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Figure 1: Overview of the workflow proposed in this paper. The green and red bounding boxes in the images are ground truth

and prediction, respectively.

Abstract

Even as deep neural networks have become very effec-
tive for tasks in vision and perception, it remains difficult to
explain and debug their behavior. In this paper, we present
a programmatic and semantic approach to explaining, un-
derstanding, and debugging the correct and incorrect be-
haviors of a neural network-based perception system. Our
approach is semantic in that it employs a high-level repre-
sentation of the distribution of environment scenarios that
the detector is intended to work on. It is programmatic
in that scenario representation is a program in a domain-
specific probabilistic programming language which can be
used to generate synthetic data to test a given perception
module. Our framework assesses the performance of a per-

ception module to identify correct and incorrect detections,
extracts rules from those results that semantically charac-
terizes the correct and incorrect scenarios, and then spe-
cializes the probabilistic program with those rules in order
to more precisely characterize the scenarios in which the
perception module operates correctly or not. We demon-
strate our results using the SCENIC probabilistic program-
ming language and a neural network-based object detec-
tor. Our experiments show that it is possible to automati-
cally generate compact rules that significantly increase the
correct detection rate (or conversely the incorrect detection
rate) of the network and can thus help with understanding
and debugging its behavior.
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1. Introduction

Models produced by Machine Learning (ML) algo-
rithms, especially deep neural networks (DNNs), have
proved very effective at performing various tasks in com-
puter vision and perception. Moreover, ML models are be-
ing deployed in domains where trustworthiness is a big con-
cern, such as automotive systems [ 18], health care [3], and
cyber-security [6]. Research in adversarial machine learn-
ing [11], verification [8, 24], and testing [28] has shown
that DNN-based vision/perception systems are not always
robust and can be fooled, sometimes leading to unsafe situ-
ations for the overall system (e.g., autonomous vehicle).

Given this lack of robustness and potential for unsafe be-
havior, it is crucial that we develop methods to better un-
derstand, debug, and characterize scenarios where DNN-
based perception components fail and where they perform
correctly. The emerging literature on explaining and un-
derstanding ML models provides one approach to address
this concern. However, while there are several techniques
proposed to explain the behavior of ML-based perception
(e.g. [5, 16, 17, 19, 25]), almost all of them operate on
the concrete input feature space of the network. For ex-
ample, attribution-based methods(e.g. [26, 31, 23]) indicate
pixels in an input image that are associated with the out-
put of a DNN on that input. These methods, while very
useful, do not directly identify the higher-level “semantic”
features of the scene that are associated with that decision;
they require a human to make that judgment. Additionally,
in many cases it is important to generate “population-level”
explanations of correct/incorrect behavior on such higher-
level features. For example, it would be useful to identify
whether the perception module of an autonomous vehicle
generally misses cars of a certain model or color, or on a
particular region of a road, and leverage this knowledge to
describe a high-level success/failure scenario of a percep-
tion module without the bottleneck of human intervention.

In this paper, we present a programmatic and semantic
approach to explaining and debugging DNN-based percep-
tion module, with a focus on object detection. In this ap-
proach, we begin by formalizing the semantic feature space
as a distribution over a set of scenes, where a scene is a
configuration of objects in the three dimensional space and
semantic features are features of the scene that capture its
semantics (e.g., the position and orientation of a car, its
model and color, the time of day, weather, etc.). We then
represent the semantic feature space using a program in a
domain-specific programming language — hence the term
programmatic. Given such a representation and generated
data corresponding to correct and incorrect behaviors of an
object detector, we seek to compute specializations of the
program corresponding to those correct/incorrect behaviors.
The specialized programs serve as interpretable representa-
tions of environment scenes that result in those correct/in-

correct behaviors, enabling us to debug failure cases and to
understand where the object detector succeeds.

We implement our approach using the SCENIC [2, 9]
probabilistic programming language. Probabilistic pro-
gramming has already been demonstrated to be applicable
to various computer vision tasks (see, e.g., [ 14]). SCENIC is
a domain-specific language used to model semantic feature
spaces, i.e., distributions over scenes. It has a generative
back-end that allows one to automatically produce synthetic
data when it is connected to a renderer or simulator, such as
the Grand Theft Auto V (GTA-V) video game. It is thus a
particularly good fit for our approach. Using SCENIC, we
implement the workflow shown in Fig. 1. We begin with
a SCENIC program P that captures a distribution that we
would like our DNN-based detector to work on. Generating
test data from P, we evaluate the performance of the detec-
tor, partitioning the test set into correct and incorrect detec-
tions. For each partition, we use a rule extraction algorithm
to generate rules over the semantic features that are highly
correlated with successes/failures of the detector. Rule ex-
traction is performed using decision tree learning and an-
chors [22]. We further propose a novel white-box approach
that analyzes the neuron activation patterns of the neural
network to get insights into its inner workings. Using these
activation patterns, we show how to derive semantically un-
derstandable rules over the high-level input features to char-
acterize scenarios.

The generated rules are then used to refine P yielding
programs Pt and P~ that characterize more precisely the
correct and incorrect feature spaces, respectively. Using this
framework, we evaluate DNN-based object detector for au-
tonomous vehicles, using data generated using SCENIC and
GTA-V. We demonstrate that our approach is very effective,
producing rules and refined programs that significantly in-
crease the correct detection rate (from 65.3% to 89.4%) and
incorrect detection rate (from 34.7% to 87.2%) of the net-
work and can thus help with understanding, debugging and
retraining the network.

In summary, we make the following contributions:

e Formulation of a programming language-based semantic
framework to characterize success/failure scenarios for
an ML-based perception module as programs that help
delineate its performance boundaries and generate new
data in a principled way;

e An approach based on anchors and decision tree learning
for deriving rules for refining scenario programs;

¢ A novel white-box technique that uses activation pat-
terns of convolutional neural networks to enhance sce-
nario feature space refinement;

o A data generation platform enabling research into debug-
ging and explaining DNN-based perception, and

o Experimental results demonstrating that our framework
is effective for a complex convolutional neural network
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Feature Range

Weather Neutral, Clear, Extrasunny, Smog, Clouds,
Overcast, Rain, Thunder, Clearing, Xmas,
Foggy,Snowlight, Blizzard, Snow

Time [00:00, 24:00)

Car Model Blista, Bus, Ninef, Asea, Baller, Bison, Buffalo, Bob-
catxl, Dominator, Granger, Jackal, Oracle, Patriot,
Pranger
Car Color R =0, 255], G = [0, 255], B =[0, 255]
Car Heading [0, 360) deg

Car Position Anywhere on a road on GTA-V’s map

Table 1: Environment features and their ranges in GTA-V

used in autonomous driving.

2. Background

SCENIC is a probabilistic programming language for
scenario specification and scene generation. The lan-
guage can be used to describe environments for various au-
tonomous systems such as autonomous cars or robots. The
environments are scenes, i.e. configurations of objects and
agents. SCENIC allows assigning distributions to the fea-
tures of the scenes, as well as hard and soft mathemat-
ical constraints over the features in the scene. Generat-
ing scenes from a SCENIC program requires sampling from
the distributions defined in the program. SCENIC comes
with efficient sampling techniques that take advantage of
the structure of the SCENIC program, to perform sampling
efficiently, using aggressive pruning of the sampling space.
The generated scenes are rendered into images with the help
of a simulator. In this paper (and similar to [9]) we use
the Grand Theft Auto V (GTA-V) game engine [10] to cre-
ate realistic images with a case study that uses SqueezeDet
[30], a convolutional neural network for object detection in
autonomous cars. Note that the framework we put forth is
not specific to this network, and can be used with other ob-
ject detectors as well.

The semantic features that we use in our case study are
described in Table 1. These features are determined and
limited by the environment parameters that the simulator
allows users to control. If distributions over these envi-
ronment features are not specified in a SCENIC program,
then, by default, they are uniformly randomly selected from
ranges shown in Table 1. Note that for a different applica-
tion domain, we would have a different set of features.

SCENIC is designed to be easily understandable, with
simple and intuitive syntax. We illustrate it via an exam-
ple, shown in Figure 2. The formal syntax and semantics
can be found in [9].

As shown in Figure 2, the program describes a rare situ-
ation where a car is illegally intruding over a white striped
traffic island to either cut in or belatedly avoid entering el-
evated highway. In line 1, ”param time = (6%60, 18%60)”

param time = (6*60, 1B+*60)
ego = Car at -209.091 @ -686.231

1
2
3
4 spot = OrientedPoint on wvisible curb
5 badAngle = (-90,90) deg

6

7

8

otherCar = Car at spot,
facing badAngle relative to ego.heading

10 require otherCar in ego.visibleRegion

1l require ((angle to otherCar) - ego.heading) < 0

12 require (distance from ego.position to otherCar) >= 5
13 require (distance from ego.position to otherCar) <= 20

Figure 2: Example SCENIC program

means that time of the day is uniformly randomly sampled
from 6:00 to 18:00. In line 2, an ego car is placed at specific
X @ y coordinate on GTA-V’s map. In line 4, a spot on a
traffic island (in SCENIC, we referred to it as a curb) that is
within a visible region from a camera mounted on ego car
is selected. Of all visible region of the traffic island, a spot
is uniformly randomly sampled. In line 7 and 8, otherCar is
placed on the spot facing -90 to 90 degree off of where ego
car is facing, simulating cases when a car may be protrud-
ing into a traffic flow. Lastly, SCENIC allows users to define
hard and soft constraints using require statements. In this
scenario, all four require statements define hard constraints.
In line 10, the entire surface of the otherCar must be within
the view region of the ego car. So, a scene where only front
half of the otherCar is visible is not allowed. In line 11,
the otherCar must be positioned in the right half of the ego
car’s visible region. In line 12 and 13, the distance of the
otherCar from ego car should be 5 to 20 meters.

3. Related Work

Most techniques that aim to provide explainability and
interpretability for deep neural networks (DNNs) in the field
of computer vision focus on attributing the network’s deci-
sions to portions of the input images( [16, 19, 25, 26, 31]).
GradCAM [23] is a popular approach for interpreting CNN
models that visualizes how parts of the image affect the neu-
ral network’s output by looking into class activation maps
(CAM). Other techniques focus on understanding the inter-
nal layers by visualizing their activation patterns [5, 17].
Our approach, on the other hand, aims to provide character-
izations at a higher level than raw image pixels, namely at
the level of abstract features defined in a SCENIC program.

Rule extraction techniques either aim to represent the en-
tire functionality of the network as a set of rules making it
too complex [32] or require the presence of pre-mined set
of rules [15] which would be difficult to obtain for the ob-
ject detection scenario. Anchors [22], which improves on
LIME [21], is closest to our work (and we discuss it in more
detail later).

Recent work aims to explain the decisions of DNNs in
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terms of higher-level concepts. The technique in [13] in-
troduces the idea of concept activation vectors, which pro-
vide an interpretation of a neural network’s internal state
in terms of human-friendly concepts. Feature Guided Ex-
ploration [29] aims to analyze the robustness of networks
used in computer vision applications by applying perturba-
tions over high-level input features extracted from raw im-
ages. They use object detection techniques (such as SIFT
— Scale Invariant Feature Transform) to extract the features
from an image. In contrast to these techniques we directly
leverage SCENIC which defines the high-level features in
a way that is already understandable for humans. Existing
approaches typically use classification networks whose out-
put directly corresponds to the decision being made and rely
on the derivative of the output with respect to the input to
calculate importance. In our application, there is no direct
correlation between the output of the object detector net-
work and the validity of the bounding boxes. Furthermore,
unlike all previous work, we can use the synthesized rules
to automatically generate more input instances, by refining
the original SCENIC program and then using it to generate
data. These instances can be used to test, debug and retrain
the network.

4. Approach

The key idea of our approach is to leverage the high-level
semantic features formally encoded in a SCENIC program to
derive rules (sufficient conditions) that explain the behavior
of a detection module in terms of those features. Our hy-
pothesis is that since these features describe the important
characteristics that should be present in an image and fur-
thermore they are much fewer than the raw, low-level pixels,
they should lead to small, compact rules that have a clear
meaning for the developer.

The problem that our technique aims to address can
be formalized as follows. Suppose a function g de-
fines a mapping from a feature vector, [f1, fo,..., fn] €
D1 X Ds X ... X Dy, to a matrix of pixels, m € M, of
an image, where each D, represents the feature domain
of feature f; and M is a domain of m. Let function h
denote the given perception module. Finally, let e be an
evaluation function which compares the perception mod-
ule’s prediction to the ground truths, and outputs a boolean
class (correct or incorrect) based on a certain performance
threshold. Given a SCENIC program, according to its fea-
ture dependencies and hard and soft constraints, the fea-
ture space, D1 X Dy X ... X D,, is defined. The problem
is to find the subset feature space, d; X do X ... X d,, S
Dy X Dy X ... X D, such that when we sample a certain
number of features [f1, fa,..., fn] € d1 X da X ... X dp,,
the probability that e(h(g([f1, f2, ---, fn]))) is equal to a tar-
get class (correct or incorrect) is maximized.

A high-level overview of our analysis pipeline is illus-

trated in Figure 3. We start with a SCENIC program that
encodes constraints (and distributions) over high-level se-
mantic features that are relevant for a particular application
domain, in our case object detection for autonomous driv-
ing. Intuitively, the program (henceforth called scenario)
encodes the environments that the user wants to focus on
in order to test the module. Based on this scenario, SCENIC
generates a set of feature vectors by sampling from the spec-
ified distributions. A simulator is then used to generate a set
of realistic, synthetic images (i.e. raw low-level pixel val-
ues) based on those features.

The images are fed to the object detector. Each image
is assigned a binary label, correct or incorrect, based on the
performance of the object detector on the image (see Sec-
tion 4.1). The labels obtained for the images are mapped
back to the feature vectors that led to the generation of the
respective images. The result is a labeled data set that maps
each high-level feature vector to the the respective label.

We then use off-the-shelf methods to extract rules from
this data set. The rule extraction is described in more detail
in Sec. 4.2. The result is a set of rules encoding the con-
ditions on high-level features that lead to likely correct or
incorrect detection. The obtained rules can be used to refine
the SCENIC program, which in turn can be sampled to gen-
erate more images that can be used to test, debug or retrain
the detection module. This iterative process can continue
until one obtains refined rules, and SCENIC programs, of
desired precision. In the following we provide more details
about our approach.

4.1. Labelling

Obtaining the label (correct/incorrect) for an image is
performed using the F1 score metric (harmonic mean of
the precision and recall). This metric is commonly used
in statistical analysis of binary classification. The F1 score
is computed in the following way. For each image, the true
positive (TP) is the number of ground truth bounding boxes
correctly predicted by the detection module. Correctly pre-
dicted here means intersection-over-union (IoU for object
detection) is greater than 0.5. The false positive (FP) is the
number of predicted bounding boxes that falsely predicted
ground truths. This false prediction includes duplicate pre-
dictions on one ground truth box. The false negative (FN)
is the number of ground truth boxes that is not detected cor-
rectly. We computed the F1 score for each image, and if it
is greater than a threshold, we assigned correct label; if not,
incorrect. The threshold used in our experiments was 0.8.

4.2. Rule Extraction

Methods: We experimented with two methods, decision
tree (DT) learning for classification [20] and anchors [22],
to extract rules capturing the subspace of the feature space
defined in the given SCENIC program.
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Decision tree learning is commonly used to extract rules
explaining the global behavior of a complex system while
the anchors method is a state-of-the art technique for ex-
tracting explanation rules that are locally faithful.

Decision trees encode decisions (and their conse-
quences) in a tree-like structure. They are highly inter-
pretable, provided that the trees are short. One can easily
extract rules for explaining different classes, by simply fol-
lowing the paths through the trees and conjuncting the de-
cisions encoded in the tree nodes. We used the rpart [27]
package in R software, which implements corresponding al-
gorithm in [4], with default parameters.

The anchor method is a state-of-the art technique that
aims to explain the behavior of complex ML models with
high-precision rules called anchors, representing local, suf-
ficient conditions for predictions. The system can efficiently
compute these explanations for any black-box model with
high-probability guarantees. We used the code from [!]
with the default parameters. Applying the method to the
object detector directly would result in anchors describing
conditions on low-level pixel values, which would be diffi-
cult to interpret and use. Instead what we want is to extract
anchors in terms of high-level features. While one can use
the simulator together with the object detector as the black-
box model, this would be very inefficient. Instead we built
a surrogate model mapping high-level SCENIC features to
output labels; we used a random forest learning algorithm
for this purpose as in the code. This surrogate model was
then passed to the anchor method to extract the rules.

Blackbox vs Whitebox Analysis: So far we explained
how we can obtain rules when treating the detection module
as a black box. We also investigated a white-box analysis,
to determine whether we can exploit the information about
the internal workings of the module to improve the rule in-
ference. The white-box analysis is one of our novel contri-
butions in this paper. We leverage recent work [12] which
aims to infer likely properties of neural networks. The prop-
erties are in terms of on/off activation patterns (at different
internal layers) that lead to the same predictions. These pat-

terns are computed by applying decision-tree learning over
the activations observed during the execution of the network
on the training or testing set.

We analyzed the architecture of the SqueezeDet net-
work and we determined that there are three maxpool layers
which provide a natural decomposition of the network. Fur-
thermore they have relatively low dimensionality making
them a good target for property inference.

We consider activation patterns over maxpool neurons
based on whether the neuron output is greater or equal to
zero. A decision tree can then be learned over these pat-
terns to fit the prediction labels. For our experiments we
selected patterns from the maxpool layer 5, which turned
out to be highly correlated to images that lead to correct/in-
correct predictions.

Then, we augmented the assigned correct and incorrect
labels with corresponding decision pattern in the following
way. For example, using a decision pattern for correct la-
bels (i.e. the decision pattern that most correlated to images
with correct label), we created two sub-classes for correct
class. By feeding in only images with correct label to the
perception module, the images satisfying the decision pat-
tern is re-labelled as “correct-decision-pattern,” otherwise,
“correct-unlabelled.” Likewise, the incorrect class is aug-
mented using a decision pattern that is most correlated to
images with incorrect label. It is our intuition that the de-
cision pattern captures more focused properties (or rules)
among images belonging to a target class. Hence, we hy-
pothesize that this label augmentation would help anchor
and decision tree methods to better identify rules.

Rule Selection Criteria: Once we extracted rules with ei-
ther DT or anchors, we selected the best rule using follow-
ing criteria. To best achieve our objective, first, we chose
the rule with highest precision on a held-out testset of fea-
ture vectors. If there are more than one rule with equal high
precision, then we chose the rule with the highest coverage
(i.e. the number of feature vectors satisfying the rules). Fi-
nally, if there is still more than one rule left, then we broke
the tie by choosing the most compact rule which has the
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Scenario # Rules

(Baseline—Rule Precision)

Scenario 1 x coordinate > -198.1

(65.3% — 89.4%)

hour > 7.5 A

weather = all except neutral A
car( distance from ego > 11.3m A
car0 model = { Asea, Bison, Blista,
Buffalo, Dominator, Jackal, Ninef,
Oracle}

Scenario 2
(72.3% — 82.3%)

car( red color > 74.5 A
car( heading > 220.3 deg

Scenario 3
(61.7% — 79.4%)

car0 model = { Asea, Baller, Blista,
Buffal, Dominator, Jackal, Ninef,
Oracle}

Scenario 4
(89.6% — 96.2%)

Table 2: Rules for correct behaviors of the detection module
with the highest precision from Table 6

Scenario # Rules

(Baseline—Rule Precision)

x coordinate < -200.76 A
distance < 8.84 A
car model = PRANGER

Scenario 1
(34.7% — 87.2%)

hour > 7.5 A
weather = all except Neutral A
car( distance from ego < 11.3

Scenario 2
27.7% — 44.9%)

weather = neutral A

agent( heading = < 218.08 deg A
hour < 8.00 A

car2 red color < 95.00

Scenario 3
(38.3% — 83.4%)

car() model = PATRIOT A

carl model = NINEF A

car2 model = BALLER A

92.25 < car( green color < 158 A
car( blue color < 84.25 A

178.00 < car2 red color < 224

Scenario 4
(10.4% — 57.3%)

Table 3: Rules for incorrect behaviors of detection module
with the highest precision from Table 7

least number of features. The last two criteria are estab-
lished to select the most general high-precision rule.

5. Experiments

In this section we report on our experiments with the
proposed approach on the object detector. We investigate
whether we can synthesize rules that are effective in gener-
ating test inputs that increase the probability of correct/in-
correct detection, thus explaining the correct/incorrect be-
havior of the analyzed module. We evaluate the proposed
techniques along the following dimensions: decision tree
(DT) vs anchor, black-box (BB) vs white-box (WB).

5.1. Scenarios

We experimented with our approach on four different
scenarios. Images generated from these scenarios are shown
in Figure 4. Scenario 1 (Figure 2) describes the situation
where a car is illegally intruding over a white striped traffic
island at the entrance of an elevated highway. Scenario 2
describes two-car scenario where one car occludes the ego
car’s view of another car at a T-junction intersection on an
elevated road. describes scenes where other cars are merg-
ing into ego car’s lane. The location in this scenario is care-
fully chosen such that the sun rises in front of ego car, caus-
ing a glare. describes a set of scenes when nearest car is
abruptly switching into ego car’s lane while another car on
the opposite traffic direction lane is slightly intruding over
the middle yellow line into ego car’s lane. !

5.2. Setup

The object detector was trained on a separate set of
10,000 GTA images with one to four cars in various lo-
cations of the map producing different background scenes.
The GTA-V simulator provided images, ground truth boxes,
and values of the environment features.

For each scenario, we generated 950 new images as a
train set and another 950 new images as a test set. We de-
note the labels corresponding to the maxpool layer 5 deci-
sion pattern as p5c(correct) and p5_ic(incorrect) and the re-
maining as correct_unlabelled and incorrect_unlabelled, re-
spectively. We augmented the feature vector with some ex-
tra features that are not part of the feature values provided
by the simulator but could help with extracting meaningful
rules. For example, in Scenario 1, the distance from ego to
otherCar is not part of the feature values provided by GTA-
V. However, it can be computed with Euclidean distance
metric using (x,y) location coordinates of ego and otherCar.
Also, the difference in heading angle between ego and oth-
erCar is also added as extra feature to represent “badAngle”
variable in the program.

From the train set, we extracted rules to predict each la-
bel based on the feature vectors. These rules were evaluated
on the test set based on precision, recall, and F1 score met-
rics. For DT learning we adjusted the label weight to ac-
count for the uneven ratio among labels for both black-box
and white-box labels. For the Anchors method, we applied
it on each instance of the training set until we had covered a
maximum of 50 instances for every label (correct, incorrect
for Black Box, and p5c, p5_ic, correct_unlabelled, incor-
rect_unlabelled for White Box). The best anchor rule for
every label is selected based on the rule selection criteria
mentioned in section 4.2.

IPlease refer to supplement material for SCENIC programs of scenario
2,3, and 4 as well as refined SCENIC programs
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Figure 4: From top-left one-car image, each image corre-
sponds to scenario 1, 2, 3, and 4 in a clockwise manner.
The scenario number is the number of cars

5.3. Results

Tables 2 and 3 show the best rules (wrt. precision) ex-
tracted with our proposed framework, along with the base-
line correct/incorrect detection rate for each given scenario
and the detection rate for the generated rules. The results
indicate that indeed our framework can generate rules that
increase significantly the correct and incorrect detection rate
of the module. Furthermore, the generated rules are com-
pact and easily interpretable.

For example, the rule for correct behavior for Scenario 1
is ”’x coordinate > —198.1.” In GTA-V, at ego car’s specific
location, the condition on x coordinate was equivalent to the
otherCar’s distance from ego being greater than 11m. On
the other hand, the rule for incorrect behavior for Scenario
1 requires the otherCar to be within 8.84m and its car model
to be PRANGER. These rules, counter-intuitively, indicate
that the object detector fails when the otherCar is close by,
and performs well when located further away.

Results for Correct Behavior: Tables 5 and 6 summarize
the results for the rules explaining correct behavior. The
results indicate that there are clear signals in the heavily
abstracted feature space and they can be used effectively for
scenario characterization via the generated high-precision
rules.

The results also indicate that DT learning extracts rules
with better F1 scores for all scenarios as compared to an-
chors. This could be attributed to the difference in the nature
of the techniques. The anchor approach aims to construct
rules that have high precision in the locality of a given in-
stance. Decision-trees on the other hand aim to construct
global rules that discriminate one label from another. Given
that a large proportion of instances were detected correctly
by the analyzed module, the decision tree was able to build
rules with high precision and coverage for correct behavior.

Scenario # 1 2 3 4

Correct DP 0.626 0.651 0.514 0.824
Incorrect DP 0.276 0.175 0.234 0.212

Table 4: Support for correct and incorrect decision patterns

Scenario # 1 2 3 4

BB Decision Tree  0.723  0.342  0.631 0.622
WB Decision Tree  0.727 0.696 0.601 0.778
BB Anchor 0.361 0.457 0302 0.438
WB Anchor 0.520 0.188 0.149 0.438

Table 5: F1 score of correct rules on testset

Scenario # 1 2 3 4

Original Program  0.653  0.723 0.617 0.896

BB Decision Tree  0.843  0.778  0.787  0.950
WB Decision Tree  0.826  0.823 0.788  0.962
BB Anchor 0.727 0.811 0.652 0.928
WB Anchor 0.894 0.817 0.794 0.928

Table 6: Precision of correct rules on the testset

Scenario # 1 2 3 4

Original Program  0.347  0.277 0.383 0.104

BB Decision Tree  0.703 0.418 0.506 0.375
WB Decision Tree  0.73  0.449 0.494 0.099
BB Anchor 0.872 0357 0.834 0.573
WB Anchor 0.674 0422 0365 0.176

Table 7: Precision of incorrect rules on 500 new data gen-
erated from each refined SCENIC program

The results also highlight the benefit of using white-box
information to extract rules for correct behavior.

Table 4 shows the support for the decision pattern is sig-
nificant (greater than 65% on average for all scenarios). The
support is defined as a correlation of the decision pattern to a
specific label. Using this information to augment the labels
of the dataset helped to improve the precision and F1 score
of the rules (w.r.t. SCENIC features) for both DT learning
and anchor method.

Results for Incorrect Behavior: Tables 3 and 7 summa-
rize the results for the rules explaining incorrect behavior.
Rule derivation for incorrect behavior is more challenging
than for correct behavior due to the low percentage of in-
puts that lead to the incorrect detection for a well trained
network.

In fact the F1 scores (computed on the test set) for rules
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Figure 5: The cumulative ratio of incorrectly detected im-
ages generated from refined SCENIC programs (using incor-
rect rules) stabilizes over 500 samples. Each color has four
graphs representing four different rule extraction methods

predicting incorrect behavior were too low due to very low
(in some cases 0) recall values.

To properly validate the efficacy of the generated rules,
we refined the SCENIC programs by encoding the rules as
constraints and we generated 500 new images. We then
evaluated our module’s performance on these new datasets.
Figure 5 justifies our choice of 500 as the number of new
images that we generate for evaluation.

All four methods contributed to more precisely identify-
ing the subset features spaces in which the module performs
worse. Specifically, Table 7 illustrates that the black-box
anchor method enhanced the generation rate of incorrectly
detected images by 48% on average in Scenarios 1, 3, and
4 compared to the baseline. This is a significant increase in
the ratio of incorrectly labelled images generated from the
program, providing evidence that the refined programs are
more precisely characterizing the failure scenarios.

We also note that the anchor method outperforms DT
learning. This is expected, because the anchor method ex-
tracts rules that are highly precise within a local feature
space. The exception is Scenario 2. We conjecture that
the reason that the anchor method did not perform better
than DT learning is due to uncontrollable non-determinism
in GTA-V, which generated pedestrians in close vicinity to
the camera of ego car even though its SCENIC program did
not have any pedestrian. GTA-V non-deterministically in-
stantiated these pedestrians, and the perception module of-
ten incorrectly predicted the pedestrians as cars. This is an
issue with the GTA-V which originally was not built for
data generation purpose. GTA-V does not allow users to
control or eliminate these pedestrians and it does not pro-
vide features related to pedestrians during data collection
process. In future work, we plan to incorporate simulators
that allows a deterministic control (such as CARLA [7]) for
further experimentation.

Unlike the results for correct behavior, the whitebox ap-
proach tends to perform worse than blackbox when focus-
ing on incorrect behavior. This outcome can be attributed
to very low support for decision patterns computed for in-
correct behavior, with maximum of 27.6% among the four
scenarios as shown in Table 4.

However, we do observe that the white-box approach for
both DT learning and anchors does, in general, enhance the
ratio of incorrectly detected images as shown in Table 7,
compared to those of the original programs.

Limitations: Our technique relies on abstracting an im-
age with a high resolution (for instance 1920 x 1200 in our
example) to a vector of a small set of semantic features. In
our experiments we were able to derive compact rules with
high precision and coverage. However, we do note that in
other application domains, other than autonomous driving,
the abstraction may lead to under-determined representa-
tion, which may not yield any noticeable patterns. There-
fore, appropriate selection of a subset of essential features
for a given application domain (facilitated by an appropri-
ate definition using SCENIC), is essential. We also note that
all the SCENIC programs we experimented with contained
only uniform distributions. Also, for each of the scenario
programs that we analyzed, we fixed the location and head-
ing angle of the camera. In these restricted settings, we
were able to extract rules that distinguished correctly de-
tected scenes from the incorrect ones.

6. Conclusion and Future Work

We presented a semantic and programmatic framework
for characterizing success and failure scenarios of a given
perception module in the form of programs. The technique
leverages the SCENIC language to derive rules in terms of
high-level, meaningful features and generates new inputs
that conform with these rules. For future work, we plan on
applying this approach to other domains, by looking into
more general input distributions and transformations.
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