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Abstract

One of the fundamental problems that arise in multimodal

learning tasks is the disparity of information levels between

different modalities. To resolve this problem, we propose

Hypergraph Attention Networks (HANs), which define a com-

mon semantic space among the modalities with symbolic

graphs and extract a joint representation of the modalities

based on a co-attention map constructed in the semantic

space. HANs follow the process: constructing the com-

mon semantic space with symbolic graphs of each modality,

matching the semantics between sub-structures of the sym-

bolic graphs, constructing co-attention maps between the

graphs in the semantic space, and integrating the multimodal

inputs using the co-attention maps to get the final joint rep-

resentation. From the qualitative analysis with two Visual

Question and Answering datasets, we discover that 1) the

alignment of the information levels between the modalities

is important, and 2) the symbolic graphs are very powerful

ways to represent the information of the low-level signals

in alignment. Moreover, HANs dramatically improve the

state-of-the-art accuracy on the GQA dataset from 54.6% to

61.88% only using the symbolic information in quantitatively.

1. Introduction

In this work, we address multimodal learning tasks, which

deal with relating information from multiple sources, such

as Visual Question and Answering tasks (with image and

text), visual captioning (with image and text), and video

understanding (with image, text, and sound). As neural

network-based methods have been successively used to deal

with large-scale unimodal data, such as images, natural lan-
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guages, and audio signal inputs, those methods have been

applied to multimodal learning. However, there is a severe

lack of consideration regarding the adequate form of the in-

put representations of the multimodal data to learn by using

the neural network-based methods.

Most of the previous researches on learning multimodal

inputs commonly take the following steps: to make input

features of each modality as vector forms after applying

pre-trained pre-processing methods, to integrate the multiple

input features into a common vector space, and to apply

problem-specific modules usually implemented with fully

connected neural networks. Specifically, in the integration

step, the feature vectors from different modalities are con-

sidered as abstracted information on the equivalent level,

even though those are obtained from totally different pre-

processing steps. In this conventional process, we argue that

aligning the information level of heterogeneous modalities is

a fundamental problem of multimodal learning and suggest

a novel method to bind the modalities in a common semantic

level.

To tackle this problem, we suggest using the symbolic

graphs as the common semantic representation for multi-

modal learning. We define the symbolic graphs as directed

graphs which contain nodes and edges, the nodes present

semantic units with textual form and edges present the rela-

tionship between them. For example, scene graphs [19] can

be used as the symbolic graphs for the image modality and

dependency trees in natural sentences for the text modality.

By extracting the symbolic graphs from each low-level in-

puts, we can compare the semantics between modalities in

the same abstraction level.

Based on the symbolic graphs which are on the same

semantic space, multimodal inputs can be effectively in-

tegrated. Here, we suggest a new graph neural net-based

algorithm, called Hypergraph Attention Networks (HANs),

which exploit the sub-structure of the graph to integrate sym-

bolic information. The main idea of HANs is to construct

the co-attention maps between multimodal inputs and to
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integrate the inputs with the co-attention maps. While con-

ventional attention methods usually compare node values

independently to make attention maps, HANs consider struc-

tural similarity to consider high-level semantic similarity.

We show the effectiveness of the suggested method with

the most popular application in a multimodal learning task,

i.e., Visual Question Answering. We demonstrate the perfor-

mance of HANs on two recent Visual Question Answering

(VQA) datasets: VQA2.0 [39] and GQA [11] which focus on

real-world visual reasoning and multi-step question answer-

ing. From the qualitative analysis of the suggested method

with two datasets, we argue that 1) the symbolic graphs are

a very powerful way to represent the information of the low-

level signals, and 2) to align the information level between

modalities is the fundamental problem. Quantitatively, also,

the suggested method dramatically improves the state-of-the-

art on the GQA dataset from 54.6% to 61.88% only using

the symbolic information.

2. Related Work

In this section, previous works related to structural learn-

ing with neural networks and Visual Question Answering

(VQA) tasks are summarized.

2.1. Graph Matching Algorithms

In our knowledge, there are a few studies exactly related

to the suggested method, which deal with the problem of

integrating multimodal inputs in graph forms. For this rea-

son, instead, we review the studies of learning similarity of

graphs and connect it to attention mechanism, which par-

tially related to the suggested method.

The similarity between the two graphs can be defined by

graph Weisfeiler-Lehman isomorphism test [4]. Recently,

Xu et al. [34] showed that the representations learned by

Graph Neural Networks (GNNs) could be at most as power-

ful as the Weisfeiler-Lehman graph isomorphism test. That

is, the representations with sufficient message passing can be

used to determine whether two graphs are isomorphic or not.

Based on [34], Li et al. [21] proposed Graph Matching Net-

works (GMNs) to learn the similarity between two graphs.

In GMNs, node representations are updated not only with

message passing in each graph but also cross-graph atten-

tion mechanism to learn the similarity between two graphs.

Because the message passing can capture the dependence of

the graph, the cross-graph attention used in GMNs can grasp

structural similarity in two graphs.

2.2. Visual Question Answering

Visual Question Answering (VQA) is one of the rep-

resentative multimodal learning tasks to answer a textual

question about an image scene. The conventional VQA mod-

els [1, 36, 16, 17, 23, 6, 38, 15] learn the joint embedding of

a pair of the question and the image with two stages. First, it

learns image features and question embeddings based on pre-

trained models (e.g., pre-trained CNNs models for an image

and Word2Vec models for a question). Second, it combines

the learned visual features with question embeddings using

a multimodal pooling and an attention mechanism. Kim

et al. [17] proposed multi-modal low-rank bilinear pooling

(MLB), which approximates bilinear pooling between two in-

put embeddings with efficient computation, by enforcing the

rank of the weight tensor to be 1. Yu et al. [38] generalized

MLB to Multi-modal Factorized Bilinear Pooling (MFB), as

the rank of the weight tensor larger than 1. Bilinear Atten-

tion Network (BAN) [15] extends MLB in the respect that

it considers bilinear interactions between two input groups,

such as multiple feature sets of the question and the image.

Also, based on a powerful self-attention mechanism [30],

Tan & Bansal proposed a cross-modal Transformer to learn

vision-and-language interactions [27].

2.3. VQA with Graph Structure

The approaches modeling object interactions through

graph representations have been getting a growing inter-

est in the computer vision field. For the VQA task, Teney

et al. [28] initially proposed a method combining graph rep-

resentations of questions and abstract images with Graph

Neural Networks (GNNs). Also, the methods to model inter-

actions between objects through implicit and explicit graph

structure are proposed for counting problem [40, 29]. High-

level semantic information such as attribute and the visual

relationship was also exploited with [20, 37, 32, 31] to make

the model more powerful and interpretable. Norcliffe-Brown

et al. [24] introduced a method to construct a semantic struc-

ture in image conditioned on a question. Later, Cadene et

al. [5] extend this idea to modeling spatial semantic pairwise

relations between all pairs of regions. Recently, a condi-

tional iterative message passing algorithm for VQA and

GQA datasets was proposed to learn context-aware node rep-

resentations conditioned on a given question [9]. Also, Hud-

son et al. [12] suggested the Neural State Machine (NSM) to

address vision and language information on a symbolic level.

To solve the GQA task, NSM first predicts a probabilistic

scene graph. Then, to answer a given question, they perform

sequential reasoning over the graph based on an iterative

node traversing algorithm.

3. Hypergraph Attention Networks

The main purpose of the suggested method is to align in-

formation levels between multimodal inputs and to integrate

the inputs within the same information level. We define the

common semantic space between the modalities with the

symbolic graphs. After extracting symbolic graphs of each

modality, the semantics between two graphs are compared,

and then the co-attention maps are constructed based on the

semantic similarities. Then, the joint representation of the
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Figure 1. The overall architecture of the suggested model. For a given pair of image and question, two symbolic graphs are constructed.

After constructing the symbolic graphs Gi and G
q , two hypergraphs HG

i and HG
q with random-walk based hyperedge are constructed. By

comparing the semantics of each hyperedges, a co-attention map A is constructed. The two hypergraphs are combined by the co-attention

map A, and the final representation zs is used to predict an answer for the given question.

multimodal inputs is constructed based on the co-attention

maps.

The suggested method, called Hypergraph Attention Net-

works (HANs), consists of four components: (1) construct-

ing symbolic graphs, (2) sampling random-walk paths on

the symbolic graphs to construct the hypergraphs, (3) match-

ing semantics between hyperedges to construct co-attention

maps, and (4) integrating the hypergraphs to get the final

representation of the multimodal inputs. The overall archi-

tecture of the proposed approach is shown in Figure 1.

To make clear the further discussion, HANs is explained

with a specific multimodal learning task, Visual Question and

Answering that has a different level of information in vision

modality (image) and language modality (text question).

3.1. Constructing Symbolic Graphs

The symbolic representations of the two modalities are

defined with graph forms.

For the image modality, symbolic graphs of the images

Gi = {V i, Ei} are constructed based on the scene graph

information [14]. V i is the set of nodes that correspond to

words of object labels, attributes, and the relations between

the objects. The object labels and attributes represent the

name of the object and color, the shape of the object, respec-

tively. In addition, the relationships between two objects are

described with predicate phrases, e.g. to the left of.

From that information, the symbolic graph Gi = (V i, Ei) of

an image is defined with a set of nodes V i = {vi1, v
i
2, ..., v

i
S}

correspond to the set of words for labels, attributes, and

predicates. Furthermore, the set of edges Ei are defined as

following rules: (1) if a object node vij has an attribute vik,

then (j, k) ∈ Ei, (2) if two objects vij and vik have a rela-

tionship vil , then (j, l) ∈ Ei and (l, k) ∈ Ei. The reason to

make edge-labeled scene graphs flat is to align the structure

between Gq and Gi.

For the text modality, we obtain the dependency tree of

the question sentence by using the Spacy library1. The sym-

bolic representation of the question Gq = {V q, Eq} consists

of the set of tokens (V q) and the dependency between the

tokens (Eq). In detail, (i, j) ∈ Eq if vqi and vqj has the

dependency.

As both V i and V q correspond to word representations,

we consider two symbolic graphs are in the common (same)

information level.

3.2. Constructing the Hypergraphs

After building two symbolic graphs Gq and Gi, the co-

attention map A is constructed by matching semantics of

their sub-graphs. As the sub-graph matching problem is

one of the NP-hard problems, we suggest a simple but very

1https://spacy.io/
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powerful approximate algorithm, HANs. We consider each

hyperedge (a sequence of nodes sampled by random-walk

algorithm along with directed edges) as a sub-graph, so

A is constructed by calculating the similarity between the

hyperedges from the Gi and Gq .

From Gq and Gi, two probability distributions are defined

to construct the hypergraphs. The initial probability that a

node vi will be selected is defined with,

P 0
vi

=
deg+(vi) + ǫ

∑N

j=1 deg
+(vj)

where N and deg+(vi) represent the number of total nodes

and out-going edges from node vi, respectively. In addition,

the transition probability for both P q and P i is defined with,

Pv,u =

{

1−ǫ
deg+(v) , if (v, u) ∈ E

ǫ, if (v, u) /∈ E

where v and u are arbitrary nodes of a graph.

Along with P q and P i, Sq and Si random work steps for

Gq and Gi are conducted. In other words, a random-walk

path is defined by a transition sequence v0 → v1 → ... →
vk, which starts from a random node v0 ∈ sample(P 0)
and samples k node to transition to next node as vi+1 :=
sample(Pvi

).
Now, the nodes in a random-walk path are connected in

a hyperedge, and then two hypergraphs HGi = (V i,M i)
and HGq = (V q,Mq) can be obtained, where a mi ∈ M i

corresponds to vi0 → vi1 → ... → vik.

3.3. Building Coattention Maps between Hyper
graphs

Now, the sub-graph matching problem to get the co-

attention map is approximated with the method which

matches the semantics between the hyperedges. In this sec-

tion, we define the semantics of each hyperedge M and

explain the method to compare the semantics between the

hyperedges.

As each node v represents a symbol in word level, the

semantic of each hyperedge M can be defined by combining

the word representations within the same hyperedge. We

suggest a simple but powerful way to define the semantics

by using pre-defined word vectors, such as GloVe [25].

y(m) := f(g0, g1, ..., gk) (1)

where g ∈ R
300 represents a 300 dimensional GloVe vector

[25] of a node v. A simple mean function is used for f , so

y(m) can be represented with a real-valued vector in R
300.

Now, the co-attention map A is built by measuring sim-

ilarities between semantics of two hyperedges y(mi) and

y(mq). For the similarity measure, the low-rank bilinear

pooling method is used as follows.

A = softmax(W ◦ (YqWq)(YiWi)
⊤) (2)

where Yq ∈ R
Nq

×300, Yi ∈ R
Ni

×300 represent k-step hy-

peredges sampled from a dependency tree and a scene graph.

Wq,Wi ∈ R
300×h and W ∈ R

Nq
×Ni

represent linear map-

pings which are all learnable parameters.

Here, the co-attention map has two interesting character-

istics. First, the co-attention map A is based on comparing

the semantics with the symbolic representations, while pre-

vious works on the neural representations having different

information levels. Second, the suggested method consid-

ers not only unitary relationships between two nodes, but

also the inherent structures by constructing the hypergraphs,

while most of the previous researches on the graph matching

compare the (neural) representations between two nodes.

Furthermore, in terms of the semantics of the hyperedges

y(m), we can consider utilizing the structural information of

the symbolic graphs. To get the informative node representa-

tions by considering the information of neighboring nodes,

message passing based Graph Neural Network (GNN) [7] is

designed2.

For the node feature matrix with GloVe vector X ∈
R

S×d, where S is the number of nodes and d is the di-

mension of GloVe vector, the new node feature matrix

Xnew ∈ R
S×d can be obtained as follows:

Zin = σ(D−1
in AXWin +XWin)

Zout = σ(D−1
outA

⊤XWout +XWout)

Xnew = σ((Zin ◦ Zout)Wmrg)

(3)

where A ∈ {0, 1}S×S is an adjacency matrix corresponds

to E, i.e., Ai,j = 1 if (i, j) ∈ E and Ai,j = 0 otherwise.

Din, Dout ∈ R
N×N are indegree, outdegree (diagonal) ma-

trix of A, respectively. All Win,Wout,Wmsg are learnable

parameters. Also, ◦ is the element-wise multiplication. We

also employ a residual connection [8] followed by layer nor-

malization [3]. Now, y(m) can be newly defined with Xnew.

In Tabel 1, the effectiveness of using Xnew will be analysed.

3.4. Getting Final Representations

As the equation (2) provides the co-attention matrix

A ∈ R
Nq

×Ni

, we can integrate two hypergraphs HGi =
(V i,M i) and HGq = (V q,Mq) using any bilinear operator

B, such as BAN [15] or MFB [38].

Formally, a final representation zs for integrating Gq and

Gi is inferred by applying a bilinear operator B to Yq ∈

R
Nq

×300, Yi ∈ R
Ni

×300 and A ∈ R
Nq

×Ni

. If we choose

BAN as Uq, Ui ∈ R
300×h, zs can be represented as follows:

zs = (YqUq)
⊤A(YiUi) (4)

2In this work, as the symbolic graph is a directed graph, both outgoing

and incoming message passing procedures are considered.
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Then, zs is used to predict an answer word with a fully

connected layer.

One thing that should be noted is that the integration of

the image and the question sentence is only through indirect

means, soft co-attention maps. Consequently, the interaction

between these two modalities is mediated through probabil-

ity distributions only.

3.5. Merging Visual Features

In addition to the integration of the symbolic level infor-

mation discussed at Section 3.4, here we show a simple way

to utilize given visual features with the integrated symbolic

features. Firstly, we define the visual feature for each ob-

ject in an image as Vi ∈ R
Nv

×d. In this work, the visual

features for each object are extracted from the pre-trained

BUTD model [1]. Then, we project the Vi and Yq onto same

dimensional space using two one-layered fully connect lay-

ers. Now, we get Ŷq ∈ R
Nq

×d̂ and V̂i ∈ R
Nv

×d̂. Next,

co-attention map A∗ for Ŷq and V̂i can be predicted by us-

ing equation (2) and the visual-semantic feature zv can be

represented as follows:

zv = (ŶqÛq)
⊤A∗(V̂iÛi) (5)

where Ûq, Ûi ∈ R
d̂×h. Finally, we combine the zs and zv by

using two blocks of MRN [16] and the final output is used

to predict an answer word with a fully connected layer.

4. Experimental Results

4.1. Two Visual Question Answering Datasets

In this work, two kinds of VQA dataset are used for

experiments, which are Graph Question Answering (GQA,

[11]) and VQA v2 [2, 39].

GQA dataset [11] is a new question and answering dataset

featuring compositional questions over real-world images,

with more than 110K images and 22M questions. Each

question is associated with a structured representation of

its semantics and a functional program that specifies the

reasoning steps has to be taken to answer it. Each image

is associated with a scene graph of the image’s objects, at-

tributes, and predicates. 1,740 objects, 620 attributes, and

330 predicate labels are defined as a semantic ontology for

GQA. Each image contains 16.4 distinct objects, and each

object has 0.54 attributes and 3.08 relationships on average.

The dataset is split up roughly into proportions of 87%, 12%,

1% for train, validation, and test-dev sets, respectively. All

scene graph annotations on the training and validation sets

are publicly available.

The VQA v2 [2, 39] contains 204,721 natural images

from COCO and 1,105,904 free-form questions obtained by

crowdsourcing. Each question in the dataset is associated

with 10 different answers. Accuracy on this dataset (VQA

score) is computed so as to be robust to inter-human vari-

ability as acc(a) = min{ the number of times a is chosen
3 , 1}. The

dataset is split up roughly into proportions of 40%, 20%,

40% for train, validation, and test sets, respectively, and we

report the VQA score on the validation split as the experi-

mental results in Section 4.4.

4.1.1 Data Preprocessing

Question and Image features We consider pairs of a ques-

tion sentence and an image as inputs and the pairs are

transformed into symbolic representations as preprocess-

ing steps. As the symbolic representation of each question,

a dependency tree is constructed by using the Spacy library.

Each token from dependency parsing is mapped into 300-

dimensional pre-trained GloVe word embeddings [25] and

the dependencies between the tokens are represented by a

directed adjacency matrix.

For image modality, scene graphs are used as a symbolic

representation. Originally, the scene graph [19] consists of

three components, which are the objects (names), their at-

tributes, and the relations between the objects. In terms of

graph notations, object names and the attributes are repre-

sented by nodes, and relations are annotated at edges be-

tween the corresponding nodes. In this paper, to make graph

structures of two modalities be equal, all three components

are represented by nodes, and the edges have only binary

value.

Scene Graph Generation (SGG) The scene graph anno-

tations for images are partially provided for the train and

validation split of GQA. For the images of GQA test-dev

and all splits of VQA, we generated scene graphs as follows.

Following the works [1], bounding boxes of objects in

images are detected by the Faster R-CNN method, and the

name and attributes of the objects are predicted based on

the ResNet-101 features from the detected bounding boxes.

We keep up to 100 objects with a confidence threshold of

0.3 and predict the relations between the objects from the

frequency prior knowledge which is constructed from the

GQA scene graphs3.

Answer Vocabulary For the GQA dataset, we extract 1,853

possible answers vocabulary words from the train and valida-

tion sets. GQA dataset tightly controls the answer distribu-

tion by generating questions using question program. For the

VQA task, following previous studies in VQA, we consider

the 2,000 most common answers in the training dataset as

possible answer vocabulary for our network to predict.

3We have been tried to generate a scene graph by using recently sug-

gested SGG algorithms, such as [35, 33, 22]. However, we could not achieve

any improvement in the GQA/VQA accuracies. The reasons might be that

1) very small size of vocabularies for object and relation labels are used for

the conventional SGG problem setting, 2) the methods do not predict the

attributes, and 3) the annotated scene graphs used for training the methods

are very sparse.
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Figure 2. Test-dev accuracies with various hyper-parameter combinations. Left: Test-dev accuracy with various number of image hyperedges

when the number of hyperedges for questions are fixed to 50. Middle: Accuracy with various number of steps (k) of image hyperedges with

three-step question hyperedges. Right: Accuracy with various number of steps (k) of question hyperedges with three step image hyperedges.

Table 1. As a plug-in module for the attention (Att.), HANs are combined with state-of-the-arts VQA algorithms, BAN [15] and MFB [38].

Those are used as bilinear module B. For the most of the metrics, HANs improves the GQA performance. For the distribution (Dist.) metric,

the lower score, the better.

Method Performance Measures with Test-dev Split

No. Feature HE Att. B Binary Open Plaus. Valid. Dist. Overall Acc.

1 Symbol No No MFB [38] 60.02 47.24 81.86 95.09 0.74 53.22

2 Symbol Yes HAN MFB [38] 61.70 47.49 81.83 95.02 0.68 54.14

3 Symbol No No BAN [15] 60.27 50.06 82.80 95.94 0.86 54.84

4 Symbol Yes HAN BAN [15] 65.89 58.36 83.39 96.50 0.49 61.88

5 Image No No MAC [10] 71.23 38.91 84.48 96.16 5.34 54.06

6 Image No No BAN [15] 76.00 40.41 85.58 96.16 10.52 57.10

7 Image No No NSM [12] 78.94 49.25 84.28 96.41 3.71 63.17

8 Symbol+Image Yes+GNN HAN BAN [15] 71.87 63.03 82.95 95.79 2.49 69.46

4.2. Implementation details

For the GQA, we firstly project the Yi, Yq, and Vi onto

256-dimensional space with a single fully-connected layer,

respectively. Then, we use BAN based on a concatenated

8 glimpses setting to get 2048 dimensional feature vectors

for zs and zv . After that, for the Symbol+Image experiment

described at Table 1, we stack 2 MRN blocks. Each block

has two fully connected layers with Batch Normalization

[13] and hyperbolic tangent activation functions. After each

block, we apply Dropout [26] with 0.2 and 0.5 probabilities,

respectively. Finally, one fully-connected layer is used for

classification. For training, we use Adam [18] optimizer

with initial learning rate 3e-4 and the exponential learning

rate scheduler with gamma 0.9. Using these settings, we

totally run 30 epochs and report the best result.

For the VQA 2.0, we firstly project the Yi, Yq , and Vi onto

1024 dimensional space with a single fully-connected layer,

respectively. Then, we use 8 glimpses BAN with residual

summations of the glimpses. Thus, we get 1024 dimensional

feature vectors zs and zv . Instead of using MRN for fusing

the zs and zv, it was enough to concatenate them. Finally,

one fully-connected layer is used for classification. For train-

ing, we use the Adamax [18] optimizer with initial learning

rate 1e-3. We decrease the learning rate by a factor of 4 per

2 epochs after the initial 10 epochs. Using these settings, we

totally run 30 epochs and report the best result.

4.3. Quantitative Results on GQA

For the GQA evaluation metric, we report top-1 accuracy

on the test-dev split. Furthermore, new metrics proposed in

[11] such as plausibility, validity, and distribution measures

are also applied to complement the accuracy metric4.

We compare HANs against state-of-the-art methods to

evaluate the effectiveness. HANs show consistent improve-

ment over all state-of-the-arts methods previously suggested.

For the bilinear operator B explained in Section 3.4, two

4The consistency metric is not used for the metric because the metric

highly depends on whether to use all or balanced dataset.
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Figure 3. The visualization for co-attention maps A of HANs with six examples. Among the all pairs of images and question hyperedges,

three hyperedge pairs with top-3 attention-value are presented. The question is shown on the top of the image and the hyperedge pairs are on

the bottom. Corresponding regions attended by HANs are represented on the image.

state-of-the-arts methods on VQA tasks are used, which are

BAN[15] and MFB [38]. From the comparison between

experiments from No.1 to 4 in Table 1, we can argue that

the co-attention maps A learned by HANs are very effec-

tive in this task. The reason might be that BAN considers

the co-attention for every pair of two modalities (random-

walk-based hyperedges in our case) while, MFB fuses the

two modalities based on the Hadamard product of two com-

pressed feature vectors followed by projection with low-rank

matrices. As the GQA dataset requires a model to capture

multiple facts for answering a given question, BAN archi-

tecture was more effective than MFB in this problem. For a

reason, we think that any pair-wise bilinear attention method

will show significant improvement when combined with

HANs.

In experiments 5, 6, and 7, we summarized the state-of-

the-art accuracy of the GQA dataset. Those methods utilized

image features, not using symbolic representations. MAC

network [10] is the baseline method, which is suggested

by the authors of the GQA dataset. As the benchmark per-

formance, accuracy with BAN [15] is also provided in the

leaderboard5. One thing that should be noted is that the

results in the leaderboard are based on all datasets, but our

results in Table 1 only use the balanced set.

5https://evalai.cloudcv.org/web/challenges/challenge-

page/225/leaderboard/733

Effects of the Symbolic Representations We compare

HANs’ performance (just use the symbolic graphs) with

the conventional VQA methods which use the image fea-

tures. From the experimental results Table 1, we confirm

that symbolic representations are very crucial.

Hyper-parameter Search First of all, we analyze the char-

acteristics of HANs with various hyper-parameter combi-

nations. The test-dev accuracy with varying three param-

eters, which are the number of hyperedges, the number of

random-walk steps (k) of question graphs, and the number

of random-walk steps (k) of image graphs, are summarized

in Figure 2.

The hyperedges can be thought of as sub-structures of

the given graphs. Therefore, HANs with a large number

of hyperedges are closer to the exact sub-graph matching

problem. From Figure 2, we could check this point with the

fact that the more sampling hyperedges, the better test-dev

accuracy.

The critical characteristic of HANs is to integrate multi-

modal symbolic graphs by comparing the semantics of their

sub-structures, while most of the existing approaches use the

similarity of only node features. We use the random-walk

algorithm to approximate sub-structures of the graph. We

define a single random-walk path as a hyperedge and a hyper-

graph as the set of the random-walk paths. By comparing the

semantics between two hypergraphs, the sub-graph matching
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problem can be efficiently resolved. Here, the semantics of

a hyperedge is defined by a simple average function of node

feature vectors. It is worthwhile to note that because the

random-walk paths are relatively short, the simple average

function was enough, and we empirically found that it per-

forms well compared with other options (such as summation,

maximization, or more complicated functions).

4.4. Quantitative Results on VQA

In this section, we show the comparative results on VQA

v2 dataset. Similar to section 4.2, we show the effectiveness

of HANs with BAN. For this experiment, VQA scores on

the validation set are reported as the accuracies.

Table 2. VQA scores on validation set for VQA v2 dataset are

summarized. Likewise the GQA task, HANs combined with BAN

improves VQA performance. Here, we report both reported and

reproduced results of BAN to validate the effectiveness of HANs

without any additional module.

No. Use HE Method Acc.

9 No Bottom-Up [1] 63.37

10 No MFH [38] 64.31

11 No BAN [15] (reported) 66.04

12 No BAN [15] (reproduced) 64.85

13 Yes HAN (ours) 65.05

Here, we note that we reproduced the validation score of

BAN based on the official implementation6 for a fair compar-

ison with our model; data sampling strategy and same initial

word embedding vectors. From Table 2, we observed that us-

ing hyperedges information extracted from a symbolic level

scene graph can improve the VQA performance compared

to the reproduced BAN. Importantly, the improvement was

achieved without heavy engineering such as data augmenta-

tion with Visual Genome dataset [19] and enhancing word

embedding [15].

4.5. Qualitative Results

We now visualize some co-attention maps generated by

HANs with the GQA dataset in Figure 3. Among the all

pairs of M i and Mq, three pairs of hyperedges with top 3

attention values out of eight-glimpse are presented.

Figure 3 shows the promising results achieved by the

proposed method. We highlight the regions according to

the image hyperedges with high attention weights. Since

questions of GQA dataset are generated by a rule-based

question generation program based on a scene graph, it is

important for a model to focus on not only objects but also

their relationship. For example, at the top-left example of

Figure 3, our model successfully focuses on the triplet bench

6https://github.com/jnhwkim/ban-vqa

- sitting on -girl. Thus, our model can predict the correct

answer instead of the Teddy bear which is being behind of

the bench.

5. Discussion and Conclusion

We have shown an interesting approach to multimodal

learning, which transforms the low-level multimodal inputs

into symbolic graph forms and integrates the multiple sym-

bolic graphs with the co-attention maps. To construct the

co-attention maps, a novel sub-structure matching method

based on the hypergraph structure is suggested.

From the experimental results with the GQA and VQA

v2 dataset, we showed that the symbolic graph is a very

powerful way to represent the information of the low-level

signals. The method to integrate two graphs by matching

semantics between sub-structures works well. Also, HANs

show a new state-of-the-art performance on the GQA task.

Furthermore, we observe that our model can focus on both

objects and relations between them by using the trained

co-attention map.

Compared to get a dependency tree as the inherent struc-

ture of the sentences, to get scene graphs of images might

hard. Interestingly, we showed that approximated scene

graphs using question sets are powerful.
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