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Abstract

Deep neural networks for video action recognition fre-

quently require 3D convolutional filters and often encounter

overfitting due to a larger number of parameters. In this pa-

per, we propose Random Mean Scaling (RMS), a simple and

effective regularization method, to relieve the overfitting

problem in 3D residual networks. The key idea of RMS is to

randomly vary the magnitude of low-frequency components

of the feature to regularize the model. The low-frequency

component can be derived by a spatio-temporal mean on

the local patch of a feature. We present that selective reg-

ularization on this locally smoothed feature makes a model

handle the low-frequency and high-frequency component

distinctively, resulting in performance improvement. RMS

can enhance a model with little additional computation only

during training, similar to other regularization methods.

RMS also can be incorporated into typical training pro-

cess without any bells and whistles. Experimental results

show the improvement in generalization performance on a

popular action recognition datasets demonstrating the ef-

fectiveness of RMS as a regularization technique, compared

to other state-of-the-art regularization methods.

1. Introduction

Overfitting is one of the long lasting and practical prob-

lems that deep neural networks have been confronted with.

The problem can be more fatal in the field of video ac-

tion recognition where 3D convolutional neural networks

(3D ConvNet) [22, 7, 1] have become a popular approach

for encoding spatio-temporal representation since they of-

ten have immense number of parameters. Moreover, 3D

ConvNets often suffer from overfitting even on recent large-

scale datasets, e.g. Kinetics [12]. There have been several

approaches to address this problem by proposing more effi-

cient network architectures [24, 26, 17, 4, 2].

Perturbation based regularization on the input space

[30, 3, 29] and on the feature space [10, 5, 27] is another

widely studied approach to alleviate the overfitting prob-
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Figure 1: High-frequency information of the feature

is more important for action recognition. Accuracy

changes over the scaling factor which modulates the mag-

nitude of the low-freq. (circle marker) or high-freq. (tri-

angle marker) components in the feature. While one com-

ponent is scaled, the other component remains unchanged.

Mean filter extracts low-freq. components from the feature

and the remainder is high-freq. components. The validation

accuracy drops more quickly when high-freq. components

are perturbed. Using 3D ResNet (SlowOnly-34) trained on

Mini-Kinetics validation dataset without freq. scaling.

lem. One advantage of such methods is that they can be

incorporated into existing models to enhance their general-

ization capability with little or no additional computation.

In particular, [10, 5, 27] have studied the effect of per-

turbation on feature extensively. A perturbation is given by

multiplication of a random scalar to a feature. Although

they have given a lot of intuition for regularization, they

have overlooked the direction to perturb, where our ques-

tion starts from.

In order to describe direction to perturb more clearly,

let us consider a feature vector, xt,i,j ∈ R
C , at each

spatio-temporal position, t, i, and j, in a feature map,

x ∈ R
C×T×H×W , where C, T , H , and W are channel,

time, height, and width respectively. We drop the position

index of vectors in the following for the convenience. In

this regard, direction to perturb means the direction of a

vector to be multiplied by a random scalar, resulting in the
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modulation of the vector’s magnitude while its direction is

preserved. In order to examine the effect of frequency, we

consider 3 options of direction to perturb in this study; di-

rection of original feature vector x, its local mean vector x̄,

and residual vector r. x̄ can be obtained by the mean fil-

ter (or Gaussian filter) in image processing [16]. x̄ contains

low-frequency component of x so it varies more smoothly

within its neighbor. The residual vector, r = x−x̄, contains

remaining high-frequency component.

Under the assumption that frequency is meaningful cri-

teria to separate features’ direction to perturb, we analyze

which frequency component is important for action recog-

nition task. Fig. 1 shows the accuracy changes of 3D Con-

vNet over various scaling factors that modulates the mag-

nitude of x̄ and r. While one of them is scaled, the other

remains unchanged. Note that the model trained without

frequency scaling. This graph shows that modulation of the

high-frequency component affects more than that of low-

frequency component on action recognition performance.

Our intuition is that r may possess more essential informa-

tion for classification while x̄ may contain peripheral infor-

mation so that small perturbation on it adds diversity of the

sample without changing the type of action or object. Based

on this observation, we speculate that the selective pertur-

bation on low-frequency component of the feature can be

an effective way to regularize a network.

Motivated by this idea, we propose a new regularization

method, Random Mean Scaling (RMS), which selects low-

frequency direction as direction to perturb. In other words,

RMS adds perturbations selectively by multiplying a ran-

dom scalar to the spatio-temporally smoothed feature x̄. To

separate the low-frequency feature, we use a 3D mean filter

(3D average pooling operation in most deep learning frame-

works) or a Gaussian filter which are the simplest low-pass

filters (LPF) in image processing [16]. Similar to other reg-

ularization methods, RMS is only required during training,

so no additional operation is required during inference.

In order to demonstrate its effectiveness, we experiment

RMS on various types of 3D Residual Network (ResNet)

[8] for action recognition. As a baseline of this study, we

adopt the architecture of the slow branch in SlowFast Net-

work (SlowFast) [4], which is one type of 3D ResNet itself.

We will call this model SlowOnly in the remaining sections

following the original paper. Experimental results show that

adding RMS to the baseline model improves the classifica-

tion accuracy on Mini-Kinetics and Kinetics-400 dataset.

We also compare RMS with several state-of-the-art regu-

larization methods, RandomDrop [10], ShakeDrop [27] and

CutMix [29], in Mini-Kinetics dataset and found that RMS

shows competitive performance. For rigorous study, we ex-

plored the effect of various factors such as positions and

sampling distributions of RMS. We also provide empirical

evidences that applying perturbation to the low-frequency

component is more effective than applying those to the en-

tire feature or the high-frequency component. Additionally,

we tested RMS with other models, SlowFast [4] and Chan-

nel Sperated Network (CSN) [23], and on another dataset,

Something-Something-v2 [6], to show its generality.

In summary, we make the following contributions:

• We propose a simple yet effective regularization

method, Random Mean Scaling (RMS), to tackle the

overfitting problem of 3D ConvNet.

• We demonstrate the effectiveness of applying RMS

to several kinds of 3D ResNets on Mini-Kinetics,

Kinetics-400, and Something-Something-v2 dataset.

• We compare RMS with other state-of-the-art regular-

izations in Mini-Kinetics dataset.

• We validate the design choices of RMS in depth with

extensive ablation study.

2. Related Work

2.1. Action Recognition in Videos

Compared to image recognition, action recognition in

video requires additional mechanism to deal with temporal

information along with spatial information. Accordingly,

3D ConvNets [22, 7, 1] have become a popular approach

for action recognition by exploiting the advancement of 2D

ConvNets in image recognition [20, 8]. 3D ConvNets can

be expanded from 2D ConvNets with an additional dimen-

sion to handle spatio-temporal streams. Thanks to the sim-

ple expansion of the model design, 3D ConvNets can ex-

ploit the learned knowledge from image domain by inflat-

ing 2D kernels trained on the large-scale image recogni-

tion dataset as in [1]. Although 3D ConvNets show their

effectiveness, a large number of parameters has been con-

sidered as their shortcoming. To overcome this problem,

[24, 26, 17] proposed to decompose 3D kernels into a cas-

cade of 2D and 1D kernels. CoST [15] decomposed a

3D filter into a 2D filter that can be simultaneously ap-

plied along H-W, T-H, and T-W. Additionally, models using

3D convolutional filters only in the later stages (top-heavy

[26] or reversed mixed convolutions in [24]) often achieve a

better performance with fewer number of parameters than

full 3D ConvNets. Meanwhile, Channel Separated Con-

volutional Network (CSN) [23], a lightweight 3D ResNet

model, reduced the number of parameters considerably by

using depth-wise convolution.

On the other hand, some studies [4, 2] proposed the

multi-scale models to use information separately accord-

ing to its frequency. In [4], authors proposed a two-stream

model, SlowFast, composed of the slow branch for static

spatial feautres and the fast branch for dynamic motion fea-

tures respectively. Meanwhile, [2] proposed Octave convo-
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lution to process multi-frequency signals in a single-stream

model.

Capturing global dependencies is another approach to

improve a model for action recognition. [25] first proposed

the concept of the non-local module and demonstrated the

effectiveness of adding it into 3D ConvNets. Further stud-

ies, [28, 9] redefined the non-local module in various ways

to reduce the computation with a better performance.

2.2. Regularization

Regularization has been actively studied in image do-

main to prevent a model from overfitting. For example,

in image domain, several regularization techniques, such as

data augmentation, Weight decay [14], Dropout [18], La-

bel smoothing [21], and Batch normalization (BN) [11] are

frequently used.

Several recent studies proposed data augmentation on in-

put data space by randomly occluding some image regions

[3], interpolating two images [30] or transplanting an image

patch onto another image [29].

By extension, model’s internal feature has become an-

other target for a regularization in recent studies. Shake-

Shake regularization [5] proposed to regularize multi-

branch ResNet by adding randomly scaled branches in both

forward and backward computation, which cannot be ap-

plicable to 2-branch ResNet. Stochastic depth [10], also

known as RandomDrop, randomly switches between drop-

ping and connecting residual branch. Combining those two

previous studies, ShakeDrop [27] adopted the switching

mechanism of RandomDrop into Shake-Shake to stabilize

training so that it can be also compatible with 2-branch

ResNet.

3. Methods

In this section, we introduce our proposed regularization

method, Random Mean Scaling (RMS), which adds per-

turbation on the spatio-temporally smoothed feature. For

practical implementation, we further explain the method as

a network module.

3.1. Random Mean Scaling

Perturbing the feature with multiplicative noise is a sim-

ple regularization method that often used in various ways

[10, 5, 27]. In this work, we name a specific perturbation

method which modulates the magnitude by multiplying a

single random scalar α to a entire feature map as Random

Scaling (RS). α can be sampled from a given probability

distribution, e.g. Gaussian N(µ, σ).

In this work, we propose Random Mean Scaling (RMS),

which apply RS to the local mean of features rather than to

the feature directly. The local mean is a weighted average

within a local window and can be calculated as

Figure 2: Random Mean Scaling (RMS) module. x, x̄, r,

and y are the input, the mean of input, the residual and the

output respectively. ⊕ and ⊗ are the element-wise sum and

multiplication. (a) and (b) are the same operation. (a) ex-

plicitly separates x̄ and r for the explanation purpose while

(b) is simplified form.

x̄i =
∑

j∈Wi

wjxj , (1)

where x is the input feature, Wi is a 3-dimensional local

window around current index i, and wj is a weight of each

neighboring position. We simply choose wj = 1/‖Wi‖
for all j, which is a mean filter, as our default setting. One

alternative of the mean filter is Gaussian filter whose weight

formulation can be found in Appendix C. We decompose

the input x into the mean x̄ and the residual r as

r = x− x̄. (2)

The modulated output y by RMS can be represented as fol-

lowing

y =

{

αx̄+ r, in training

E[α]x̄+ r, in test.
(3)

The perturbation is applied only during training. If the mean

of the probability distribution of alpha is one, y = x dur-

ing inference. The method can be applied to any level in a

layer, such as the output of convolution, BN, or nonlinear

activation.

In the experiment section, we explore the position of

RMS. Additionally, we show that applying RS to x̄ im-

proves the performance more than applying RS to r or x.

x̄ can be interpreted as the low-frequency component of

x, while r represents the remaining high-frequency com-

ponent.

3.2. Implementation

RMS can be implemented as a network module with sev-

eral basic operations as illustrated in Fig.2. Mean filter is
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identical operation to 3D average pooling provided by most

deep learning frameworks. Gaussian filter also can be im-

plemented with basic tensor operations. Therefore, Eq.3

can be represented as a diagram in Fig.2 (a). Note that ⊕
and ⊗ are the element-wise sum and element-wise multi-

plication respectively. For a practical implementation, Eq.3

can be modified into a simpler form by substituting Eq.2 as

y =

{

x+ α′
x̄, in training

x+ E[α′]x̄, in test,
(4)

where α′ = α − 1. Fig.2 (b) shows the block diagram of

the RMS module which corresponds to Eq.4. Since RMS

module requires only simple operations such as an average

pooling and a scalar multiplication, it is parameter free and

only small amount of additional computation is required

during training. Furthermore, no additional computation is

required during inference.

4. Experiments

In this section, we experiment our proposed method,

RMS, on several action recognition datasets. First, we in-

vestigate our method on Mini-Kinetics dataset [26] with

various design choices and hyperparameters. Mini-Kinetics

is chosen as the main testbed for its relatively small size,

which makes a model prone to overfitting so that the regu-

larization effect becomes more significant. We also evalu-

ate RMS with various networks including SlowOnly, CSN

[23] and SlowFast [4] on Kinetics-400 dataset [12]. Further-

more, finetuing result of SlowFast with RMS in Something-

Something-v2 (Something-v2) dataset [6] will be presented.

All experiments were conducted on NAVER Smart Machine

Learning (NSML) [19, 13] platform.

4.1. Experimental Setup

Datasets. Kinetics-400 is a large scale action recognition

dataset which is a collection of 10-second long trimmed

video clips from YouTube video categorized into 400

action classes. The total number of videos in the dataset is

around 300K and they are divided into training, validation,

and test set with around 240K, 20K, and 40K videos

respectively 1. Mini-Kinetics dataset consists of 200 largest

classes from Kinetics-400. The videos of Mini-Kinetics are

randomly sampled from those of Kinetics-400 dataset. The

set has 80K training samples and 5K validation samples.

Something-v2 dataset is another large collection of human-

object interaction videos with 174 classes of detailed action

descriptions. It contains around 220k videos in total.

1About 8% of videos in train set were not available at the time we

downloaded

Network. For the experiment, we mainly use SlowOnly,

the slow branch detached from SlowFast [4] as our base-

line model. SlowOnly maintain temporal resolution with-

out using temporal stride and use 3D convolutions only at

the later stages. It can be considered as a typical extension

of 2D ResNet to 3D. In order to examine RMS on both the

basic block and bottleneck block, we use SlowOnly-34 and

SlowOnly-50 in experiments. Details of the model are spec-

ified in the Appendix A. All models are trained from scratch

to examine the effect of regularization clearly in our study.

Only RGB frames are fed into the model.

For RMS module, we choose a [3, 3, 3] kernel with stride

of 1 for average pooling and N(1.0, 0.5) for sampling α
as our default settings for the experiments. The sampling

distribution is chosen based on the results in Table 1 (b).

The module is added only in res4 and res5 blocks.

Preprocessing. For both training and evaluation, we first

set frame-rate of all videos to 25 fps. We drop frames when

the original fps is larger and duplicate frames otherwise.

Since we utilize only RGB information for the network

input, no handcrafted features, e.g. optical flow, are used.

Training. For training, N consecutive frames are randomly

sampled from a video, then T frames of equidistant inter-

vals from the N frames are fed into the model. We set N
and T to 64 and 8 respectively in most of our experiments.

For spatial augmentation, we apply random resized crop

[20] and random horizontal flip. Random resized crop

samples a patch of randomly chosen size (between 25%
to 100% of the image area) and aspect ratio (between

3/4 and 4/3) then scale the patch size to 224×224. Other

implementation details may be specified in Appendix B.1.

Evaluation. For evaluation, we follow the commonly used

30-crop scheme [4]. Ten clips are uniformly sampled along

time from the entire video and three spatial regions of size

256×256 are uniformly sampled along the longer side of

the frame. The final prediction is acquired by averaging

softmax scores of all clips.

4.2. Mini­Kinetics Experiments

On Mini-Kinetics dataset, we train SlowOnly-34 and

SlowOnly-50 to examine the proposed module in both

the basic block and the bottleneck block. We first report

the performance depending on several design choices.

We found that the performance varies depending on the

initialization of a model. Thus, we run each experiment

three times and report their mean accuracy for reliability.

Then we compare our model with some models from

previous works.
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Method Top1 Acc.(%) Top5 Acc.(%)

SlowOnly-34 74.7±0.33 92.1±0.06

+ RMS before the 1st conv. 76.7±0.23 93.2±0.27

+ RMS before the 1st BN 76.9±0.54 93.2±0.30

+ RMS before the 1st ReLU 76.4±0.25 93.2±0.09

+ RMS before the 2nd conv. 76.8±0.38 93.3±0.12

+ RMS before the 2nd BN 76.7±0.23 93.2±0.12

+ RMS before the 2nd ReLU 76.3±0.36 93.0±0.12

+ RMS before all BNs 77.0±0.31 93.5±0.23

SlowOnly-50 77.5±0.85 93.2±0.42

+ RMS before the 1st BN 78.4±0.39 93.8±0.11

+ RMS before the 2nd BN 77.8±0.55 93.8±0.21

+ RMS before the 3rd BN 78.6±0.33 94.0±0.12

Method Distribution
Top1

Acc.(%)

Top5

Acc.(%)

SlowOnly-34 - 74.7±0.33 92.1±0.06

SlowOnly-34 N(1.0, 0.3) 76.1±0.76 92.9±0.45

+ RMS N(1.0, 0.5) 77.0±0.31 93.5±0.23

N(1.0, 0.7) 76.9±0.20 93.5±0.37

U(0.5, 1.5) 75.7±0.43 92.6±0.29

U(0.0, 2.0) 76.4±0.36 93.4±0.45

U(−0.5, 2.5) 74.5±0.58 92.6±0.16

(a) Position of RMS. Performance depending on the position of

the RMS module inside a residual branch.

(b) Sampling distribution α of RMS. Normal and uniform dis-

tribution are considered. SlowOnly-34 used.

Method std. of α
Top1

Acc.(%)

Top5

Acc.(%)

SlowOnly-34 - 74.7±0.33 92.1±0.06

RS on x̄ (RMS) 0.3 76.1±0.76 92.9±0.45

RS on x̄ (RMS) 0.5 77.0±0.31 93.5±0.23

RS on x 0.3 75.6±0.23 92.9±0.15

RS on x 0.5 75.4±0.40 93.0±0.42

RS on r 0.3 75.0±0.26 92.4±0.13

RS on r 0.5 75.6±0.77 92.5±0.37

Method
LPF

(std.)

Top1

Acc.(%)

Top5

Acc.(%)

SlowOnly-34 - 74.7±0.33 92.1±0.06

+ RMS MF 77.0±0.31 93.5±0.23

+ RMS GF (0.4) 77.5±0.16 93.9±0.03

+ RMS GF (1.0) 77.2±0.19 93.7±0.23

+ RMS GF (2.0) 77.2±0.29 93.6±0.08

SlowOnly-50 - 77.5±0.85 93.2±0.42

+ RMS MF 78.6±0.33 94.0±0.12

+ RMS GF (0.4) 78.3±0.33 94.1±0.11

(c) RS on different feature components. Comparing the effect

of RS on mean, residual and feature. RMS outperforms the others

(d) Type of low-pass filter in RMS. Performance depending on

the type of LPF; mean filter (MF) and Gaussian filter (GF).

Table 1: Ablation studies on Mini-Kinetics dataset. All accuracies are reported in mean±std. of multiple runs.

Position of RMS module. As mentioned earlier, RMS

module can be applied to any level in a layer, such as 1)

before each convolution, 2) before each BN and 3) before

each ReLU. Note that RMS before the last ReLU is located

before the summation of main branch and residual branch.

The results are shown in Table 1 (a). We examined all possi-

ble positions on SlowOnly-34. First of all, regardless of the

position, the RMS module improves classification accuracy

compared to the baseline model. The difference between

RMS positions is not significant, but we found that the RMS

module before the first BN shows best Top-1 mean accuracy

among the cases using a single RMS module. Since RMS

module before the second BN also shows reasonable perfor-

mance, we tested putting RMS module before every BN and

it shows the best Top-1 and Top-5 accuracy among all. So

we added the RMS module before all BNs in the remaining

experiments.

We also tested RMS module in SlowOnly-50 which has

the bottleneck structure. Taking the result from the basic

block into account, we decided to investigate positions only

before the BN. As can be seen in the below part of Table

1 (a), RMS module is beneficial to the network in all three

cases. Because RMS module before the last BN shows the

best Top-1 and Top-5 accuracy, we choose it as our default

setting for the bottleneck block. However, RMS module

before the first BN can be an efficient choice without a large

performance drop, considering the number of channels in

the last BN is four times larger than the others in bottleneck

block. For computational efficiency, we choose not to use

multiple RMS modules in bottleneck block.

Effect of sampling distribution. Next, we compare

several different probability distributions for sampling α:

normal distributions with three different σ and uniform

distributions with three different ranges. As shown in Table

1 (b), the normal distributions generally perform better than

the uniform distribution. Considering the characteristics of

each distribution, generating enough number of samples

around mean may help RMS improve the performance.

Comparing RS on different feature components. We

compare the effect of RS on different feature components

with SlowOnly-34 on Mini-Kinetics dataset. Among many

possible directions in the feature space, we chose three

directions to be examined: x̄, r and x. The result, shown

in Table 1 (c), provides the empirical evidence of our

conjecture that applying RS module on mean (x̄) is more

effective than r or x. We found that RS on x̄ gains about
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Figure 3: RMS relieves overfitting problem. Training

accuracy (dotted line) and validation accuracy (solid line)

of SlowOnly-34 and SlowOnly-34 + RMS-GF on Mini-

Kinetics dataset. The gap between train and val. curve

of SlowOnly-34 is more than four times larger than that of

SlowOnly-34 + RMS-GF at the last step.

2% on Top-1 accuracy over the baseline. It is more than

1% higher than the others, RS on r or x. We discuss three

methods of applying RS to the model and their effects in

the discussion section.

Comparing RMS with different low-pass filters. RMS

uses mean filter (MF), also known as box filter, by default to

extract low-frequency component from features. Gaussian

filter (GF) is another type of LPF which can replace the

MF. We investigated 3×3 GF version of RMS, RMS-GF,

on Mini-Kinetics dataset as in Table 1 (d). The standard

deviation (σf ) of GF is also presented in the table. We

found that GF generally performs similar with or better

than MF in both SlowOnly-34 and SlowOnly-50. It is

promising that Top-1 and Top-5 accuracies of SlowOnly-34

with RMS-GF reaches or surpasses those of SlowOnly-50

baseline when σf is 0.4. We choose σf = 0.4 as a default

value of RMS-GF in the following.

Analysis of training curve. As a regularizer, RMS module

is expected to reduce the gap between training accuracy

and validation accuracy. Fig. 3 illustrates training and

validation accuracy of the SlowOnly-34 and the same

with RMS-GF module, RMS-GF for short, over training

iterations. The training accuracy is a single crop accuracy

while the validation accuracy is a three-crop (over time)

average accuracy. It is noted that training accuracy of the

RMS-GF is always lower than that of the baseline whereas

validation accuracy of RMS-GF is lower in the beginning

but it overtakes the baseline in the later stage of training.

Method level
Top1

Acc.(%)

SlowOnly-34 - 74.7±0.33

+ RMS (α ∼ (1, 0.5)) Clip 77.0±0.31

+ RMS-GF (α ∼ (1, 0.5)) Clip 77.5±0.16

+ RandomDrop (α = 0, β = 0) Batch 75.6±0.14

+ ShakeDrop (α = 0, β ∼ [0, 0.5]) Pixel 77.3±0.19

+ Cutmix (λ ∼ Beta(1, 1)) Batch 76.3±0.28

SlowOnly-50 - 77.5±0.85

+ RMS (α ∼ (1, 0.5)) Clip 78.6±0.33

+ RMS-GF (α ∼ (1, 0.5)) Clip 78.3±0.33

+ RandomDrop (α = 0, β = 0) Batch 76.6±0.25

+ ShakeDrop (α = 0, β ∼ [0, 0.5]) Pixel 78.3±0.01

+ Cutmix (λ ∼ Beta(1, 1)) Batch 78.2±0.27

Table 2: Comparing RMS to other regularization meth-

ods. All methods are tested with SlowOnly on Mini-

Kinetics dataset. (µ, σ) and [a, b] denote N(µ, σ) and

U(a, b) respectively. Accuracies are averaged over multi-

ple runs.

At the end of training, the accuracy gap between training

and validation of the baseline (25.5) is much larger than

that of RMS (11.7) and RMS-GF (5.7). This indicates that

the RMS module is working as a regularizer preventing the

model from overfitting.

Comparison with existing regularizations. To our best

knowledge, this work is the first attempt to apply regu-

larization for action recognition. Therefore, we compare

RMS with other regularization methods, originally exam-

ined in image recognition. For comparison, we examine

RandomDrop [10], ShakeDrop [27], and Cutmix [29] with

SlowOnly on the Mini-Kinetics dataset. Details of hyper-

parameters for each method are presented in Appendix D.

The major difference of RMS from other regularizations

is that RMS extracts low-frequency components from the

feature and perturbs it selectively. Table 2 shows Top-1

accuracy with their hyper-parameters. RMS performs

comparable to or better than three state-of-the-art methods

with both SlowOnly-34 and SlowOnly-50.

Evaluation result. In Table 3, we compare our baseline

model and proposed model with several previous works

[26, 28, 9] evaluated on Mini-Kinetics dataset. Except

for S3D [9] model, I3D model with self-attention opera-

tions like Non-Local (NL) [25], Compact Generalized NL

(CGNL) [28] and Compact Global Descriptor (CGD) [9]

are compared since only these works reported the perfor-

mance on Mini-Kinetics to our best knowledge. The ta-

ble shows that our proposed model achieves comparable

performance to the other models on Mini-Kinetics dataset.

Compared to the baseline model, RMS module substan-

tially increases the performance in both SlowOnly-34 and
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Method
Top1

Acc.(%)

Top5

Acc.(%)

S3D [26] 78.4 -

ResNet-50 + CGD [9] 77.56 93.20

ResNet-50 + NL×5 [28] 77.53 94.00

ResNet-50 + CGNL×5 [28] 78.79 94.37

SlowOnly-34 74.7† 92.1†

SlowOnly-34 + RMS 77.0† 93.5†

SlowOnly-34 + RMS-GF 77.5† 93.9†

SlowOnly-50 77.5† 93.2†

SlowOnly-50 + RMS 78.6† 94.0†

SlowOnly-50 + RMS-GF 78.3† 94.1†

Table 3: Performance on Mini-Kinetics dataset. † de-

notes average accuracies over 3 runs.

Method
Input

size

Top1

Acc.(%)

Top5

Acc.(%)

SlowOnly 8×2242 73.0 90.9

+ RMS 8×2242 74.2 91.5

+ RMS-GF 8×2242 74.8 91.6

ip-CSN (our imple.) 8×2242 69.7 88.6

+ RMS 8×2242 70.5 89.6

SlowFast (our imple.) 32×2242 75.0 92.1

+ RMS 32×2242 76.3 92.5

Table 4: Performance on Kinetics-400 dataset. RGB in-

put only. all models use ResNet-50 backbone. (* denotes

evaluation with 10-crops.)

SlowOnly-50 without any additional parameter. SlowOnly-

34 with RMS before all BNs shows an increase in Top-1

accuracy by 2.3% compared to the baseline. RMS-GF im-

proves even more; 2.8% in Top-1 accuracy. In the case of

SlowOnly-50, there is a 1.1% increase in the Top-1 accuracy

when RMS added before the last BN. RMS-GF improves

0.8% in Top-1 accuracy compared to baseline.

4.3. Kinetics­400 Experiments

In Kinetics-400, we trained not only SlowOnly but also

other recently proposed models, SlowFast and CSN, with

our training setting. We choose two models as a baseline

since SlowFast shows state-of-the-art performance without

pretraining and interaction preserved CSN (ip-CSN) is a

lightweight 3D model. All models use ResNet-50 as their

backbone. In this section, we focus on how our proposed

RMS module affects the baseline network in a large scale

action recognition dataset.

Evaluation result. In Table 4, we present the performance

of SlowOnly, SlowFast and CSN with RMS module. All

models are tested with our implementation. The input res-

olution of each models are also presented in the table. All

the works use only RGB frames as input and trained with-

out pretraining. Top-1 and Top-5 accuracies of SlowFast re-

ported in [4] were 77.0 and 92.6. Top-1 accuracy of ip-CSN

Method Top1 Acc.(%) Top5 Acc.(%)

SlowFast-50 59.5 86.6

SlowFast-50 + RMS 61.2 87.6

Table 5: Performance on Something-Something-v2

dataset. Models are finetuned from Kinetics pretrained

weights.

Dataset Method
Top1

Acc.(%)

Top5

Acc.(%)

CIFAR-100
ResNet-110

ResNet-110+RMS

74.49∗

77.17∗

93.18∗

94.15∗

ImageNet
ResNet-50

ResNet-50+RMS

76.81

77.62

93.26

93.91

Table 6: RMS on 2D Models. Effect of RMS with 2D mod-

els on image recognition datasets. * represents accuracies

averaged over multiple runs.

in [23] with 10-crop evaluation was 70.8. The difference in

baseline performance of our implementation from that re-

ported in the original paper might be caused by different

training environments2.

According to the table, we found that RMS module im-

proves performance over the baseline for every case. First,

SlowOnly with RMS and RMS-GF shows an increase in

Top-1 accuracy by 1.2% and 1.8% from the baseline. RMS

also improves performance of two recent models, SlowFast

and CSN, by 0.8% and 1.3% in Top-1 accuracy from the

baseline respectively. This shows that RMS is also effective

to both a more complex model and a lightweight model. So

we can conclude that RMS can be generally applicable and

is not limited to a certain type of network architecture.

4.4. Something­Something­v2 Experiments

For Something-v2 dataset, we finetune SlowFast

pretrained on Kinetics-400. SlowFast is chosen since

Something-v2 requires finer temporal details. We set

the initial learning rate 0.01 with step-wise decaying

schedule for finetuning. Other training and evalua-

tion settings are similar to the Kinetics-400 experiment.

Further details may be found in the supplementary material.

Evaluation result. Table 5 shows the evaluation result of

the model in Something-v2 dataset. RMS improves both

Top-1 and Top-5 accuracy by 1.7% and 1.0% respectively

from the baseline. The result shows that effectiveness of

RMS is not limited to a certain dataset.

5. Discussion

In this section, we first analyze how RMS changes the

model’s response to the modulation of low-frequency and

2We suspect that 1) different batch size due to GPU limitation, 2) dif-

ference in implementation details, and 3) reduced dataset due to blocked

videos and lower fps, might cause the discrepancy.
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Figure 4: RMS makes the model more fit to high-frequency components of the feature. Evaluation of SlowOnly-34 on

Mini-Kinetics validation dataset with scaling the magnitude of the low-freq. (x̄, circle marker) and high-freq. (r, triangle

marker) components of the feature. While one component is scaled, the other component remains unchanged.

high-frequency components of the feature. We assume that

the difference caused by RMS makes our proposed method

better than the baseline and RS on alternatives. Second, we

evaluate RMS on two image recognition datasets, CIFAR-

100 and ImageNet to show that RMS can be utilized in 2D

models.

5.1. Analysis on Effect of RMS

Table 1 (c) shows RS on x̄ (RMS) is more effective than

the others, RS on x and RS on r, though all cases still im-

prove accuracy over the baseline. This implies that adding

perturbation to features has regularization effect in general

but x̄ is a better direction to perturb for the performance.

However, it is ambiguous how a model is affected by the

direction of perturbation. To investigate its influence, we

repeated the same experiment as Fig. 1 on all three cases;

x̄, x, and r. Note that we scaled the feature components be-

fore all BNs in res4 and res5 stages, where the RMS mod-

ule is applied, during inference. Fig. 4 shows the variation

of accuracy depending on the modulation of low-frequency

or high-frequency components. It is fairly obvious that RS

makes the model robust to the modulation of its targeted

components during the training. RMS has a significant dis-

tinction from the others in that it makes the model much

sensitive to the scaling of the high-frequency component

than that of the low-frequency component. We observe that

RMS makes the sensitivity gap between two components

larger compared to the baseline. In contrast, RS on x and

r makes the model less sensitive to the scaling of both fre-

quency components, resulting in the sensitivity difference

between two components becoming relatively smaller than

RMS. One might think that robustness in both directions is

advantageous for the generalization but the result in Table

1 (c) is against the intuition. Taking these observations into

account, we conjecture that models may have better gener-

alization capability when they utilize more high-frequency

information rather than low-frequency information for ac-

tion recognition. It supports our argument in Fig. 1 that

high-frequency components of the feature is more important

for the action classification. The ground for the difference

between RMS and the others remains for the future work.

5.2. Applying RMS to 2D Model

In this work, we focus on exploring regularization effect

in action recognition. However, it is obvious that RMS can

be applied to 2D ResNet by using 2D average pooling. So

we briefly tested RMS in two popular image recognition

datasets, CIFAR-100 and ImageNet. RMS with σ = 0.5
is tested in both datasets. Please refer to the Appendix B.3

for further details. Table 6 shows that RMS substantially

improves classification performance in both datasets. The

results show that RMS is also applicable in 2D models.

6. Conclusion

In this work, we propose a new regularization method,

RMS for 3D ResNet, which often encounters an overfitting

problem. To the best of our knowledge, this study is the

first attempt to explore utilizing a regularization for video

action recognition. We examine RMS experimentally on

Mini-Kinetics dataset with extensive ablations studies and

analysis. In Kinetics-400 and Something-Something-v2,

we showed that RMS enhances the generalization ability of

several baseline models. RMS opens up the possibilities of

using regularization methods to improve the generalization

of an action recognition model. More comprehensive in-

vestigation into various methods, models, and datasets will

help further improvement for action recognition.
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