128 filters, separated by ReLU activations.

A kernel that operates the same across the image (translation-invariant). This implies that the architecture of deconvolution network should allow such global dependencies as well as a sufficient level of translation-invariance. In these respects, the spatial shrinking and expansion of convolutional auto-encoders [23] or U-Nets architecture [34] fit the bill. Indeed, the use of such architectures for non-blind deblurring is used in [28, 29]. It is important to note that a typical blur-kernel is either non-invertable, due to singularities in its spectrum, or close to being so by falling below the noise level. Hence, state-of-the-art non-blind deblurring algorithms incorporate various image priors to cope with the lost data, and the deconvolution networks [43] are expected to employ their non-linearity to express an operator beyond a linear deconvolution.

In view of these considerations, we opt for using a U-Net as part of the synthesis network that synthesizes the blur-free image given the blurry input. However, global and stationary operation are not the only requirements the discussion above suggests. Being its inverse, the deconvolution kernel k^{-1}’s action is completely defined by the blur-kernel k itself, hence the U-Net’s action must be dictated by the blur-kernel estimated by the analysis network. Thus, an additional component must be introduced to the synthesis network to accommodate this form of guided non-blind deblurring.

Kernel Guided Convolution. The option of defining the U-net’s filter weights as function of the blur-kernel will require a large number of fairly large fully-connected layers in order to model the non-trivial mapping between k, which contains thousands of pixels, and the even larger number of weights in the U-Net. Moreover, this additional dependency between the learned weights will increase the degree of non-linearity and may undermine the learning optimization.

A considerably simpler approach is to map the blur-kernel k into a list of biases and multipliers that modulate and shift the output of the convolutions at each layer of the U-Net. More specifically, at each layer of the U-Net the activations from other layers are concatenated together and the first operation they undergo is a convolution. Let us denote the result of this convolution (at a particular layer) by r. At this very step, we augment the synthesis network with two vectors, namely the multipliers $m(k)$ and biases $b(k)$, that depend on the blur-kernel k and operate on r by

$$r = r \odot (1 + m(k)) + b(k),$$

where \odot denotes a point-wise multiplication. As prescribed by the discussion above, this operation allows the blur-kernel to affect the U-Net’s action uniformly across the entire spatial domain.

The synthesis-guiding unit, that models the functional dependency of $m(k)$ and $b(k)$ over the blur-kernel, is depicted in Figure 3 and consists of three layers of fully-connected layers, biases and ReLU operations (except for the last layer). The input dimension is the total number of pixels in the blur-kernel, the intermediate dimension is set to 128, and the final dimensions equals to the number of channels at that layer. Each layer of the U-Net is augmented with its own synthesis-guiding unit, as shown in Figure 3. We note that a similar form of control units was recently suggested in the context of image translation [13]. In Section 4 we report an ablation study that demonstrates the benefit in...
3.3. Scale Optimized Networks

As we report in Section 4, a further increase in deblurring accuracy is obtained by allowing the analysis and synthesis networks to specialize on a narrower range of blur-kernel sizes. Specifically, we split the kernel size range into three segments $[0, 31], (31, 61]$ and $(61, 85]$ and train a network to classify an input blurry image into one of these three classes of kernel size. We then use the classification of this network to train three pairs of analysis and synthesis networks, to optimize the output image reconstruction while omitting blur-kernel reconstruction loss.

This end-to-end (E2E) training allows the synthesis network to learn to cope with the inaccuracies in the estimated kernel, as well as trains the analysis network to estimates the blur under the metric induced by the image reconstruction loss. Furthermore, as shown in Figure 4, omitting the kernel loss allows the networks to abstract its representation for achieving a better overall deblurring performance. In Section 4 we report an ablation study exploring the benefit in our training strategy versus alternative options.

4. Results

Implementation. We implemented the networks using the Keras library [4] and trained them using two Geforce GTX 1080 Ti GPUs running in parallel. The training was performed using an ADAM optimizer [15] with an initial learning-rate of 10^{-4} which was reduced by 20% whenever the loss stagnated over 5 epochs. We used a small batch size of 4 examples. This required us to perform a fairly large number of training iterations, around 10^6 at the pre-training stage, and another 10^5 iterations at the end-to-end stage. At run time, it takes our trained network about 0.45 seconds to deblur a 1024-by-768 pixels image.

Training Set. We obtained the sharp images from the Open Image Dataset [21], and used random crops of 512-by-512 pixels to produce the training samples. Each training example is produced on the fly and consists of a triplet of a sharp image sample I, a blur-kernel k, and the resulting blurred image $B = I * k + \eta$, where $\eta \sim \mathcal{N}(0, 0.02^2)$. As noted in Section 3.1, the analysis network operates only on Y channel of the input image. Normalizing this channel to have a zero mean and unit variance does not effect the blur, but appears to improve the convergence of its estimation.

The training set was produced from 42k images, and the test set was produced from a separate set of 3k images. The blur-kernels we used for simulating real-world camera shake were produced by adapting the method in [1]. This consists of randomly sampling a spline, mimicking camera shake.
motion speed and acceleration, as well as a various sensor point spread functions. We make this code available along with the implementation of our networks.

Finally, let us note that our networks were trained once, over this training set, and were evaluated on test images arriving from other benchmark datasets.

Köhler Dataset. This dataset [16] consists of 48 blurred images captured by a robotic platform that mimics the motion of a human arm. While the blur results from 6D camera motion, most of the images exhibit blur that ranges from being approximately uniform up to admitting a 3D blur model. Trajectories 8, 9, and 10 in this set contain blur which is larger than the maximal kernel size we used in our training ($m = 85$). Hence, on these specific trajectories, we first applied an x2 downsampling, applied our networks, and upsampled the result back to the original resolution. This interpolation reduced the reconstruction accuracy by 1.6dB on average, and can be avoided by training a larger network.

As Table 1 shows, our network achieves an improvement of 0.69dB in PSNR in comparison to state-of-the-art deblurring algorithm, which is made more substantial when excluding the trajectories 8, 9, and 10. Moreover, the use of feed-forward networks also offers a speedup of x10 and higher in deblurring time. Compared to state-of-the-art deblurring networks, Table 1 shows a significant improvement of 3.16dB in deblurring accuracy, which we attribute to our novel design of analysis and synthesis networks pair which explicitly estimate the blur-kernel and use it to guide the deblurred-image synthesis. Figure 5 shows some of the images produced by the SRN [39], DeblurGAN-v2 [20] and our networks.

Lai Dataset. This dataset [22] consists of real and synthetic blurry images. The synthetic dataset is created by both uniform and non-uniform blurs. We focus on the former, which was produced by blurring 25 high-definition images with 4 kernels. This dataset is more challenging due to the strong blur and saturated pixels it contains.

Table 2 portrays a similar picture, where our method achieves state-of-the-art deblurring accuracy, and outperforms existing deblurring networks. Finally, Figure 6 provides a visual comparison between the deblurring networks and ours, on synthetic and real-world images respectively, both taken from this dataset. Again, our resulting deblurred images appear sharper where some of the letters are made more readable.

Ablation study. Finally, Table 3 evaluates the contribution of different elements in our design. The table reports the deblurring accuracy obtained by the synthesis network with different implementations of the guided convolution, as well as the inferior accuracy without it (-3.93dB). The table also shows the added value of our end-to-end training, where the analysis network’s output is plugged into the synthesis network during training (+1.96dB). The importance of initiating this training stage with pre-trained analysis and

Table 1. Table reports the mean PSNR and MSSIM obtained over the Köhler dataset [16]. Note that DeepDeblur [28], DeblurGAN [19], DeblurGAN-v2 [20] and SRN [39] are network based methods, whereas the rest are blind deblurring algorithms. The scores were computed using the script provided in [16]. The output images of DeepDeblur and DeblurGAN were not available for us for calculating the scores without the large trajectories.

<table>
<thead>
<tr>
<th>Method</th>
<th>All Trajectories</th>
<th>Excluding 8,9,10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSNR</td>
<td>MSSIM</td>
</tr>
<tr>
<td>Deblurring Algos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cho [3]</td>
<td>28.98</td>
<td>0.933</td>
</tr>
<tr>
<td>Xu [42]</td>
<td>29.53</td>
<td>0.944</td>
</tr>
<tr>
<td>Shan [36]</td>
<td>25.89</td>
<td>0.842</td>
</tr>
<tr>
<td>Fergus [7]</td>
<td>22.73</td>
<td>0.682</td>
</tr>
<tr>
<td>Krishnan [18]</td>
<td>25.72</td>
<td>0.846</td>
</tr>
<tr>
<td>Whyte [40]</td>
<td>28.07</td>
<td>0.848</td>
</tr>
<tr>
<td>Hirsch [11]</td>
<td>27.77</td>
<td>0.852</td>
</tr>
<tr>
<td>Deblurring Nets.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeepDeblur [28]</td>
<td>26.48</td>
<td>0.807</td>
</tr>
<tr>
<td>DeblurGAN [19]</td>
<td>26.10</td>
<td>0.816</td>
</tr>
<tr>
<td>DeblurGAN-v2 [20]</td>
<td>26.97</td>
<td>0.830</td>
</tr>
<tr>
<td>SRN [39]</td>
<td>27.06</td>
<td>0.840</td>
</tr>
<tr>
<td>Ours</td>
<td>29.97</td>
<td>0.915</td>
</tr>
<tr>
<td>Ours scale opt. nets</td>
<td>30.22</td>
<td>0.915</td>
</tr>
</tbody>
</table>

Table 2. Mean PSNR and SSIM on the Lai synthetic uniform-blur dataset [22]. DeblurGAN-v2 [20] and SRN [39] are deep learning methods, whereas the other are classical blind deblurring methods. The scores were computed by adapting the script provided in [16].

<table>
<thead>
<tr>
<th>Method</th>
<th>PSNR</th>
<th>MSSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deblurring Algos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun [38]</td>
<td>20.47</td>
<td>0.781</td>
</tr>
<tr>
<td>Zhong [52]</td>
<td>18.95</td>
<td>0.719</td>
</tr>
<tr>
<td>Fergus [7]</td>
<td>15.60</td>
<td>0.508</td>
</tr>
<tr>
<td>Cho [3]</td>
<td>17.56</td>
<td>0.636</td>
</tr>
<tr>
<td>Xu [42]</td>
<td>20.78</td>
<td>0.804</td>
</tr>
<tr>
<td>Krishnan [18]</td>
<td>17.64</td>
<td>0.659</td>
</tr>
<tr>
<td>Levin [26]</td>
<td>16.57</td>
<td>0.569</td>
</tr>
<tr>
<td>Whyte [41]</td>
<td>17.44</td>
<td>0.570</td>
</tr>
<tr>
<td>Xu [44]</td>
<td>19.86</td>
<td>0.772</td>
</tr>
<tr>
<td>Zhang [48]</td>
<td>16.70</td>
<td>0.566</td>
</tr>
<tr>
<td>Michaeli [27]</td>
<td>18.91</td>
<td>0.662</td>
</tr>
<tr>
<td>Pan [30]</td>
<td>19.33</td>
<td>0.755</td>
</tr>
<tr>
<td>Perrone [33]</td>
<td>19.18</td>
<td>0.759</td>
</tr>
<tr>
<td>Deblurring Nets.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeblurGAN-v2 [20]</td>
<td>17.98</td>
<td>0.595</td>
</tr>
<tr>
<td>SRN [39]</td>
<td>17.28</td>
<td>0.590</td>
</tr>
<tr>
<td>Ours</td>
<td>20.67</td>
<td>0.799</td>
</tr>
<tr>
<td>Ours scale optimized</td>
<td>20.89</td>
<td>0.819</td>
</tr>
</tbody>
</table>
Figure 5. Visual comparison against alternative deblurring networks, over the Kühler dataset.

Figure 6. Visual comparison on blurry images from Lai dataset. The top two images are synthetically blurred, while the bottom two are real-world blurry images.

Table 3. Ablation study. Table reports the mean PSNR obtained by different elements of our design. Our validation set is used for this evaluation. The guided convolution is explored in different settings in which the multiplication and additive terms are omitted from Eq. 1.

5. Discussion

We presented a new deblurring network which, like existing deblurring algorithms, breaks the blind image deblurring problem into two steps. Each step is tackled with a dedicated and novel task-specific network architecture. This design allows us to explicitly make use of the blur-kernel during the networks’ training. The analysis network contains novel correlation layers allowing it to mimic and generalize successful kernel-estimation procedures. The synthesis network contains unique convolution guided layers that allow the estimated kernel to control its operation.

While we derived and implemented our approach for 2D uniform blur, we believe that can be extended to 3D rotational blur, which will require adding a third axis of rotation into the cross-correlation layers.
References

[4] François Chollet et al. Keras. https://keras.io, 2015. 6

