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Figure 1: Overview of the workflow proposed in this paper. The green and red bounding boxes in the images are ground truth

and prediction, respectively.

Abstract

Even as deep neural networks have become very effec-

tive for tasks in vision and perception, it remains difficult to

explain and debug their behavior. In this paper, we present

a programmatic and semantic approach to explaining, un-

derstanding, and debugging the correct and incorrect be-

haviors of a neural network-based perception system. Our

approach is semantic in that it employs a high-level repre-

sentation of the distribution of environment scenarios that

the detector is intended to work on. It is programmatic

in that scenario representation is a program in a domain-

specific probabilistic programming language which can be

used to generate synthetic data to test a given perception

module. Our framework assesses the performance of a per-

ception module to identify correct and incorrect detections,

extracts rules from those results that semantically charac-

terizes the correct and incorrect scenarios, and then spe-

cializes the probabilistic program with those rules in order

to more precisely characterize the scenarios in which the

perception module operates correctly or not. We demon-

strate our results using the SCENIC probabilistic program-

ming language and a neural network-based object detec-

tor. Our experiments show that it is possible to automati-

cally generate compact rules that significantly increase the

correct detection rate (or conversely the incorrect detection

rate) of the network and can thus help with understanding

and debugging its behavior.
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1. Introduction

Models produced by Machine Learning (ML) algo-

rithms, especially deep neural networks (DNNs), have

proved very effective at performing various tasks in com-

puter vision and perception. Moreover, ML models are be-

ing deployed in domains where trustworthiness is a big con-

cern, such as automotive systems [18], health care [3], and

cyber-security [6]. Research in adversarial machine learn-

ing [11], verification [8, 24], and testing [28] has shown

that DNN-based vision/perception systems are not always

robust and can be fooled, sometimes leading to unsafe situ-

ations for the overall system (e.g., autonomous vehicle).

Given this lack of robustness and potential for unsafe be-

havior, it is crucial that we develop methods to better un-

derstand, debug, and characterize scenarios where DNN-

based perception components fail and where they perform

correctly. The emerging literature on explaining and un-

derstanding ML models provides one approach to address

this concern. However, while there are several techniques

proposed to explain the behavior of ML-based perception

(e.g. [5, 16, 17, 19, 25]), almost all of them operate on

the concrete input feature space of the network. For ex-

ample, attribution-based methods(e.g. [26, 31, 23]) indicate

pixels in an input image that are associated with the out-

put of a DNN on that input. These methods, while very

useful, do not directly identify the higher-level “semantic”

features of the scene that are associated with that decision;

they require a human to make that judgment. Additionally,

in many cases it is important to generate “population-level”

explanations of correct/incorrect behavior on such higher-

level features. For example, it would be useful to identify

whether the perception module of an autonomous vehicle

generally misses cars of a certain model or color, or on a

particular region of a road, and leverage this knowledge to

describe a high-level success/failure scenario of a percep-

tion module without the bottleneck of human intervention.

In this paper, we present a programmatic and semantic

approach to explaining and debugging DNN-based percep-

tion module, with a focus on object detection. In this ap-

proach, we begin by formalizing the semantic feature space

as a distribution over a set of scenes, where a scene is a

configuration of objects in the three dimensional space and

semantic features are features of the scene that capture its

semantics (e.g., the position and orientation of a car, its

model and color, the time of day, weather, etc.). We then

represent the semantic feature space using a program in a

domain-specific programming language – hence the term

programmatic. Given such a representation and generated

data corresponding to correct and incorrect behaviors of an

object detector, we seek to compute specializations of the

program corresponding to those correct/incorrect behaviors.

The specialized programs serve as interpretable representa-

tions of environment scenes that result in those correct/in-

correct behaviors, enabling us to debug failure cases and to

understand where the object detector succeeds.

We implement our approach using the SCENIC [2, 9]

probabilistic programming language. Probabilistic pro-

gramming has already been demonstrated to be applicable

to various computer vision tasks (see, e.g., [14]). SCENIC is

a domain-specific language used to model semantic feature

spaces, i.e., distributions over scenes. It has a generative

back-end that allows one to automatically produce synthetic

data when it is connected to a renderer or simulator, such as

the Grand Theft Auto V (GTA-V) video game. It is thus a

particularly good fit for our approach. Using SCENIC, we

implement the workflow shown in Fig. 1. We begin with

a SCENIC program P that captures a distribution that we

would like our DNN-based detector to work on. Generating

test data from P , we evaluate the performance of the detec-

tor, partitioning the test set into correct and incorrect detec-

tions. For each partition, we use a rule extraction algorithm

to generate rules over the semantic features that are highly

correlated with successes/failures of the detector. Rule ex-

traction is performed using decision tree learning and an-

chors [22]. We further propose a novel white-box approach

that analyzes the neuron activation patterns of the neural

network to get insights into its inner workings. Using these

activation patterns, we show how to derive semantically un-

derstandable rules over the high-level input features to char-

acterize scenarios.

The generated rules are then used to refine P yielding

programs P` and P´ that characterize more precisely the

correct and incorrect feature spaces, respectively. Using this

framework, we evaluate DNN-based object detector for au-

tonomous vehicles, using data generated using SCENIC and

GTA-V. We demonstrate that our approach is very effective,

producing rules and refined programs that significantly in-

crease the correct detection rate (from 65.3% to 89.4%) and

incorrect detection rate (from 34.7% to 87.2%) of the net-

work and can thus help with understanding, debugging and

retraining the network.

In summary, we make the following contributions:

‚ Formulation of a programming language-based semantic

framework to characterize success/failure scenarios for

an ML-based perception module as programs that help

delineate its performance boundaries and generate new

data in a principled way;

‚ An approach based on anchors and decision tree learning

for deriving rules for refining scenario programs;

‚ A novel white-box technique that uses activation pat-

terns of convolutional neural networks to enhance sce-

nario feature space refinement;

‚ A data generation platform enabling research into debug-

ging and explaining DNN-based perception, and

‚ Experimental results demonstrating that our framework

is effective for a complex convolutional neural network
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Feature Range

Weather Neutral, Clear, Extrasunny, Smog, Clouds,

Overcast, Rain, Thunder, Clearing, Xmas,

Foggy,Snowlight, Blizzard, Snow

Time [00:00, 24:00)

Car Model Blista, Bus, Ninef, Asea, Baller, Bison, Buffalo, Bob-

catxl, Dominator, Granger, Jackal, Oracle, Patriot,

Pranger

Car Color R = [0, 255], G = [0, 255], B =[0, 255]

Car Heading [0, 360) deg

Car Position Anywhere on a road on GTA-V’s map

Table 1: Environment features and their ranges in GTA-V

used in autonomous driving.

2. Background

SCENIC is a probabilistic programming language for

scenario specification and scene generation. The lan-

guage can be used to describe environments for various au-

tonomous systems such as autonomous cars or robots. The

environments are scenes, i.e. configurations of objects and

agents. SCENIC allows assigning distributions to the fea-

tures of the scenes, as well as hard and soft mathemat-

ical constraints over the features in the scene. Generat-

ing scenes from a SCENIC program requires sampling from

the distributions defined in the program. SCENIC comes

with efficient sampling techniques that take advantage of

the structure of the SCENIC program, to perform sampling

efficiently, using aggressive pruning of the sampling space.

The generated scenes are rendered into images with the help

of a simulator. In this paper (and similar to [9]) we use

the Grand Theft Auto V (GTA-V) game engine [10] to cre-

ate realistic images with a case study that uses SqueezeDet

[30], a convolutional neural network for object detection in

autonomous cars. Note that the framework we put forth is

not specific to this network, and can be used with other ob-

ject detectors as well.

The semantic features that we use in our case study are

described in Table 1. These features are determined and

limited by the environment parameters that the simulator

allows users to control. If distributions over these envi-

ronment features are not specified in a SCENIC program,

then, by default, they are uniformly randomly selected from

ranges shown in Table 1. Note that for a different applica-

tion domain, we would have a different set of features.

SCENIC is designed to be easily understandable, with

simple and intuitive syntax. We illustrate it via an exam-

ple, shown in Figure 2. The formal syntax and semantics

can be found in [9].

As shown in Figure 2, the program describes a rare situ-

ation where a car is illegally intruding over a white striped

traffic island to either cut in or belatedly avoid entering el-

evated highway. In line 1, ”param time = (6*60, 18*60)”

Figure 2: Example SCENIC program

means that time of the day is uniformly randomly sampled

from 6:00 to 18:00. In line 2, an ego car is placed at specific

x @ y coordinate on GTA-V’s map. In line 4, a spot on a

traffic island (in SCENIC, we referred to it as a curb) that is

within a visible region from a camera mounted on ego car

is selected. Of all visible region of the traffic island, a spot

is uniformly randomly sampled. In line 7 and 8, otherCar is

placed on the spot facing -90 to 90 degree off of where ego

car is facing, simulating cases when a car may be protrud-

ing into a traffic flow. Lastly, SCENIC allows users to define

hard and soft constraints using require statements. In this

scenario, all four require statements define hard constraints.

In line 10, the entire surface of the otherCar must be within

the view region of the ego car. So, a scene where only front

half of the otherCar is visible is not allowed. In line 11,

the otherCar must be positioned in the right half of the ego

car’s visible region. In line 12 and 13, the distance of the

otherCar from ego car should be 5 to 20 meters.

3. Related Work

Most techniques that aim to provide explainability and

interpretability for deep neural networks (DNNs) in the field

of computer vision focus on attributing the network’s deci-

sions to portions of the input images( [16, 19, 25, 26, 31]).

GradCAM [23] is a popular approach for interpreting CNN

models that visualizes how parts of the image affect the neu-

ral network’s output by looking into class activation maps

(CAM). Other techniques focus on understanding the inter-

nal layers by visualizing their activation patterns [5, 17].

Our approach, on the other hand, aims to provide character-

izations at a higher level than raw image pixels, namely at

the level of abstract features defined in a SCENIC program.

Rule extraction techniques either aim to represent the en-

tire functionality of the network as a set of rules making it

too complex [32] or require the presence of pre-mined set

of rules [15] which would be difficult to obtain for the ob-

ject detection scenario. Anchors [22], which improves on

LIME [21], is closest to our work (and we discuss it in more

detail later).

Recent work aims to explain the decisions of DNNs in
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terms of higher-level concepts. The technique in [13] in-

troduces the idea of concept activation vectors, which pro-

vide an interpretation of a neural network’s internal state

in terms of human-friendly concepts. Feature Guided Ex-

ploration [29] aims to analyze the robustness of networks

used in computer vision applications by applying perturba-

tions over high-level input features extracted from raw im-

ages. They use object detection techniques (such as SIFT

– Scale Invariant Feature Transform) to extract the features

from an image. In contrast to these techniques we directly

leverage SCENIC which defines the high-level features in

a way that is already understandable for humans. Existing

approaches typically use classification networks whose out-

put directly corresponds to the decision being made and rely

on the derivative of the output with respect to the input to

calculate importance. In our application, there is no direct

correlation between the output of the object detector net-

work and the validity of the bounding boxes. Furthermore,

unlike all previous work, we can use the synthesized rules

to automatically generate more input instances, by refining

the original SCENIC program and then using it to generate

data. These instances can be used to test, debug and retrain

the network.

4. Approach

The key idea of our approach is to leverage the high-level

semantic features formally encoded in a SCENIC program to

derive rules (sufficient conditions) that explain the behavior

of a detection module in terms of those features. Our hy-

pothesis is that since these features describe the important

characteristics that should be present in an image and fur-

thermore they are much fewer than the raw, low-level pixels,

they should lead to small, compact rules that have a clear

meaning for the developer.

The problem that our technique aims to address can

be formalized as follows. Suppose a function g de-

fines a mapping from a feature vector, rf1, f2, ..., fns P
D1

Ś
D2

Ś
...

Ś
Dn, to a matrix of pixels, m P M , of

an image, where each Di represents the feature domain

of feature fi and M is a domain of m. Let function h

denote the given perception module. Finally, let e be an

evaluation function which compares the perception mod-

ule’s prediction to the ground truths, and outputs a boolean

class (correct or incorrect) based on a certain performance

threshold. Given a SCENIC program, according to its fea-

ture dependencies and hard and soft constraints, the fea-

ture space, D1

Ś
D2

Ś
...

Ś
Dn, is defined. The problem

is to find the subset feature space, d1
Ś

d2
Ś

...
Ś

dn Ď
D1

Ś
D2

Ś
...

Ś
Dn such that when we sample a certain

number of features rf1, f2, ..., fns P d1
Ś

d2
Ś

...
Ś

dn,

the probability that ephpgprf1, f2, ..., fnsqqq is equal to a tar-

get class (correct or incorrect) is maximized.

A high-level overview of our analysis pipeline is illus-

trated in Figure 3. We start with a SCENIC program that

encodes constraints (and distributions) over high-level se-

mantic features that are relevant for a particular application

domain, in our case object detection for autonomous driv-

ing. Intuitively, the program (henceforth called scenario)

encodes the environments that the user wants to focus on

in order to test the module. Based on this scenario, SCENIC

generates a set of feature vectors by sampling from the spec-

ified distributions. A simulator is then used to generate a set

of realistic, synthetic images (i.e. raw low-level pixel val-

ues) based on those features.

The images are fed to the object detector. Each image

is assigned a binary label, correct or incorrect, based on the

performance of the object detector on the image (see Sec-

tion 4.1). The labels obtained for the images are mapped

back to the feature vectors that led to the generation of the

respective images. The result is a labeled data set that maps

each high-level feature vector to the the respective label.

We then use off-the-shelf methods to extract rules from

this data set. The rule extraction is described in more detail

in Sec. 4.2. The result is a set of rules encoding the con-

ditions on high-level features that lead to likely correct or

incorrect detection. The obtained rules can be used to refine

the SCENIC program, which in turn can be sampled to gen-

erate more images that can be used to test, debug or retrain

the detection module. This iterative process can continue

until one obtains refined rules, and SCENIC programs, of

desired precision. In the following we provide more details

about our approach.

4.1. Labelling

Obtaining the label (correct/incorrect) for an image is

performed using the F1 score metric (harmonic mean of

the precision and recall). This metric is commonly used

in statistical analysis of binary classification. The F1 score

is computed in the following way. For each image, the true

positive (TP) is the number of ground truth bounding boxes

correctly predicted by the detection module. Correctly pre-

dicted here means intersection-over-union (IoU for object

detection) is greater than 0.5. The false positive (FP) is the

number of predicted bounding boxes that falsely predicted

ground truths. This false prediction includes duplicate pre-

dictions on one ground truth box. The false negative (FN)

is the number of ground truth boxes that is not detected cor-

rectly. We computed the F1 score for each image, and if it

is greater than a threshold, we assigned correct label; if not,

incorrect. The threshold used in our experiments was 0.8.

4.2. Rule Extraction

Methods: We experimented with two methods, decision

tree (DT) learning for classification [20] and anchors [22],

to extract rules capturing the subspace of the feature space

defined in the given SCENIC program.
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Figure 3: Analysis Pipeline

Decision tree learning is commonly used to extract rules

explaining the global behavior of a complex system while

the anchors method is a state-of-the art technique for ex-

tracting explanation rules that are locally faithful.

Decision trees encode decisions (and their conse-

quences) in a tree-like structure. They are highly inter-

pretable, provided that the trees are short. One can easily

extract rules for explaining different classes, by simply fol-

lowing the paths through the trees and conjuncting the de-

cisions encoded in the tree nodes. We used the rpart [27]

package in R software, which implements corresponding al-

gorithm in [4], with default parameters.

The anchor method is a state-of-the art technique that

aims to explain the behavior of complex ML models with

high-precision rules called anchors, representing local, suf-

ficient conditions for predictions. The system can efficiently

compute these explanations for any black-box model with

high-probability guarantees. We used the code from [1]

with the default parameters. Applying the method to the

object detector directly would result in anchors describing

conditions on low-level pixel values, which would be diffi-

cult to interpret and use. Instead what we want is to extract

anchors in terms of high-level features. While one can use

the simulator together with the object detector as the black-

box model, this would be very inefficient. Instead we built

a surrogate model mapping high-level SCENIC features to

output labels; we used a random forest learning algorithm

for this purpose as in the code. This surrogate model was

then passed to the anchor method to extract the rules.

Blackbox vs Whitebox Analysis: So far we explained

how we can obtain rules when treating the detection module

as a black box. We also investigated a white-box analysis,

to determine whether we can exploit the information about

the internal workings of the module to improve the rule in-

ference. The white-box analysis is one of our novel contri-

butions in this paper. We leverage recent work [12] which

aims to infer likely properties of neural networks. The prop-

erties are in terms of on/off activation patterns (at different

internal layers) that lead to the same predictions. These pat-

terns are computed by applying decision-tree learning over

the activations observed during the execution of the network

on the training or testing set.

We analyzed the architecture of the SqueezeDet net-

work and we determined that there are three maxpool layers

which provide a natural decomposition of the network. Fur-

thermore they have relatively low dimensionality making

them a good target for property inference.

We consider activation patterns over maxpool neurons

based on whether the neuron output is greater or equal to

zero. A decision tree can then be learned over these pat-

terns to fit the prediction labels. For our experiments we

selected patterns from the maxpool layer 5, which turned

out to be highly correlated to images that lead to correct/in-

correct predictions.

Then, we augmented the assigned correct and incorrect

labels with corresponding decision pattern in the following

way. For example, using a decision pattern for correct la-

bels (i.e. the decision pattern that most correlated to images

with correct label), we created two sub-classes for correct

class. By feeding in only images with correct label to the

perception module, the images satisfying the decision pat-

tern is re-labelled as ”correct-decision-pattern,” otherwise,

”correct-unlabelled.” Likewise, the incorrect class is aug-

mented using a decision pattern that is most correlated to

images with incorrect label. It is our intuition that the de-

cision pattern captures more focused properties (or rules)

among images belonging to a target class. Hence, we hy-

pothesize that this label augmentation would help anchor

and decision tree methods to better identify rules.

Rule Selection Criteria: Once we extracted rules with ei-

ther DT or anchors, we selected the best rule using follow-

ing criteria. To best achieve our objective, first, we chose

the rule with highest precision on a held-out testset of fea-

ture vectors. If there are more than one rule with equal high

precision, then we chose the rule with the highest coverage

(i.e. the number of feature vectors satisfying the rules). Fi-

nally, if there is still more than one rule left, then we broke

the tie by choosing the most compact rule which has the
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Scenario # Rules

(BaselineÑRule Precision)

Scenario 1 x coordinate ě -198.1

(65.3% Ñ 89.4%)

hour ě 7.5 ^

weather = all except neutral ^

Scenario 2 car0 distance from ego ě 11.3m ^

(72.3% Ñ 82.3%) car0 model = {Asea, Bison, Blista,

Buffalo, Dominator, Jackal, Ninef,

Oracle}

Scenario 3 car0 red color ě 74.5 ^

(61.7% Ñ 79.4%) car0 heading ě 220.3 deg

car0 model = {Asea, Baller, Blista,

Scenario 4 Buffal, Dominator, Jackal, Ninef,

(89.6% Ñ 96.2%) Oracle}

Table 2: Rules for correct behaviors of the detection module

with the highest precision from Table 6

Scenario # Rules

(BaselineÑRule Precision)

x coordinate ď -200.76 ^

Scenario 1 distance ď 8.84 ^

(34.7% Ñ 87.2%) car model = PRANGER

hour ě 7.5 ^

Scenario 2 weather = all except Neutral ^

(27.7% Ñ 44.9%) car0 distance from ego ă 11.3

weather = neutral ^

Scenario 3 agent0 heading = ď 218.08 deg ^

(38.3% Ñ 83.4%) hour ď 8.00 ^

car2 red color ď 95.00

car0 model = PATRIOT ^

car1 model = NINEF ^

Scenario 4 car2 model = BALLER ^

(10.4% Ñ 57.3%) 92.25 ă car0 green color ď 158 ^

car0 blue color ď 84.25 ^

178.00 ă car2 red color ď 224

Table 3: Rules for incorrect behaviors of detection module

with the highest precision from Table 7

least number of features. The last two criteria are estab-

lished to select the most general high-precision rule.

5. Experiments

In this section we report on our experiments with the

proposed approach on the object detector. We investigate

whether we can synthesize rules that are effective in gener-

ating test inputs that increase the probability of correct/in-

correct detection, thus explaining the correct/incorrect be-

havior of the analyzed module. We evaluate the proposed

techniques along the following dimensions: decision tree

(DT) vs anchor, black-box (BB) vs white-box (WB).

5.1. Scenarios

We experimented with our approach on four different

scenarios. Images generated from these scenarios are shown

in Figure 4. Scenario 1 (Figure 2) describes the situation

where a car is illegally intruding over a white striped traffic

island at the entrance of an elevated highway. Scenario 2

describes two-car scenario where one car occludes the ego

car’s view of another car at a T-junction intersection on an

elevated road. describes scenes where other cars are merg-

ing into ego car’s lane. The location in this scenario is care-

fully chosen such that the sun rises in front of ego car, caus-

ing a glare. describes a set of scenes when nearest car is

abruptly switching into ego car’s lane while another car on

the opposite traffic direction lane is slightly intruding over

the middle yellow line into ego car’s lane. 1

5.2. Setup

The object detector was trained on a separate set of

10,000 GTA images with one to four cars in various lo-

cations of the map producing different background scenes.

The GTA-V simulator provided images, ground truth boxes,

and values of the environment features.

For each scenario, we generated 950 new images as a

train set and another 950 new images as a test set. We de-

note the labels corresponding to the maxpool layer 5 deci-

sion pattern as p5c(correct) and p5 ic(incorrect) and the re-

maining as correct unlabelled and incorrect unlabelled, re-

spectively. We augmented the feature vector with some ex-

tra features that are not part of the feature values provided

by the simulator but could help with extracting meaningful

rules. For example, in Scenario 1, the distance from ego to

otherCar is not part of the feature values provided by GTA-

V. However, it can be computed with Euclidean distance

metric using (x,y) location coordinates of ego and otherCar.

Also, the difference in heading angle between ego and oth-

erCar is also added as extra feature to represent “badAngle”

variable in the program.

From the train set, we extracted rules to predict each la-

bel based on the feature vectors. These rules were evaluated

on the test set based on precision, recall, and F1 score met-

rics. For DT learning we adjusted the label weight to ac-

count for the uneven ratio among labels for both black-box

and white-box labels. For the Anchors method, we applied

it on each instance of the training set until we had covered a

maximum of 50 instances for every label (correct, incorrect

for Black Box, and p5c, p5 ic, correct unlabelled, incor-

rect unlabelled for White Box). The best anchor rule for

every label is selected based on the rule selection criteria

mentioned in section 4.2.

1Please refer to supplement material for SCENIC programs of scenario

2,3, and 4 as well as refined SCENIC programs
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Figure 4: From top-left one-car image, each image corre-

sponds to scenario 1, 2, 3, and 4 in a clockwise manner.

The scenario number is the number of cars

5.3. Results

Tables 2 and 3 show the best rules (wrt. precision) ex-

tracted with our proposed framework, along with the base-

line correct/incorrect detection rate for each given scenario

and the detection rate for the generated rules. The results

indicate that indeed our framework can generate rules that

increase significantly the correct and incorrect detection rate

of the module. Furthermore, the generated rules are com-

pact and easily interpretable.

For example, the rule for correct behavior for Scenario 1

is ”x coordinate ě ´198.1.” In GTA-V, at ego car’s specific

location, the condition on x coordinate was equivalent to the

otherCar’s distance from ego being greater than 11m. On

the other hand, the rule for incorrect behavior for Scenario

1 requires the otherCar to be within 8.84m and its car model

to be PRANGER. These rules, counter-intuitively, indicate

that the object detector fails when the otherCar is close by,

and performs well when located further away.

Results for Correct Behavior: Tables 5 and 6 summarize

the results for the rules explaining correct behavior. The

results indicate that there are clear signals in the heavily

abstracted feature space and they can be used effectively for

scenario characterization via the generated high-precision

rules.

The results also indicate that DT learning extracts rules

with better F1 scores for all scenarios as compared to an-

chors. This could be attributed to the difference in the nature

of the techniques. The anchor approach aims to construct

rules that have high precision in the locality of a given in-

stance. Decision-trees on the other hand aim to construct

global rules that discriminate one label from another. Given

that a large proportion of instances were detected correctly

by the analyzed module, the decision tree was able to build

rules with high precision and coverage for correct behavior.

Scenario # 1 2 3 4

Correct DP 0.626 0.651 0.514 0.824

Incorrect DP 0.276 0.175 0.234 0.212

Table 4: Support for correct and incorrect decision patterns

Scenario # 1 2 3 4

BB Decision Tree 0.723 0.342 0.631 0.622

WB Decision Tree 0.727 0.696 0.601 0.778

BB Anchor 0.361 0.457 0.302 0.438

WB Anchor 0.520 0.188 0.149 0.438

Table 5: F1 score of correct rules on testset

Scenario # 1 2 3 4

Original Program 0.653 0.723 0.617 0.896

BB Decision Tree 0.843 0.778 0.787 0.950

WB Decision Tree 0.826 0.823 0.788 0.962

BB Anchor 0.727 0.811 0.652 0.928

WB Anchor 0.894 0.817 0.794 0.928

Table 6: Precision of correct rules on the testset

Scenario # 1 2 3 4

Original Program 0.347 0.277 0.383 0.104

BB Decision Tree 0.703 0.418 0.506 0.375

WB Decision Tree 0.73 0.449 0.494 0.099

BB Anchor 0.872 0.357 0.834 0.573

WB Anchor 0.674 0.422 0.365 0.176

Table 7: Precision of incorrect rules on 500 new data gen-

erated from each refined SCENIC program

The results also highlight the benefit of using white-box

information to extract rules for correct behavior.

Table 4 shows the support for the decision pattern is sig-

nificant (greater than 65% on average for all scenarios). The

support is defined as a correlation of the decision pattern to a

specific label. Using this information to augment the labels

of the dataset helped to improve the precision and F1 score

of the rules (w.r.t. SCENIC features) for both DT learning

and anchor method.

Results for Incorrect Behavior: Tables 3 and 7 summa-

rize the results for the rules explaining incorrect behavior.

Rule derivation for incorrect behavior is more challenging

than for correct behavior due to the low percentage of in-

puts that lead to the incorrect detection for a well trained

network.

In fact the F1 scores (computed on the test set) for rules
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Figure 5: The cumulative ratio of incorrectly detected im-

ages generated from refined SCENIC programs (using incor-

rect rules) stabilizes over 500 samples. Each color has four

graphs representing four different rule extraction methods

predicting incorrect behavior were too low due to very low

(in some cases 0) recall values.

To properly validate the efficacy of the generated rules,

we refined the SCENIC programs by encoding the rules as

constraints and we generated 500 new images. We then

evaluated our module’s performance on these new datasets.

Figure 5 justifies our choice of 500 as the number of new

images that we generate for evaluation.

All four methods contributed to more precisely identify-

ing the subset features spaces in which the module performs

worse. Specifically, Table 7 illustrates that the black-box

anchor method enhanced the generation rate of incorrectly

detected images by 48% on average in Scenarios 1, 3, and

4 compared to the baseline. This is a significant increase in

the ratio of incorrectly labelled images generated from the

program, providing evidence that the refined programs are

more precisely characterizing the failure scenarios.

We also note that the anchor method outperforms DT

learning. This is expected, because the anchor method ex-

tracts rules that are highly precise within a local feature

space. The exception is Scenario 2. We conjecture that

the reason that the anchor method did not perform better

than DT learning is due to uncontrollable non-determinism

in GTA-V, which generated pedestrians in close vicinity to

the camera of ego car even though its SCENIC program did

not have any pedestrian. GTA-V non-deterministically in-

stantiated these pedestrians, and the perception module of-

ten incorrectly predicted the pedestrians as cars. This is an

issue with the GTA-V which originally was not built for

data generation purpose. GTA-V does not allow users to

control or eliminate these pedestrians and it does not pro-

vide features related to pedestrians during data collection

process. In future work, we plan to incorporate simulators

that allows a deterministic control (such as CARLA [7]) for

further experimentation.

Unlike the results for correct behavior, the whitebox ap-

proach tends to perform worse than blackbox when focus-

ing on incorrect behavior. This outcome can be attributed

to very low support for decision patterns computed for in-

correct behavior, with maximum of 27.6% among the four

scenarios as shown in Table 4.

However, we do observe that the white-box approach for

both DT learning and anchors does, in general, enhance the

ratio of incorrectly detected images as shown in Table 7,

compared to those of the original programs.

Limitations: Our technique relies on abstracting an im-

age with a high resolution (for instance 1920 x 1200 in our

example) to a vector of a small set of semantic features. In

our experiments we were able to derive compact rules with

high precision and coverage. However, we do note that in

other application domains, other than autonomous driving,

the abstraction may lead to under-determined representa-

tion, which may not yield any noticeable patterns. There-

fore, appropriate selection of a subset of essential features

for a given application domain (facilitated by an appropri-

ate definition using SCENIC), is essential. We also note that

all the SCENIC programs we experimented with contained

only uniform distributions. Also, for each of the scenario

programs that we analyzed, we fixed the location and head-

ing angle of the camera. In these restricted settings, we

were able to extract rules that distinguished correctly de-

tected scenes from the incorrect ones.

6. Conclusion and Future Work

We presented a semantic and programmatic framework

for characterizing success and failure scenarios of a given

perception module in the form of programs. The technique

leverages the SCENIC language to derive rules in terms of

high-level, meaningful features and generates new inputs

that conform with these rules. For future work, we plan on

applying this approach to other domains, by looking into

more general input distributions and transformations.
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