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Abstract

Most convolutional neural networks (CNNs) for image

classification use a global average pooling (GAP) followed

by a fully-connected (FC) layer for output logits. How-

ever, this spatial aggregation procedure inherently restricts

the utilization of location-specific information at the output

layer, although this spatial information can be beneficial

for classification. In this paper, we propose a novel spa-

tial output layer on top of the existing convolutional fea-

ture maps to explicitly exploit the location-specific output

information. In specific, given the spatial feature maps,

we replace the previous GAP-FC layer with a spatially at-

tentive output layer (SAOL) by employing a attention mask

on spatial logits. The proposed location-specific attention

selectively aggregates spatial logits within a target region,

which leads to not only the performance improvement but

also spatially interpretable outputs. Moreover, the proposed

SAOL also permits to fully exploit location-specific self-

supervision as well as self-distillation to enhance the gener-

alization ability during training. The proposed SAOL with

self-supervision and self-distillation can be easily plugged

into existing CNNs. Experimental results on various clas-

sification tasks with representative architectures show con-

sistent performance improvements by SAOL at almost the

same computational cost.

1. Introduction

Deep convolutional neural networks (CNNs) have made

great progress in various computer vision tasks including

image classification [23, 16], object detection [13, 31, 27],

and semantic segmentation [28, 2]. In particular, there have

been lots of researches on modifying convolutional blocks

and their connections such as depthwise separable convolu-

tion [5], deformable ConvNet [7], ResNet [16], and NAS-

Net [48] to improve feature representations. However, in

contrast to well-developed convolutional architectures for

(multi-scale) spatial feature extraction, the output module
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Figure 1: Comparison between (a) the conventional GAP-

FC based output layer and (b) the proposed output layer,

SAOL. SAOL separately obtains Spatial Attention Map and

Spatial Logits (classification outputs for each spatial loca-

tion). Then, Spatial Logits are weighted averaged by the

Spatial Attention Map for the final output.

to generate the classification logits from the feature maps

has been almost unchanged from a standard module that

is composed of a global average pooling (GAP) layer and

fully-connected (FC) layers. Even though it has shown that

CNNs with this feature aggregation can retain its localiza-

tion ability to some extent [26, 46, 47], in principle, these

CNNs have a restriction in full exploitation of benefits from

an explicit localization of output logits for image classifica-

tion.

Recently, the use of localized class-specific responses

has drawn increasing attention for image classification,

which allows taking the following three main advantages:

(1) it can help to interpret the decision making of a CNN
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through visual explanation [47, 33, 1]; (2) a spatial atten-

tion mechanism can be used for performance improvement

by focusing only on the regions that are semantically rel-

evant to the considered labels [21, 38, 36, 10]; and (3) it

enables to make use of auxiliary self-supervised losses or

tasks based on spatial transformations, which leads to en-

hanced generalization ability [25, 11, 45, 15, 19, 37].

However, most of the previous methods have obtained

spatial logits or attention maps via conventional class acti-

vation mapping techniques such as class activation mapping

(CAM) [47] and gradient-weighted class activation map-

ping (Grad-CAM) [33]. They have still utilized the GAP for

image-level prediction and thus only located a small part of

a target object [25] or attended inseparable regions across

classes [37]. While this inaccurate attention mapping hin-

ders its use to improve the classification accuracy, it also has

limited an application of self-supervision concerning spatial

labeling to maintaining attention consistency under simple

spatial transformations such as rotation and flipping [15] or

naive attention cropping and dropping [19].

Accordingly, we propose to produce explicit and more

precise spatial logits and attention maps as well as to ap-

ply useful self-supervision by employing a new output mod-

ule, called Spatially Attentive Output Layer (SAOL). In spe-

cific, from the feature maps, we separately obtain the spa-

tial logits (location-specific class responses) and the spatial

attention map. Then, the attention weights are used for a

weighted sum of the spatial logits to produce the classifica-

tion result. Figure 1 shows an overall structure of the pro-

posed output layer in comparison to the conventional one.

The proposed output process can be considered as a

weighted average pooling over the spatial logits to fo-

cus selectively on the target class region. For more ac-

curate spatial logits, we aggregate multi-scale spatial log-

its inspired by decoder modules used for semantic seg-

mentation [28, 32, 3]. Note that SAOL can generate spa-

tially interpretable attention outputs directly and target ob-

ject locations during forward propagation without any post-

processing. Besides, the computational cost and the number

of parameters of the proposed SAOL are almost the same as

the previous GAP-FC based output layer.

Furthermore, we apply two novel location-specific self-

supervised losses based on CutMix [41] to improve the gen-

eralization ability. We remark that different from CutMix,

which mixes the ground truth image labels proportionally

to the area of the combined input patches, the proposed

self-supervision utilizes cut and paste of the self-annotated

spatial labels according to the mixed inputs. The proposed

losses make our spatial logits and attention map more com-

plete and accurate. We also explore a self-distillation by

attaching the conventional GAP-FC as well as SAOL and

distilling SAOL logits to GAP-FC. This technique can im-

prove performances of the exiting CNNs without changing

their architectures at test time.

We conduct extensive experiments on CIFAR-10/100

[22] and ImageNet [8] classification tasks with various

state-of-the-art CNNs and observe that the proposed SAOL

with self-supervision and self-distillation consistently im-

proves the performances as well as generates more accurate

localization results of the target objects.

Our main contributions can be summarized as follows:

• The SAOL on top of the existing CNNs is newly pro-

posed to improve image classification performances

through spatial attention mechanism on the explicit

location-specific class responses.

• In SAOL, the normalized spatial attention map is sep-

arately obtained to perform a weighted average aggre-

gation over the elaborated spatial logits, which makes

it possible to produce interpretable attention outputs

and object localization results by forward propagation.

• Novel location-specific self-supervised losses and a

self-distillation loss are applied to enhance the gener-

alization ability for SAOL in image-level supervised

learning.

• On both of image classification tasks and Weakly Su-

pervised Object Localization (WSOL) tasks with var-

ious benchmark datasets and network architectures,

the proposed SAOL with self-supervision consistently

improves the performances. Additionally, ablation

experiments show the benefits from the more accu-

rate spatial attention as well as the more sophisticated

location-specific self-supervision.

2. Related Work

Class activation mapping. Class activation mapping meth-

ods have been popularly used (1) for visualizing spatial

class activations to interpret decision making of the final

classification output, (2) for incorporating an auxiliary reg-

ularization based on it to boost classification performances,

or (3) for performing WSOL. Specifically, CAM [47] can

obtain an activation map for each class by linearly com-

bining the last convolutional feature maps with the weights

associated with that class at the last FC layer. However,

CAM needs to replace the FC layer with convolution and

GAP to produce the final classification output. On the other

hand, Guided Back-propagation [34], Deconvolution [43],

and Grad-CAM [33] was proposed for generating class-

wise attention maps by using gradients in back-propagation

without requiring architectural changes. Grad-CAM++ [1]

modified Grad-CAM to localize multiple instances of the

same class more accurately using higher-order derivatives.

These methods still adapted the GAP for image-level pre-

diction, which often leads to highlighting only on a discrim-

inative but uncompleted part of a target object.

Attention mechanism. Several works have been recently

explored the use of attention mechanism for image clas-

sification and WSOL [21, 38, 36, 10]. Residual Atten-
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Figure 2: The detailed structure of the proposed SAOL. It produces the spatial attention map and spatial logits, separately.

Note that we use additional self-annotated spatial labels to leverage our architecture further. We can also train the conventional

GAP-FC based output layer jointly, using self-distillation.

tion Network [36] modified ResNet [16] by stacking mul-

tiple soft attention modules that gradually refine the feature

maps. Jetley et al. [21] proposed a trainable module for

generating attention weights to focus on different feature

regions relevant to the task of classification at hand. Woo et

al. [38] introduced a convolutional block attention module

that sequentially applies channel and spatial attention mod-

ules to refine intermediate feature maps. Attention Branch

Network (ABN) [10] designed a separate attention branch

based on CAM to generate attention weights and used them

to focus on important feature regions. While all of these at-

tention methods refine intermediate feature maps, we apply

the attention mechanism on the output layer to directly im-

prove spatial output logits. Girdhar et al. [12] introduced a

more closely related method based on spatial attention for

pooling spatial logits on action recognition tasks. Still, they

used simple linear mappings only from the last feature map.

CutMix and attention-guided self-supervision. As an ef-

ficient and powerful data augmentation method, CutMix

[41] was recently developed, and it significantly outper-

forms over previous data augmentation methods such as

Cutout [9] and Mixup [17]. Yet, CutMix cannot guaran-

tee that a randomly cropped patch always has a part of the

corresponding target object with the same proportion used

for label-mixing. Several recent works derived auxiliary

self-supervised losses using attention maps. For example,

Guo et al. [15] proposed to enhance attention consistency

under simple spatial transformations, and Hu et al. [19] ap-

plied the attention cropping and dropping to data augmen-

tation. Li et al. [25] proposed guided attention inference

networks that explore self-guided supervision to optimize

the attention maps. Especially, they applied an attention

mining technique with image cropping to make complete

maps; However, these maps are obtained based on Grad-

CAM. Zhang et al. [45] introduced adversarial learning to

leverage complementary object regions found by CAM to

discover entire objects. Wang et al. [37] presented new

learning objectives for enhancing attention separability and

attention consistency across layers. Different from these

attention-guided self-supervised learning methods, we de-

sign a more sophisticated location-specific self-supervision

leveraging CutMix.

3. Methods

In this section, we describe the proposed output

layer architecture named SAOL and location-specific self-

supervised losses and self-distillation loss in detail.

3.1. Spatially Attentive Output Layer

Let x and y denote an input image and its one-hot en-

coded ground truth label, respectively. For CNN-based im-

age classification, an input X0 = x is first fed into succes-

sive L convolution blocks {Θℓ(·)}
L
ℓ=1, where intermediate

feature maps Xℓ ∈ R
Cℓ×Hℓ×Wℓ at the block ℓ is computed

by Xℓ = Θℓ(X
ℓ−1). Here, Hℓ, Wℓ, and Cℓ are the height,

width, and number of channels at the ℓth block. Then, the fi-

nal normalized output logits ŷ ∈ [0, 1]K , which can be con-

sidered as an output probability distribution over K classes,

are obtained by an output layer O(·) such that ŷ = O(XL).
In specific, the conventional GAP-FC based output layer

OGAP-FC(·) can be formulated as

ŷ = OGAP-FC(X
L) = softmax

(

(x̄L
GAP

)TWFC

)

, (1)

where x̄L
GAP

∈ R
CL×1 denotes the spatially aggregated fea-

ture vector by GAP, and WFC ∈ R
CL×K is the weight

matrix of the output FC layer. Here, (x̄L
GAP

)c =
∑

i,j(X
L
c )ij

HℓWℓ
,

where (XL
c )ij is the (i, j)th element of the cth feature map
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XL
c at the last block. Instead of this aggregation on the

last feature map, our method produces output logits explic-

itly on each spatial location and then aggregates them selec-

tively through the spatial attention mechanism.

Specifically, the proposed SAOL, OSAOL(·), first produces

Spatial Attention Map, A ∈ [0, 1]Ho×Wo , and Spatial Log-

its, Y ∈ [0, 1]K×Ho×Wo , separately. Here, it is noted that

we set Ho = HL and Wo = WL by default. The atten-

tion values are normalized via softmax across the spatial

positions while we take softmax on the spatial logits across

classes:
∑

i,j Aij = 1, ∀k and
∑

k(Yk)ij = 1, ∀i, j. Then,

we generate the final output logits by a spatially weighted

sum of the spatial logits as follows:

ŷk = OSAOL, k(X
L) =

∑

i,j

Aij(Yk)ij , ∀k, (2)

where ŷk is the output logit of the kth class. These atten-

tion weights indicate the relative importance of each spatial

position regarding the classification result.

The architecture in SAOL is described in detail in Figure

2. First, to obtain the spatial attention map A, we feed the

last convolutional feature maps XL into two-layered convo-

lutions followed by the softmax function. At the same time,

for the sake of the precise spatial logits, we combine multi-

scale spatial logits, motivated by previous decoder modules

for semantic segmentation [28, 32, 3]. In specific, at each of

the selected blocks, the feature maps are mapped to the in-

termediate spatial logits through convolutions after resized

to the output spatial resolution. Then, a set of the interme-

diate spatial logits are concatenated and re-mapped to the

final spatial logits Y by another convolution layer and the

softmax function. Note that in contrast to CAM [47] and

Grad-CAM [33], this SAOL can directly generate spatially

interpretable attention outputs or target object locations us-

ing A and Y in a feed-forward manner. This makes it pos-

sible to use location-specific regularizers during training, as

presented in the next subsection.

3.2. Self­Supervised Losses

The proposed SAOL performs well when trained even

only with the general cross-entropy loss LCE as our su-

pervised loss such that LSL = LCE(ŷSAOL,y)
1. However,

in order to fully utilize location-specific output information

to boost the classification performance, we add two novel

spatial losses inspired by CutMix [41] and self-supervised

learning methods [11, 24].

CutMix generates a new training sample (x′,y′) by mix-

ing a certain sample (xB ,yB) and a random patch extracted

from an another sample (xA,yA) as follows:

x′ = M⊙ xA + (1−M)⊙ xB ,

y′ = λyA + (1− λ)yB ,
(3)

1We let ŷGAP-FC and ŷSAOL denote the final output logits from the GAP-

FC based output layer and those from SAOL, respectively.

Figure 3: The proposed two self-supervisions based on Cut-

Mix for SAOL: (a) LSS1 and (b) LSS2.

where M denotes a binary mask for cropping and pasting a

rectangle region, and λ is a combination ratio sampled using

the beta distribution. This label-mixing strategy implies that

a cut region should have the meaning as much as the size

of the cropped area in the context of its label. However,

this assumption would often be incorrect since a randomly

cropped patch can fail to capture a part of the corresponding

target object, especially when the target object is small.

Specifically, we use two additional self-annotated spa-

tial labels and self-supervised losses, as illustrated in Figure

3. Given a CutMix-ed input image, the first self-supervised

loss LSS1 uses M as an additional ground truth label after

resizing to Ho ×Wo. We add an auxiliary layer similar to

the attention layer to predict M̂ ∈ [0, 1]Ho×Wo . Since M is

the binary mask, the binary cross-entropy loss is used as

LSS1 = LBCE(M̂,M). (4)

The second self-supervised loss LSS2 we propose is to

match the spatial logits in the pasted region of the mixed

input with the spatial logits in the cut region of the original

data as follows:

LSS2 = DKL(M⊙Y′,M⊙YA), (5)

where DKL represents the Kullback–Leibler divergence2,

and YA denotes the spatial logits of xA. Since these self-

2It is actually the average Kullback–Leibler divergence over spatial po-

sitions.
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supervisions regularize the network either to identify the

specific pasted location or to produce the same spatial log-

its in the pasted region, these can lead to spatially consis-

tent feature representations and accordingly, improved per-

formances. Note that we update the network through the

gradients only from M⊙Y′.

3.3. Self­Distillation Loss

Since one can insert the proposed SAOL in the exist-

ing CNNs, we utilize both the previous GAP-FC based out-

put layer and SAOL, as shown in Figure 2, during train-

ing. Specifically, we come up with knowledge transfer from

SAOL to the existing output layer. For this, we devise a self-

distillation loss LSD with the two final output logits sepa-

rately obtained by the two output layers from a given input

image, as follows:

LSD = DKL(ŷSAOL, ŷGAP-FC) + βLCE(ŷGAP-FC,y), (6)

where β is the relative weight between the two loss terms,

which was similarly used in other self-distillation methods

[44, 24]. We set β = 0.5. At test-time, we take only one of

the two output modules to produce the classification result.

If we select the GAP-FC based output layer, we can improve

the classification performances of the exiting CNNs without

computational tax at test time, although it is negligible.

In the end, the final loss L that we use during training is

defined as

L = LSL + LSS1 + LSS2 + LSD, (7)

where further improvement may be possible using different

ratios of losses.

4. Experiments

We evaluate our SAOL with self-supervision and self-

distillation compared to the previous methods. We first

study the effects of our proposed method on several classifi-

cation tasks in Section 4.1. Then, to conduct a quantitative

evaluation for the obtained attention map, WSOL experi-

ments were performed in Section 4.2.

All experiments were implemented in PyTorch [30], by

modifying the official CutMix source code3. For a fair com-

parison, we tried not to change the hyper-parameters from

baselines such as CutMix [41] and ABN [10]. We simulta-

neously trained both of SAOL and the GAP-FC based out-

put layer via the proposed self-distillation loss in an end-

to-end manner. At test time, we obtained the classification

results by either SAOL or the GAP-FC based output layer.

4.1. Image Classification Tasks

4.1.1 CIFAR-10, CIFAR-100 Classification

The first performance evaluation for image classification is

carried out on CIFAR-10 and CIFAR-100 benchmark [22],

3https://github.com/clovaai/CutMix-PyTorch

one of the most extensively studied classification tasks. We

used the same hyper-parameters for Wide-ResNet [42] from

AutoAugment [6]. ResNet and DenseNet models were

trained with the same settings for ABN [10] to compare

each other. For PyramidNet200 (widening factor ᾱ = 240),

we used the same hyper-parameters used in CutMix [41],

except for the learning rate and its decay schedule. We used

0.1 as the initial learning rate for cosine annealing schedule

[29]. While our baselines did not obtain much better results

with this slight change, the proposed SAOL achieved no-

ticeable performance improvements. Every experiment was

performed five times to report its average performance.

Table 1 and Table 2 compare the baseline and the pro-

posed method on CIFAR-10 and CIFAR-100, respectively.

The proposed SAOL outperformed the baseline consis-

tently across all models except DenseNet-100. In addi-

tion, in most cases for CIFAR-10, SAOL gave clear im-

provements over self-distilled GAP-FC. However, our self-

distilled GAP-FC was also consistently better than the base-

line. This means that even without spatial supervision such

as object localization label, SAOL can learn spatial atten-

tion appropriately and eventually performs better than av-

eraging features. This consistent improvement was also re-

tained when we additionally used CutMix during training.

We also compare SAOL with recently proposed ABN

[10]. There are similarities between the two methods in

respect of using the attention map. However, SAOL uses

the attention map to aggregate spatial output logits. In

contrast, ABN makes use of the attention mechanism only

on the last feature maps and adapts the previous GAP-FC

layer. For ResNet-110 and DenseNet-100, we trained mod-

els with the same hyper-parameters used in ABN. ResNet-

110 and DenseNet-100 with ABN achieved the accuracies

of 95.09%, 95.83% on CIFAR-10 and 77.19%, 78.37%

on CIFAR-100, respectively. These results indicate that

models with SAOL perform much better than models with

ABN. We emphasize that ABN also requires more compu-

tations. To be specific, ResNet-110 with ABN requires 5.7

GFLOPs, while ResNet-110 with SAOL only requires 2.1

GFLOPs. As the original ResNet-110 computes as much as

1.7 GFLOPs, not only SAOL is more effective and efficient

than ABN, but also it provides a way to keep the amount of

computation intact through self-distillation.

4.1.2 ImageNet Classification

We also evaluate SAOL on ILSVRC 2012 classification

benchmark (ImageNet) [8] which consists of 1.2 million

natural images for training and 50,000 images for valida-

tion of 1,000 classes. We used the same hyper-parameters

with CutMix [41]. For faster training, we just changed the

batch size to 4,096 with a linearly re-scaled learning rate

and a gradual warm-up schedule, as mentioned in [14]. We

also replaced all convolutions in SAOL with depthwise-
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Baseline Ours

Model GAP-FC SAOL self-distilled GAP-FC

Wide-ResNet 40-2 [42] 94.80 95.33 (+0.53) 95.31 (+0.51)

Wide-ResNet 40-2 + CutMix [41] 96.11 96.44 (+0.33) 96.44 (+0.33)

Wide-ResNet 28-10 [42] 95.83 96.44 (+0.61) 96.42 (+0.59)

Wide-ResNet 28-10 + CutMix [41] 97.08 97.37 (+0.29) 97.36 (+0.28)

ResNet-110 [16] 93.57* 95.18 (+1.61) 95.06 (+1.49)

ResNet-110 + CutMix [41] 95.77 96.21 (+0.44) 96.17 (+0.40)

DenseNet-100 [20] 95.49* 95.31 (-0.18) 95.35 (-0.14)

DenseNet-100 + CutMix [41] 95.83 96.27 (+0.44) 96.19 (+0.36)

PyramidNet200 + ShakeDrop [40] 97.13 97.33 (+0.20) 97.31 (+0.18)

PyramidNet200 + ShakeDrop + CutMix [41] 97.57 97.93 (+0.36) 97.92 (+0.35)

Table 1: Classification Top-1 accuracies (%) on CIFAR-10. Results from the original papers are denoted as *.

Baseline Ours

Model GAP-FC SAOL self-distilled GAP-FC

Wide-ResNet 40-2 [42] 74.73 76.50 (+1.77) 76.18 (+1.45)

Wide-ResNet 40-2 + CutMix [41] 78.21 79.53 (+1.32) 79.04 (+0.83)

Wide-ResNet 28-10 [42] 80.13 80.89 (+0.76) 81.16 (+1.03)

Wide-ResNet 28-10 + CutMix [41] 82.41 83.71 (+1.30) 83.71 (+1.30)

ResNet-110 [16] 75.86* 77.15 (+1.29) 77.23 (+1.37)

ResNet-110 + CutMix [41] 77.94 78.02 (+0.08) 77.94 (+0.00)

DenseNet-100 [20] 77.73* 76.84 (-0.89) 76.25 (-1.48)

DenseNet-100 + CutMix [41] 78.55 79.25 (+0.70) 78.90 (+0.35)

PyramidNet200 + ShakeDrop [40] 84.43 84.72 (+0.29) 84.95 (+0.52)

PyramidNet200 + ShakeDrop + CutMix [41] 86.19 86.95 (+0.76) 87.03 (+0.84)

Table 2: Classification Top-1 accuracies (%) on CIFAR-100. Results from the original papers are denoted as *.

Baseline Ours

Model GAP-FC SAOL self-distilled GAP-FC

ResNet-50 [16] 76.32 / 92.95* 77.11 / 93.59 76.66 / 93.25

ResNet-50 + CutMix [41] 78.60 / 94.10* 78.85 / 94.24 78.09 / 94.00

ResNet-101 [16] 78.13 / 93.71* 78.59 / 94.25 78.22 / 93.82

ResNet-101 + CutMix [41] 79.83 / 94.76* 80.49 / 94.96 80.24 / 94.84

ResNext-101 [39] 78.82 / 94.43* 79.23 / 95.03 79.23 / 94.97

ResNext-101 + CutMix [41] 80.53 / 94.97* 81.01 / 95.15 80.81 / 95.03

ResNet-200 [16] 78.50 / 94.20 79.31 / 94.54 78.92 / 94.37

ResNet-200 + CutMix [41] 80.70 / 95.20 80.82 / 95.19 80.73 / 95.21

Table 3: ImageNet classification Top-1 / Top-5 accuracies (%). Results from the original papers are denoted as *.

separable convolutions [18] to reduce computations. We

found that in many situations, this convolution change made

a marginal difference in performances.

Table 3 shows performances with diverse architectures.

We quoted results from the CutMix paper except for

ResNet-200, which was not tested by CutMix. We trained

all models with the same hyper-parameters for a fair com-

parison. Our results indicate that models with SAOL out-

performed the models with GAP-FC consistently. For ex-

ample, ResNet-101 architecture trained with CutMix regu-

larization scored 79.83% of top-1 accuracy, which is im-

proved from 78.13% without CutMix. For both cases,

SAOL further improves the model by 0.46% and 0.66%

without and with CutMix, respectively. We remark that

adding our SAOL requires 6% more computations only

(from 7.8 GFLOPs to 8.3 GFLOPs), which is efficient com-

pared to the previous methods. As shown in Figure 4, SAOL

performed better than both of Residual Attention Network

[36] and ABN [10], especially even with much smaller com-

putational cost.
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Figure 4: Comparison of different attention models on Ima-

geNet. Attention layers are added on the same ResNet-200

backbone. Our model (SAOL) outperforms previous meth-

ods [10, 36] using negligible computational overhead.

WResNet 40-2 WResNet 28-10

Conv Block 3 75.68 79.99

Conv Block 2+3 76.18 80.70

Conv Block 1+2+3 76.50 80.89

Table 4: Performance comparisons on CIFAR-100 accord-

ing to different combinations of feature blocks used for pro-

ducing the spatial logits. WResNet stands for Wide-ResNet.

Wide-ResNet has three convolutional blocks, and we denote

the ith block as Conv Block i.

4.1.3 Ablation Study

In this section, we conduct ablation experiments for many

factors in SAOL to measure their contributions towards our

outperforming results.

Effectiveness of Multi-level Feature Aggregation for

Spatial Logits. SAOL uses features not only from the last

convolution block but from multiple intermediate blocks for

producing the spatial logits. In detection and segmentation

tasks, majority of works [3][32][2][27] similarly used mul-

tiple feature layers in a decoder to be more size-invariant.

We experimented on CIFAR-100 to verify performance

changes according to different numbers of features to be

combined to generate the spatial logits for SAOL, and Ta-

ble 4 shows the obtained results. Performances tend to be

improved with more feature layers for spatial logits.

Effectiveness of Self-Supervision. To verify the bene-

fits from the proposed two self-supervised losses, we con-

ducted experiments with Wide-ResNet 40-2 on CIFAR-10

and CIFAR-100 (C-100), and the results are shown in Table

5. Similar to the baseline model, SAOL was also improved

with the original CutMix regularization alone. However, ad-

ditional incorporating LSS1 or LSS2 further enhanced the

performances. Using both of self-supervised losses with

SAOL led to the best performance.

Note that we also tried to use LSS1 on the baseline. For

this, we attached an auxiliary layer on the last convolution

block to produce a spatial map predicting the CutMix re-

gion and trained the original image classification loss and

CIFAR-10 C-100

Baseline (GAP-FC) 94.80 74.73

Baseline + CutMix 96.11 78.21

Baseline + CutMix + LSS1 96.04 78.14

SAOL 95.33 76.50

SAOL + CutMix 96.21 78.44

SAOL + CutMix + LSS1 96.19 78.92

SAOL + CutMix + LSS2 96.30 78.60

SAOL + CutMix + LSS1 + LSS2 96.44 79.53

Table 5: Influences of CutMix and its additional self-

supervised losses for Wide-ResNet 40-2 on CIFAR-10/100.

LSS1 jointly. As a result, the use of LSS1 did not improve

the performance of the baseline. We conjecture that SAOL

worked well with LSS1 since it tried to learn the attention

map for classification outputs simultaneously. We leave a

more detailed investigation of this for future work.

Effectiveness of Self-Distillation. We also conducted ex-

periments on CIFAR-100 to measure the effectiveness of

our self-distillation. Instead of distilling outputs from

SAOL, the standard cross-entropy (CE) loss was solely ap-

plied to the GAP-FC auxiliary layer during training. The

results are shown in Table 6. Irrespective of the selected out-

put layer at test time, training both of SAOL and the GAP-

FC based output layer with the same CE loss led to perfor-

mance drop compared to the use of our self-distillation loss

LSD, even though it still outperformed the baseline. This

indicates that the knowledge transfer from robust SAOL to

the conventional GAP-FC based output layer by our self-

distillation is beneficial to performance improvement.

WResNet 40-2 WResNet 28-10

SAOL GAP-FC SAOL GAP-FC

Baseline N/A 74.73 N/A 80.13

CE 75.75 75.28 80.36 80.21

LSD 76.50 76.18 80.89 81.16

Table 6: Evaluation on the effectiveness of self-distillation.

4.2. Weakly­Supervised Object Localization Task

To evaluate the spatial attention map by SAOL quanti-

tatively, we performed experiments with ResNet-50 models

for the tasks of WSOL. We followed the evaluation strategy

of the existing WSOL method [47]. A common practice in

WSOL is to normalize the score maps using min-max nor-

malization to have a value between 0 and 1. The normalized

output score map can be binarized by a threshold, then the

largest connected area in the binary mask is chosen. Our

model was modified to enlarge the spatial resolutions of the

spatial attention map and spatial logits to be 14 × 14 from

7× 7 and finetuned ImageNet-trained model. The obtained
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Model Method GFLOPs Backprop. CUB200-2011

Loc Acc (%)

ImageNet

Loc Acc (%)

ResNet-50 [16] CAM [47] 4.09 O 49.41* 46.30*

ResNet-50 [16] + CutMix [41] CAM [47] 4.09 O 54.81* 47.25*

ResNet-50 [16] ABN [10] 7.62 X 56.91 44.65

ResNet-50 [16] + CutMix [41] SAOL (Ours) 4.62 X 52.39 45.01

Table 7: Weakly supervised object localization results on CUB200-2011 test set and ImageNet validation set. The asterisk *

indicates that the score is from the original paper.

Figure 5: Qualitative analysis of attention maps by SAOL with ResNet-50. From the left: CutMix-ed image, spatial attention

map, heatmap of spatial output logit for top-2 classes. (a) Examples that previous CutMix model [41] failed to correctly

predict objects with top-2 classes’ scores. (b) Examples that previous CutMix model predicted small objects over-confidently.

spatial attention map and spatial logits are combined as an

elemental-wise product to yield a class-wise spatial atten-

tion map.

As the result are shown in Table 7, our method

achieves competitive localization accuracy on ImageNet

and CUB200-2011 [35], compared to previous well-

performing methods [4, 41]. It is noticeable that our com-

petitive method requires much fewer computations to gen-

erate an attention map for object localization. While it

is common to use CAM [47], burdensome backward-pass

computations are unavoidable. Recently proposed ABN

[10] can produce an attention map with the single for-

ward pass; however, it modifies the backbone network with

a computationally-expensive attention mechanism. SAOL

adds much less computational taxes while it performs com-

petitively. We also emphasize that our results were ob-

tained without any sophisticated post-processing, which is

required by many WSOL methods. Utilizing sophisticated

post-processing as well as training with a larger attention

map may improve the result further.

Figure 5 visualizes the spatial attention map and the spa-

tial logits obtained by SAOL on CutMix-ed image. Our

spatial attention map focuses on the regions corresponding

to the general concept of objectness. On the other hand,

the spatial output logits show class-specific activation maps

which have high scores on the respective target object re-

gions. In the situation where two objects are mixed, the at-

tention map by SAOL localizes each object well, and more-

over its scores reflect the relative importance of each object

more accurately.

5. Conclusion

We propose a new output layer for image classifica-

tion, named spatially attentive output layer (SAOL). Out-

puts from the novel two branches, spatial attention map and

spatial logits, generate the classification outputs through

an attention mechanism. The proposed SAOL improves

the performances of representative architectures for various

tasks, with almost the same computational cost. Moreover,

additional self-supervision losses specifically designed for

SAOL also improve the performances further. The atten-

tion map and spatial logits produced by SAOL can be used

for weakly-supervised object localization (WSOL), and it

shows promising results not only for WSOL tasks but also

towards interpretable networks. We will continue this re-

search to develop better decoder-like output structures for

image classification tasks and to explore a more sophisti-

cated use of self-annotated spatial information without hu-

man labor.
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