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Figure 1: We present a system to predict the skeleton pose of a dog from RGBD images. If the size and shape of the dog is

unknown, an estimation is provided. Displayed here are frames [4,7,13,18] of a Kinect sequence, showing 2D projection, 3D

skeleton and skinned mesh as produced by the pipeline. All figures in this paper are most informative when viewed in colour.

Abstract
The automatic extraction of animal 3D pose from images

without markers is of interest in a range of scientific fields.

Most work to date predicts animal pose from RGB images,

based on 2D labelling of joint positions. However, due to

the difficult nature of obtaining training data, no ground

truth dataset of 3D animal motion is available to quan-

titatively evaluate these approaches. In addition, a lack

of 3D animal pose data also makes it difficult to train 3D

pose-prediction methods in a similar manner to the popular

field of body-pose prediction. In our work, we focus on the

problem of 3D canine pose estimation from RGBD images,

recording a diverse range of dog breeds with several Mi-

crosoft Kinect v2s, simultaneously obtaining the 3D ground

truth skeleton via a motion capture system. We generate a

dataset of synthetic RGBD images from this data. A stacked

hourglass network is trained to predict 3D joint locations,

which is then constrained using prior models of shape and

pose. We evaluate our model on both synthetic and real

RGBD images and compare our results to previously pub-

lished work fitting canine models to images. Finally, despite

our training set consisting only of dog data, visual inspec-

tion implies that our network can produce good predictions

for images of other quadrupeds – e.g. horses or cats – when

their pose is similar to that contained in our training set.

1. Introduction

While pose estimation has traditionally focused on human

subjects, there has been an increased interest on animal sub-

jects in recent years ([7], [3], [37], [38]). It is possible to

put markers on certain trained animals such as dogs to em-

ploy marker-based motion capture techniques. Neverthe-

less, there are far more practical difficulties associated with

this when compared with human subjects. Some animals

may find markers distressing and it is impossible to place

them on wild animals. Neural networks currently achieve

the best results for human pose estimation, and generally re-

quire training on widely available large-scale data sets that

provide 2D and/or 3D annotations ([33], [1], [15], [16]).

However, there are currently no datasets of 3D animal data

available at the same scale concerning the number of sam-

ples, variety and annotations, making comparable studies or

approaches to pose prediction difficult to achieve.

In this paper, we propose a markerless approach for 3D

skeletal pose-estimation of canines from RGBD images. To

achieve this, we present a canine dataset which includes

skinned 3D meshes, as well as synchronised RGBD video

and 3D skeletal data acquired from a motion capture system

which acts as ground truth. Dogs are chosen as our capture

subject for several reasons: they are familiar with human

contact and so generally accept wearing motion capture

suits; they can be brought into the motion capture studio

with ease; they respond to given directions producing com-

parable motions across the numerous subjects; their diverse

body shape and size produces data with interesting varia-

tions in shape. We propose that our resulting dog skeleton

structure is more anatomically correct when compared with

that of the SMAL model and a larger number of bones in

the skeleton allows more expression.

It is challenging to control the capture environment with

(uncontrolled) animals - covering wide enough variability

in a limited capture session proved to be challenging. Hence

our method utilises the dog skeletons and meshes produced

by the motion capture system to generate a large synthetic
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dataset. This dataset is used to train a predictive network

and generative model using 3D joint data and the corre-

sponding projected 2D annotations. Using RGB images

alone may not be sufficient for pose prediction, as many an-

imals have evolved to blend into their environment and sim-

ilarly coloured limbs can result in ambiguities. On the other

hand, depth images do not rely on texture information and

give us the additional advantage of providing surface infor-

mation for predicting joints. We choose to use the Microsoft

Kinect v2 as our RGBD depth sensor, due to its wide avail-

ability and the established area of research associated with

the device. Images were rendered from our synthetically

generated 3D dog meshes using the Kinect sensor model of

Li et al. [20] to provide images with realistic Kinect noise

as training data to the network.

Details of the dataset generation process are provided in

Section 3.2. Despite training the network with purely syn-

thetic images, we achieve high accuracy when tested on real

depth images, as discussed in Section 4.1. In addition to

this, Section 4.3, we found that training the network only

with dogs still allowed it to produce plausible results on

similarly rendered quadrupeds such as horses and lions.

The joint locations predicted by deep networks may con-

tain errors. In particular, they do not guarantee that the

estimated bone lengths remain constant throughout a se-

quence of images of the same animal and may also gen-

erate physically impossible poses. To address these limi-

tations, we adopt a prior on the joint pose configurations

– a Hierarchical Gaussian Process Latent Variable Model

(H-GPLVM) [18]. This allows the representation of high-

dimensional non-linear data in lower dimensions, while si-

multaneously exploiting the skeleton structure in our data.

In summary, our main contributions are:

• Prediction of 3D shape as PCA model parameters, 3D

joint locations and estimation of a kinematic skeleton

of canines using RGBD input data.

• Combination of a stacked hour glass CNN architecture

for initial joint estimation and a H-GPLVM to resolve

pose ambiguities, refine fitting and convert joint posi-

tions to a kinematic skeleton.

• A novel dataset of RGB and RGBD canine data with

skeletal ground truth estimated from a synchronised

3D motion capture system and a shape model contain-

ing information of both real and synthetic dogs. This

dataset and model are available at 1.

2. Related work

2D Animal Pose Estimation. Animal and insect 2D pose

and position data is useful in a range of behavioural studies.

1https://github.com/CAMERA-Bath/RGBD-Dog.

Most solutions to date use shallow trained neural network

architectures whereby a few image examples of the ani-

mal or insect of interest are used to train a keyframe-based

feature tracker, e.g. LEAP Estimates Animal Pose [28],

DeepLabCut ([22], [26]) and DeepPoseKit ([12]). Cao et al.

[7] address the issue of the wide variation in interspecies ap-

pearance by presenting a method for cross-domain adaption

when predicting the pose of unseen species. By creating a

training dataset by combining a large dataset of human pose

(MPII Human Pose [2]), the bounding box annotations for

animals in Microsoft COCO [21], and the authors’ animal

pose dataset, the method achieves good pose estimation for

unseen animals.

3D Animal Pose Estimation. Zuffi et al. [39] introduce

the Skinned Multi-Animal Linear model (SMAL), which

separates animal appearance into PCA shape and pose-

dependent shape parameters (e.g. bulging muscles), cre-

ated from a dataset of scanned toy animals. A regression

matrix calculates joint locations for a given mesh. SMAL

with Refinement (SMALR) [38] extends the SMAL model

to extract fur texture and achieves a more accurate shape

of the animal. In both methods, silhouettes are manually

created when necessary, and manually selected keypoints

guide the fitting of the model. In SMAL with learned Shape

and Texture (SMALST) [37] a neural network automati-

cally regresses the shape parameters, along with the pose

and texture of a particular breed of zebra from RGB images,

removing the requirement of silhouettes and keypoints.

Biggs et al. [3] fit the SMAL model to sequences of

silhouettes that have been automatically extracted from the

video using Deeplab [8]. A CNN is trained to predict 2D

joint locations, with the training set generated using the

SMAL model. Quadractic programming and genetic algo-

rithms choose the best 2D joint positions. SMAL is then fit

to the joints and silhouettes.

In training our neural network, we also generate syn-

thetic RGBD data from a large basis of motion capture data

recorded from the real motion of dogs as opposed to the

SMAL model and its variants where the pose is based from

toy animals and a human-created walk cycle.

Pose Estimation with Synthetic Training Data. In pre-

dicting pose from RGB images, it is generally found that

training networks with a combination of real and synthetic

images provides a more accurate prediction than training

with either real or synthetic alone ([35], [9], [29]). Previ-

ous work with depth images has also shown that synthetic

training alone provides accurate results when tested on real

images [17]. Random forests have been used frequently

for pose estimation from depth images. These include la-

belling pixels with human body parts ([32]), mouse body

parts ([25]) and dense correspondences to the surface mesh

of a human model ([34]). Sharp et al. [31] robustly track a

hand in real-time using the Kinect v2.
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Figure 2: Overview of the network section of our pipeline. In the training stage, a synthetic dataset is generated from dog

motion data. A pair of images is rendered for each frame: depth images are rendered using the Kinect model of InteriorNet

[21] and silhouette masks rendered using OpenGL. In the testing stage, the RGB Kinect image is used to generate a mask

of the dog, which is then applied to the depth Kinect image and fed into the network. The network produces a set of 2D

heatmaps from which the 2D and 3D joint locations are extracted.

Figure 3: Overview of the refinement section of our pipeline, showing the steps taken when the dog’s neutral body shape is

unknown. The point cloud from the depth image initialises the scale of the skeleton and a PCA model predicts body shape

from the bone lengths. The H-GPLVM is used to estimate a rough pose of the dog mesh, with the mesh normals then used to

refine the mesh/point cloud alignment. The dog scale is refined, the PCA model produces the final shape prediction, and the

H-GPVLM fully fits the skinned dog mesh to the point cloud. For known shapes, the PCA prediction steps are not required.

Recently, neural networks have also been used in pose

estimation from depth images. Huang & Altamar [14] gen-

erate a dataset of synthetic depth images of human body

pose and use this to predict the pose of the top half of the

body. Mueller et al. [24] combine two CNNs to locate and

predict hand pose. A kinematic model is fit to the 3D joints

to ensure temporal smoothness in joint rotations and bone

lengths are consistent across the footage.

In our work, we use motion capture data from a selec-

tion of dogs to generate a dataset of synthetic depth images.

This dataset is used to train a stacked hourglass network,

which predicts joint locations in 3D space. Given the joints

predicted by the network, a PCA model can be used to pre-

dict the shape of an unknown dog, and a H-GPLVM is used

to constrain the joint locations to those which are physi-

cally plausible. We believe ours is the first method to train

a neural network to predict 3D animal shape and pose from

RGBD images, and to compare our pipeline results to 3D

ground truth which is difficult to obtain for animals and has

therefore as yet been unexplored by researchers.

3. Method

Our pipeline consists of two stages; a prediction stage and

refinement stage. In the prediction stage, a stacked hour-

glass network by Newell et al. [27] predicts a set of 2D

heatmaps for a given depth image. From these, 3D joint

positions are reconstructed. To train the network, skele-

ton motion data was recorded from five dogs performing

the same five actions using a Vicon optical motion capture

system (Section 3.1). These skeletons pose a mesh of the
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Figure 4: Dogs included in our dataset, each wearing a mo-

tion capture suit. The two dogs on the left were used for test

footage only.

respective dog which are then rendered as RGBD images

by a Kinect noise-model to generate a large synthetic train-

ing dataset (Section 3.2). We provide more detail about the

network training data and explain 3D joint reconstruction

from heatmaps in Section 3.3. In the refinement stage, a

H-GPLVM [19] trained on skeleton joint rotations is used

to constrain the predicted 3D joint positions (Section 3.4).

The resulting skeleton can animate a mesh, provided by the

user or generated from a shape model, which can then be

aligned to the depth image points to further refine the global

transformation of the root of the skeleton. We compare our

results with the method of Biggs et al. [3] and evaluate our

method with ground truth joint positions in synthetic and

real images in Section 4. Figures 2 and 3 outline the predic-

tion and refinement stages of our approach respectively.

3.1. Animal Motion Data Collection

As no 3D dog motion data is available for research, we first

needed to collect a dataset. A local rescue centre provided

16 dogs for recording. We focused on five dogs that covered

a wide range of shape and size. The same five actions were

chosen for each dog for the training/validation set, with an

additional arbitrary test sequence also chosen for testing. In

addition to these five dogs, two dogs were used to evaluate

the pipeline and were not included in the training set. These

dogs are shown in Figure 4.

A Vicon system with 20 infrared cameras was used to

record the markers on the dogs’ bespoke capture suits. Vi-

con recorded the markers at 119.88 fps, with the skeleton

data exported at 59.94 fps. Up to 6 Kinect v2s were also

simultaneously recording, with the data extracted using the

libfreenect2 library [4]. Although the Kinects recorded at

30fps, the use of multiple devices at once reduced overall

frame rate to 6fps in our ground truth set. However, this

does not affect the performance of our prediction network.

Further details on recording can be found in the supplemen-

tary material (Sec. 2.1).

Figure 5: A comparison of a sequence of real Kinect v2

images (top) with those produced by InteriorNet [20] (bot-

tom), where all images have been normalised.

3.2. Synthetic RGBD Data Generation

Our template dog skeleton is based on anatomical skeletons

[11]. Unlike humans, the shoulders of dogs are not con-

strained by a clavicle and so have translational as well as

rotational freedom [10]. The ears are modelled with rigid

bones and also given translational freedom, allowing the

ears to move with respect to the base of the skull. In total,

there are 43 joints in the skeleton, with 95 degrees of free-

dom. The neutral mesh of each dog was created by an artist,

using a photogrammetric reconstruction as a guide. Linear

blend skinning is used to skin the mesh to the corresponding

skeleton, with the weights also created by an artist.

To create realistic Kinect images from our skinned

3D skeletons, we follow a similar process from Interior-

Net [20]. Given a 3D mesh of a dog within virtual environ-

ment, we model unique infrared dot patterns projected on to

the object, and further achieve dense depth using stereo re-

construction. This process is presumed to retain most of

characteristics of Kinect imaging system including depth

shadowing and occlusion. A comparison of real versus syn-

thetic Kinect images is shown in Figure 5.

Up to 30 synthetic cameras were used to generate the

depth images and corresponding binary mask for each dog.

Details of the image and joint data normalisation for the

generation of ground truth heatmaps are given in the sup-

plementary material. The size of the dataset is doubled by

using the mirrored version of these images, giving a total

number of 650,000 images in the training set and 180,000

images in the validation set. An overview of data generation

can be seen in the “Train" section of Figure 2.

3.3. Skeleton Pose Prediction Network

In order to use the stacked-hourglass framework, we rep-

resent joints as 2D heatmaps. Input to the network are

256x256 greyscale images, where 3D joints J3D256 are de-

fined in this coordinate space. Given an input image, the

network produces a set of 129 heatmaps H , each being

64x64 pixels in size. Each joint j in the dog skeleton

is associated with three heatmaps, the indices of which is
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known: hjXY
, hjY Z

, hjXZ
, representing the xy-, yz- and xz-

coordinates of j respectively. This set provided the most ac-

curate results in our experiments. To produce the heatmaps

required to train the network, J3D256 are transformed to a

64x64 image coordinates. Let J3D64 be these transformed

coordinates, where J3D64 = floor(J3D256/4) + 1. We

generate 2D gaussians in the heatmaps centred at the xy-,

yz- and xz-coordinates of J3D64, with a standard deviation

of one pixel. Inspired by Biggs et al. [3], symmetric joints

along the sagittal plane of the animal (i.e. the legs and ears)

produce multi-model heatmaps. Further technical details on

heatmap generation may be found in the suplementary ma-

terial.

Our neural network is a 2-stacked hourglass network by

Newell et al. [27]. This particular network was chosen as

the successive stages of down-sampling and up-scaling al-

low the combination of features at various scales. By ob-

serving the image at global and local scales, the global ro-

tation of the subject can be more easily determined, and the

relationship between joints can be utilised to produce more

accurate predictions. We implement our network using Py-

Torch, based on code provided by Yang [36]. RMSprop is

used as the optimiser, with a learning rate of 0.0025 and

batch size 6. Our loss function is the MSE between the

ground truth and network-generated heatmaps.

3.3.1 3D Pose Regression from 2D Joint Locations

Given the network-generated heatmaps, we determine the

value of J3D64, the location of each joint in the x-, y-, and

z-axis in 64x64 image coordinates. Each joint j is associ-

ated with three heatmaps: hjXY
, hjY Z

, hjXZ
. For joints that

produce unimodal heatmaps, the heatmap with the highest

peak from the set of hjXY
, hjY Z

, hjXZ
determines the value

of two of the three coordinates, with the remaining coordi-

nate taken from the map with the second highest peak.

For joints with multi-modal heatmaps, we repeat this

step referring first to the highest peak in the three heatmaps,

and then to the second highest peak. This process results in

two potential joint locations for all joints that form a sym-

metric pair (jp1, jp2). If the XY position of the predicted

coordinate of jp1 is within a threshold of the XY position of

jp2, we assume that the network has erroneously predicted

the same position for both joints. In this case, the joint with

the highest confidence retains this coordinate, and the re-

maining joint is assigned its next most likely joint.

Once J3D64 has been determined, the coordinates are

transformed into J3D256. Prior to this step, as in Newell et

al. [27], a quarter pixel offset is applied to the predictions in

J3D64. We first determine, within a 4-pixel neighbourhood

of each predicted joint, the location of the neighbour with

the highest value. This location dictates the direction of the

offset applied. The authors note that the addition of this off-

set increases the joint prediction precision. Finally, J3D64

is scaled to fit a 256x256 image, resulting in J3D256. The

image scale and translation acquired when transforming the

image for network input is inverted and used to transform

the xy-coordinates of J3D256 into J2Dfull, the projections

in the full-size image. To calculate the depth in camera

space for each joint in J3D256, the image and joint data

normalisation process is inverted and applied. J2Dfull is

transformed into J3Dcam using the intrinsic parameters of

the camera and the depth of each predicted joint.

3.4. Pose Prior Model

While some previous pose models represent skeleton rota-

tions using a PCA model, such as the work by Safonova et

al. [30], we found that this type of model produces poses

that are not physically possible for the dog. In contrast,

a Gaussian Process Latent Variable Model (GPLVM) [18]

can model non-linear data and allows us to represent our

high dimensional skeleton on a low dimensional manifold.

A Hierarchical GPLVM (H-GPLVM) [19] exploits the rela-

tionship between different parts of the skeleton. Ear motion

is excluded from the model. As ears are made of soft tis-

sue, they are mostly influenced by the velocity of the dog,

rather than the pose of other body parts. This reduces the

skeleton to from 95 to 83 degrees of freedom. Bone rota-

tions are represented as unit quaternions, and the translation

of the shoulders are defined with respect to their rest posi-

tion. Mirrored poses are also included in the model. The

supplementary material contains further technical specifi-

cations for our hierarchy (Sec. 2.3).

We remove frames that contain similar poses to reduce

the number of frames included in the training set S. The

similarity of two quaternions is calculated using the dot

product, and we sum the results for all bones in the skeleton

to give the final similarity value. Given a candidate pose,

we calculate the similarity between it and all poses in S. If

the minimum value for all calculations is above a thresh-

old, the candidate pose is added to S. Setting the similarity

threshold to 0.1 reduces the number of frames in a sequence

by approximately 50-66%. The data matrix is constructed

from S and normalised. Back constraints are used when op-

timising the model, meaning that similar poses are located

in close proximity to each other in the manifold.

3.4.1 Fitting the H-GPLVM to Predicted Joints

A weight is associated with each joint predicted by the net-

work to help guide the fitting of the H-GPLVM. Information

about these weights is given in the supplementary material.

To find the initial coordinate in the root node of H-GPLVM,

we use k-means clustering to sample 50 potential coordi-

nates. Keeping the root translation fixed, we find the rota-

tion which minimises the Euclidean distance between the
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network-predicted joints and the model-generated joints.

The pose and rotation with the smallest error is chosen as

the initial values for the next optimisation step.

The H-GPLVM coordinate and root rotation are then re-

fined. In this stage, joint projection error is included, as it

was found this helped with pose estimation if the network

gave a plausible 2D prediction, but noisy 3D prediction.

The vector generated by the root node of the model pro-

vides the initial coordinates of the nodes further along the

tree. All leaf nodes of the model, root rotation and root

translation are then optimised simultaneously.

During the fitting process, we seek to minimise the dis-

tance between joint locations predicted by the network and

those predicted by the H-GPLVM: Equation 1 defines the

corresponding loss function:

L(X,R,T, t) =

B∑

b=1

γb ‖jb − F (X,R, T, t)b‖

+ λ
B∑

b=1

γb ‖Φ(jb)− Φ(F (X,R, T, t)b)‖ . (1)

Here, B is the number of joints in the skeleton, J =
[j1, ..., jb] is the set of predicted joint locations from the

network, Γ = [γ1, ..., γb] is the set of weights associated

with each joint, Φ is the perspective projection function and

λ is the influence of 2D information when fitting the model.

Let X be the set of n-dimensional coordinates for the given

node(s) of the H-GPLVM and F be the function that takes

the set X , root rotation R, root translation T , shoulder trans-

lations t, and produces a set of 3D joints. Figure 3 shows

the result of process.

4. Evaluation and Results

To evaluate our approach, we predict canine shape and pose

from RGBD data on a set of five test sequences, one for

each dog. Each sequence was chosen for the global orien-

tation of the dogs to cover a wide range, both side-views

and foreshortened views, with their actions consisting of a

general walking/exploring motion. In each case we predict

shape and pose and compare these predictions to ground

truth skeletons as obtained from a motion-capture system

(see Section 3.1). More detailed analysis of experiments as

well as further technical details of experimental setup – as

well as video results - may be found in the supplementary

material.

As no previous methods automatically extract dog skele-

ton from depth images, we compare our results with Biggs

et al. [3], which we will refer to as the BADJA result.

We note that the authors’ method requires silhouette data

only and therefore it is expected that our method produces

the more accurate results. Both algorithms are tested on

noise-free images. We use two metrics to measure the accu-

racy of our system: Mean Per Joint Position Error (MPJPE)

Figure 6: The number of joints in each skeleton group when

evaluating the predicted skeleton against the ground truth

skeleton. Left: the SMAL skeleton used by BADJA [3],

and right: our skeleton.

and Probability of Correct Keypoint (PCK). MPJPE mea-

sures Euclidean distance and is calculated after the roots of

the two skeletons are aligned. A variant PA MPJPE uses

Procrustes Analysis to align the predicted skeleton with the

ground truth skeleton. PCK describes the situation whereby

the predicted joint is within a threshold from the true value.

The threshold is α∗A, where A is the area of the image with

non-zero pixel values and α = 0.05. The values range from

[0,1], where 1 means that all joints are within the threshold.

PCK can also be used for 3D prediction [23], where the

threshold is set to half the width of the person’s head. As

we can only determine the length of the head bone, we set

the threshold to one and we scale each skeleton such that the

head bone has a length of two units. To compare the values

of MPJPE and PCK 3D, we also use PA PCK 3D, where the

joints are aligned as in PA MPJPE, and then calculate PCK

3D. Due to the frequent occlusion of limbs of the dogs, the

errors are reported in the following groups: All – all joints

in the skeleton; Head – the joints contained in the neck and

head; Body – the joints contained in the spine and four legs;

– Tail: the joints in the tail. Figure 6 shows the configura-

tion of the two skeletons used and the joints that belong to

each group. Our pipeline for each dog contains a separate

neural network, H-GPLVM and shape model, such that no

data from that particular dog is seen by its corresponding

models prior to testing.

Table 1 contains the PA MPJPE and PA PCK 3D re-

sults for the comparison. Comparing these results with the

MPJPE and PCK 3D results, for our method, the PA MPJPE

decreases the error by an average 0.416 and PA PCK 3D in-

creases by 0.233. For BADJA, the MPJPE PA decreases

the error by an average 1.557 and PA PCK 3D increases by

0.523, showing the difficulty of determining the root rota-

tion from silhouette alone, as is the case using BADJA.

4.1. Applying the Pipeline to Real Kinect Footage

Running the network on real-world data involves the addi-

tional step of generating a mask of the dog from the input

image. We generate the mask from the RGB image for two

reasons: (1) RGB segmentation networks pre-trained to de-

tect animals are readily available, (2) the RGB image has
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Figure 7: An example of results from BADJA [3] (rows 1-

4) and our results (rows 5-8). Column 1 is the ground truth

skeleton. Column 2 is the projection of 3D results. Column

3 is a side view of the 3D result as calculated in the PA

MJPJE error (where the ground truth shown in a thinner

line) and column 4 is a top-down view.

a higher resolution than the depth image and contains less

noise, particularly when separating the dogs’ feet from the

ground plane. As such, the mask is generated from the RBG

image before being transformed using a homography ma-

Dog Method Metric All Head Body Tail

Dog1

Ours
MPJPE 0.471 0.382 0.527 0.385

PCK 0.936 0.984 0.915 0.955

BADJA[3]
MPJPE 0.976 0.993 1.002 0.879

PCK 0.665 0.607 0.685 0.661

Dog2

Ours
MPJPE 0.402 0.303 0.410 0.473

PCK 1.000 1.000 1.000 0.998

BADJA[3]
MPJPE 0.491 0.392 0.524 0.486

PCK 0.956 1.000 1.000 0.928

Dog3

Ours
MPJPE 0.392 0.439 0.390 0.353

PCK 0.985 0.945 0.994 0.999

BADJA[3]
MPJPE 0.610 0.843 0.617 0.356

PCK 0.866 0.707 0.874 1.000

Dog4

Ours
MPJPE 0.417 0.395 0.421 0.428

PCK 0.981 0.953 0.985 0.996

BADJA[3]
MPJPE 0.730 0.678 0.760 0.687

PCK 0.787 0.861 0.754 0.817

Dog5

Ours
MPJPE 0.746 0.542 0.748 0.944

PCK 0.790 0.925 0.787 0.664

BADJA[3]
MPJPE 0.997 0.763 1.107 0.885

PCK 0.692 0.794 0.658 0.694

Table 1: 3D error results as calculated using PA MPJPE

and PA PCK 3D, comparing our pipeline and that used in

BADJA [3] on each of the 5 dogs. Errors are reported relat-

ing to the full body or focussed body parts in Figure 6.

Dog Method Metric All Head Body Tail

Dog6

CNN
MPJPE 0.866 0.491 0.776 1.523

PCK 0.745 0.956 0.780 0.425

H-GPLVM
MPJPE 0.667 0.466 0.627 0.993

PCK 0.873 0.969 0.938 0.575

H-GPLVM MPJPE 0.384 0.433 0.437 0.169

(known shape) PCK 0.967 0.975 0.954 1.000

Dog7

CNN
MPJPE 0.563 0.364 0.507 0.939

PCK 0.907 0.993 0.943 0.707

H-GPLVM
MPJPE 0.557 0.494 0.471 0.888

PCK 0.922 0.947 0.982 0.711

Table 2: 3D Error results of PA MPJPE and PA PCK 3D

when using real Kinect images, where each skeleton is

scaled such that the head has length of two units. We show

the errors for the network prediction (CNN) and the final

pipeline result (H-GPLVM). For Dog6, we also show the er-

ror where the shape of the dog mesh and skeleton is known.

trix into depth-image coordinates. A combination of two

pretrained networks are used to generate the mask: Mask

R-CNN [13] and Deeplab [8]. More details are included in

the supplementary material. We display 3D results in Table

2, for cases where the neutral shape of the dog is unknown

and known. Examples of skeletons are shown in Figure 8.

4.2. Shape Estimation of Unknown Dogs

If the skeleton and neutral mesh for the current dog is un-

known beforehand – as is the case in all our results apart

from the ’known shape’ result in Table 2 – a shape model is
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Figure 8: Example of results on real Kinect images. From

the top: ground truth, projection of final 3D result, compar-

ing the 3D result with the thinner ground truth result after

calculating PA MPJPE. Left: Dog6, unknown shape. Cen-

tre: Dog6, known shape. Right: Dog7, unknown shape.

used to predict this information. The model is built from 18

dogs: five dogs are used to train the CNN and were created

by an artist, an additional six dogs were also created by the

artist, three dogs are scans of detailed toy animals, and four

are purchased photogrammetry scans. All dogs are given a

common pose and mesh with a common topology. The PCA

model is built from the meshes, bone lengths and the joint

rotations required to pose the dog from the common pose

into its neutral standing position. The first four principal

components of the model are used to find the dog with bone

proportions that best match the recorded dog. This produces

the estimated neutral mesh and skeleton of the dog.

4.3. Extending to Other Quadruped Species

We tested our network on additional 3D models of other

species provided by Bronstein et al. ([5], [6]). Images of

the models are rendered as described in Section 3.2. The

training data for the network consists of the same five mo-

tions for the five training dogs. As no ground truth skeleton

information is provided for the 3D models, we evaluate the

performance based on visual inspection. The example re-

sults provided in the first three columns of Figure 9 show

that the network performs well when the pose of a given

animal is similar to that seen in the training set, even if the

subject is not a dog. However, when the pose of the ani-

mal is very different from the range of poses in the training

set, prediction degrades, as seen in the last three columns of

Figure 9: The network result when given images of a subset

of 3D models provided by Bronstein et al. ([5], [6]), ren-

dered as in Sec 3.2. Although the network is trained with

only dog images, the first three columns show the network

can generate a good pose for images where the animal is

similar to that in the training set. The last three columns

show where the network failed to predict a plausible pose.

Figure 9. This provides motivation for further work.

5. Conclusion and Future Work

We have presented a system which can predict 3D shape

and pose of a dog from depth images. We also present to the

community a data set of dog motion from multiple modali-

ties - motion capture, RGBD and RGB cameras – of vary-

ing shapes and breeds. Our prediction network was trained

using synthetically generated depth images leveraging this

data and is demonstrated to work well for 3D skeletal pose

prediction given real Kinect input. We evaluated our results

against 3D ground truth joint positions demonstrating the

effectiveness of our approach. Figure 9 shows the poten-

tial in extending the pipeline to other species of animals.

We expect that a more pose-diverse training set would pro-

duce results more accurate than the failure cases in Figure 9.

Apart from the option to estimate bone length over multiple

frames, our pipeline does not include temporal constraints,

which would lead to more accurate and smoother predict

sequences of motion. At present, mask generation requires

an additional pre-processing step and is based on the RGB

channel of the Kinect. Instead, the pose-prediction network

could perform a step where the dog is extracted from the

depth image itself. This may produce more robust masks, as

extraction of the dog would no longer rely on texture infor-

mation. As General Adversarial Networks (GANs) are now

considered to produce state-of-the-art results, we intend to

update our network to directly regress joint rotations and

combine this with a GAN to constrain the pose prediction.
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