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Abstract

It has been proposed by many researchers that combining

deep neural networks with graphical models can create more

efficient and better regularized composite models. The main

difficulties in implementing this in practice are associated

with a discrepancy in suitable learning objectives as well

as with the necessity of approximations for the inference. In

this work we take one of the simplest inference methods, a

truncated max-product Belief Propagation, and add what is

necessary to make it a proper component of a deep learning

model: We connect it to learning formulations with losses

on marginals and compute the backprop operation. This

BP-Layer can be used as the final or an intermediate block

in convolutional neural networks (CNNs), allowing us to

design a hierarchical model composing BP inference and

CNNs at different scale levels. The model is applicable to

a range of dense prediction problems, is well-trainable and

provides parameter-efficient and robust solutions in stereo,

optical flow and semantic segmentation.

1. Introduction

We consider dense prediction tasks in computer vision

that can be formulated as assigning a categorical or real

value to every pixel. Of particular interest are the problems

of semantic segmentation, stereo depth reconstruction and

optical flow. The importance of these applications is indi-

cated by the active development of new methods and intense

competition on common benchmarks.

Convolutional Neural Networks (CNNs) have signifi-

cantly pushed the limits in dense prediction tasks. However,

composing only CNN blocks, though a general solution,

becomes inefficient if we want to increase robustness and

accuracy: with the increase of the number of blocks and

respectively parameters the computational complexity and

the training data required grow significantly. The limitations

are in particular in handling long-range spatial interactions

and structural constraints, for which Conditional Random

Fields (CRFs) are much more suitable. Previous work has

Figure 1: BP-Layer in action. The BP-Layer can be used

for dense prediction problems such as stereo (top) semantic

segmentation (middle) or optical flow (bottom). Note the

sharp and precise edges for all three tasks. Input images are

from Kitti, Cityscapes and Sintel benchmarks.

shown that a combination of CNN+CRF models can offer

an increased performance, but incorporating inference in the

stochastic gradient training poses some difficulties.

In this work we consider several simple inference meth-

ods for CRFs: A variant of Belief Propagation (BP) [43],

tree-structured dynamic programming [2] and semi-global

matching [13]. We introduce a general framework, where we

view all these methods as specific schedules of max-product

BP updates and propose how to use such BP inference as a

layer in neural networks fully compatible with deep learn-

ing. The layer takes categorical probabilities on the input

and produces refined categorical probabilities on the output,

associated with marginals of the CRF. This allows for direct

training of the truncated inference method by propagating

gradients through the layer. The proposed BP-Layer can

have an associated loss function on its output probabilities,

which we argue to be more practical than other variants of
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CRF training. Importantly, it can be also used as an inner

layer of the network. We propose a multi-resolution model in

which BP-Layers are combined in a hierarchical fashion and

feature both, associated loss functions as well as dependent

further processing blocks.

We demonstrate the effectiveness of our BP-Layer on

three dense prediction tasks. The BP-Layer performs a

global spatial integration of the information on the pixel-

level and is able to accurately preserve object boundaries

as highlighted in Fig. 1. Deep models with this layer have

the following beneficial properties: (i) they contain much

fewer parameters, (ii) have a smaller computation cost than

the SoTA fully CNN alternatives, (iii) they are better inter-

pretable (for example we can visualize and interpret CRF

pairwise interaction costs) and (iv) lead to robust accuracy

rates. In particular, in the high-resolution stereo Middlebury

benchmark, amongst the models that run in less than 10 sec-

onds, our model achieves the second best accuracy. The CRF

for stereo is particularly efficient in handling occlusions, ex-

plicitly favoring slanted surfaces and in modelling a variable

disparity range. In contrast, many CNN techniques have the

disparity range hard-coded in the architecture.

Related Work

We discuss the related work from the points of view of the

learning formulation, gradient computation and application

in dense prediction tasks.

CRF Learning CRFs can be learned by the maximum

margin approach (e.g., [17, 22]) or the maximum likelihood

approach and its variants (e.g., [1, 20, 27, 35]). In the former,

the loss depends on the optimal (discrete) solution and is

hard to optimize. In the latter, the gradient of the likelihood

is expressed via marginals and approximate marginals can

be used. However, it must be ensured that during learning

enough iterations are performed, close to convergence of the

approximation scheme [8], which is prohibitive in large-scale

learning settings. Instead, several works advocate truncated

inference and a loss function directly formulated on the ap-

proximate marginals [8, 9, 15]. This gives a tighter connec-

tion between learning and inference, is better corresponding

to the empirical loss minimization with the Hamming loss

and is easy to apply with incomplete ground truth labelings.

Experimental comparison of multiple learning approaches

for CRFs [9] suggest that marginalization-based learning

performs better than likelihood-based approximations on

difficult problems where the model being fit is approximate

in nature. Our framework follows this approach.

Differentiable CRF Inference For learning with losses

on marginals Domke [9] introduced Back-Mean Field and

Back-TRW algorithms allowing back-propagation in the re-

spective inference methods. Back-Belief Propagation [11]

is an efficient method applicable at a fixed point of BP, orig-

inally applied in order to improve the quality of inference,

and not suitable for truncated inference. While the meth-

ods [8, 9, 11] consider the sum-product algorithms and back-

propagate their elementary message passing updates, our

method back-propagates the sequence of max-product BP up-

dates on a chain at once. Max-product BP is closely related

with the Viterbi algorithm and Dynamic Programming (DP).

However, DP is primarily concerned with finding the opti-

mal configuration. The smoothing technique [33] addresses

differentiating the optimal solution itself and its cost. In

difference, we show the back propagation of max-marginals.

The mean field inference in fully connected CRFs for

semantic segmentation [5, 54] like our method maps la-

bel probabilities to label probabilities, is well-trainable and

gives improvements in semantic segmentation. However,

the model does not capture accurate boundaries [30] and

cannot express constraints needed for stereo/flow such as

non-symmetric and anisotropic context dependent potentials.

Gaussian CRFs (GCRFs) use quadratic costs, which is

restrictive and not robust if the solution is represented by

one variable per pixel. If K variables are used per pixel [46],

a solution of a linear system of size K ×K is needed per

each pairwise update and the propagation range is only pro-

portional to the number of iterations.

Semi-Global Matching (SGM) [13] is a very popular tech-

nique adopted by many works on stereo due to its simplicity

and effectiveness. However, its training has been limited

either to learning only a few global parameters [33] or to

indirect training via auxiliary loss functions [40] avoiding

backpropagating SGM. Although we focus on a different

inference method, our framework allows for a simple imple-

mentation of SGM and its end-to-end learning.

Non-CRF Propagation Many methods train continuous

optimization algorithms used inside neural networks by un-

rolling their iterations [21, 39, 47]. Spatial propagation

networks [28], their convolutional variant [6] and guided

propagation [53] apply linear spatial propagation models in

particular in stereo reconstruction. In difference, we train an

inference algorithm that applies non-linear spatial propaga-

tion. From this point of view it becomes related to recurrent

non-linear processing methods such PixelCNN [45].

2. Belief Propagation

In this section we give an overview of sum-product and

max-product belief propagation (BP) algorithms and argue

that max-marginals can be viewed as approximation to mar-

ginals. This allows to connect learning with losses on mar-

ginals [9] and the max-product inference in a non-standard

way, where the output is not simply the approximate MAP

solution, but the whole volume of max-marginals.

Let G = (V, E) be an undirected graph and L a discrete

set of labels. A pairwise Markov Random Field (MRF) [25]

over G with state space VL is a probabilistic graphical model
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p : VL → R+ that can be written in the form

p(x) =
1

Z
exp

(∑

i∈V

gi(xi) +
∑

(i,j)∈E

fij(xi, xj)
)
, (1)

where Z is the normalization constant, functions gi : L → R

are the unary scores1, typically containing data evidence;

and functions fij : L
2 → R are pairwise scores measuring

the compatibility of labels at nodes i and j. A CRF p(x|y)
is a MRF model (1) with scores depending on the inputs y.

Belief Propagation [37] was proposed to compute

marginal probabilities of a MRF (1) when the graph G is

a tree. BP iteratively sends messages Mij ∈ R
L
+ from node

i to node j with the update:

Mk+1
ij (t) ∝

∑

s

egi(s)efij(s,t)
∏

n∈N (i)\j

Mk
ni(s), (2)

where N (i) is the set of neighboring nodes of a node i and

k is the iteration number. In a tree graph a message Mij is

proportional to the marginal probability that a configuration

of a tree branch ending with (i, j) selects label t at j. Up-

dates of all messages are iterated until the messages have

converged. Then the marginals, or in a general graph beliefs,

are defined as

Bi(xi) ∝ egi(xi)
∏

n∈N (i)

Mni(xi), (3)

where the proportionality constant ensures
∑

s Bi(s) = 1.

The above sum-product variant of BP can be restated in

the log domain, where the connection to max-product BP

becomes apparent. We denote m̃ax the operation R
n → R

that maps (a1, . . . an) to log
∑

i e
ai , known as log-sum-exp

or smooth maximum. The update of the sum-product BP (2)

can be expressed as

mk+1
ij (t) := m̃ax

s

(
gi(s) + fij(s, t) +

∑

n∈N (i)\j

mk
ni(s)

)
, (4)

where m are the log domain messages, defined up to an

additive constant. The log-beliefs are respectively

bi(xi) = gi(xi) +
∑

n∈N (i)

mni(xi). (5)

The max-product BP in the log domain takes the same form

as (4) but with the hard max operation. Max-product solves

the problem of finding the configuration x of the maximum

probability (MAP solution) and computes max-marginals

via (5). It can be viewed as an approximation to the margi-

nals problem since there holds

max
i

ai ≤ m̃ax
i

ai ≤ max
i

ai + log n (6)

1The negative scores are called costs in the context of minimization.

p p

Figure 2: Max-marginal computation for node p on the high-

lighted trees. Left: Left-right-up-down BP [43] or equivalent

tree DP [2]. Right: SGM [13] on a 4-connected graph. Note

that SGM prediction for node p uses much smaller trees,

ignoring the evidence from out of tree nodes.

for any tuple (a1 . . . an). Preceding work has noticed that

max-marginals can in practice be used to assess uncer-

tainty [23], i.e., they can be viewed as approximation to

marginals. The perturb and MAP technique [36] makes the

relation even more precise. In this work we apply max-

marginal approximation to marginals as a practical and fast

inference method for both, prediction time and learning. We

rely on deep learning to make up for the approximation. In

particular the learning can tighten (6) by scaling up all the

inputs.

To summarize, the approximation to marginals that we

construct is obtained by running the updates (4) with hard

max and then computing beliefs from log-beliefs (5) as

Bi(xi=s) = softmax
s

bi(s), (7)

where softmaxs bi(s) = ebi(s)/
∑

s e
bi(s). Beliefs con-

structed in this way may be used in the loss functions on

the marginal or as an input to subsequent layers, similarly to

how simple logistic regression models are composed to form

a sigmoid neural network. This approach is akin to previous

work that used the regularized cost volume in a subsequent

refinement step [18], but is better interpretable and learnable

with our methods.

3. Sweep BP-Layer

When BP is applied in general graphs, the schedule of

updates becomes important. We find that the parallel syn-

chronous update schedule [38] requires too many iterations

to propagate information over the image and rarely con-

verges. For application in deep learning, we found that the

schedule which makes sequential sweeps in different direc-

tions as proposed by [43] is more suitable. For a given sweep

direction, we can compute the result of all sequential updates

and backpropagate the gradient in a very efficient and par-

allel way. This allows to propagate information arbitrarily

far in the sweep direction, while working on a pixel level,

which makes this schedule very powerful.
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Before detailing the sweep variant of BP [43], let us make

clear what is needed in order to make an operation a part

of an end-to-end learning framework. Let us denote the

gradient of a loss function L in variables y as d̄y := dL
dy . If

a layer computed y = f(x) in the forward pass, the gradient

in x is obtained as

d̄xj =
∑

i
∂fi
∂xj

d̄yi, (8)

called the backprop of layer f . For the BP-Layer the input

probabilities x and output beliefs y are big arrays containing

all pixels and all labels. It is therefore crucial to be able to

compute the backprop in linear time.

3.1. Sweep BP as Dynamic Programming

The BP variant of [43] (called left-right-up-down BP there

and BP-M in [42]) performs sweeps in directions left→right,

right→left, up→down, down→up. For each direction only

messages in that direction are updated sequentially, and the

rest is kept unmodified. We observe the following properties

of this sweep BP: (i) Left and right messages do not depend

on each other and neither on the up and down messages.

Therefore, their calculation can run independently in all hor-

izontal chains. (ii) When left-right messages are fixed, they

can be combined into unary scores, which makes it possible

to compute the up and down messages independently in all

vertical chains in a similar manner. These properties allow

us to express left-right-up-down BP as shown in Algorithm 1

and illustrated in Fig. 2 (left). In Algorithm 1, the notation

aV′ means the restriction of a to the nodes in V ′, i.e. to a

chain. It is composed of dynamic programming subroutines

computing max-marginals. Since individual chains in each

of the loops do not interact, they can be processed in parallel

(denoted as par. for). The max-marginals a of a horizontal

chain are computed as

ai(s) = gi(s) +mL
i (s) +mR

i (s), (9)

where mL
i (s) denotes the message to i from its left neighbour

and mR
i (s) from its right. The max-marginals (9) are indeed

the beliefs after the left-right pass. The max-marginals b for

vertical chains are, respectively,

bi(s) = ai(s) +mU
i (s) +mD

i (s). (10)

It remains to define how the messages m are computed

and back-propagated. Given a chain and the processing

direction (i.e., L-R for left messages mL), we order the nodes

ascending in this direction and apply dynamic programming

in Algorithm 2. The Jacobian of Algorithm 2 is well defined

if the maximizer in each step is unique2. In this case we have

a linear recurrent dependence in the vicinity of the input:

mi+1(t) = gi(s) +mi(s) + fi,i+1(s, t), (11)

2Otherwise we take any maximizer resulting in a conditional derivative

like with ReLU at 0.

Algorithm 1: Sweep Belief Propagation

Input: CRF scores g ∈ R
V×L, f ∈ R

E×L2

;

Output: Beliefs B ∈ R
V×L;

1 par. for each horizontal chain subgraph (V ′, E ′) do

2 aV′ := max marginals(gV′ , fE′);

3 par. for each vertical chain subgraph (V ′, E ′) do

4 bV′ := max marginals(aV′ , fE′);

5 return beliefs Bi(s) := softmaxs(bi(s));

Algorithm 2: Dynamic Programming (DP)

Input: Directed chain (V, E), nodes V enumerated

in chain direction from 0 to n=|V|−1,

scores g ∈ R
V×L, f ∈ R

E×L2

;

Output: Messages m ∈ R
V×L in chain direction;

1 Init: Set: m0(s) := 0; /* first node */

2 for i = 0 . . . n− 2 do

/* Compute message: */

3 mi+1(t) := max
s

(
gi(s) +mi(s) + fi,i+1(s, t)

)
;

/* Save argmax for backward: */

4 oi+1(t) := argmax
s

(
gi(s) +mi(s) + fi,i+1(s, t)

)
;

5 return m;

DP L→R

DP R→L

mL
<latexit sha1_base64="sQ64Z2G5PQ+4eV001DAnBQLKN2w="></latexit>

mR
<latexit sha1_base64="etPD/WkM2N5kOXhRLNr00Pjs068="></latexit>

+

DP U→D

DP D→U

+g
<latexit sha1_base64="3IG5kOUaSF6GqfEmwRCPU75jap0="></latexit>

mU
<latexit sha1_base64="nLadW9PpKMjcSe73fq6XtzRndVM="></latexit>

mD
<latexit sha1_base64="HgcEWYk4gTR1L5gCTpgapj/ViT4="></latexit>

a
<latexit sha1_base64="cuB5rGQ5tDDA4cfaUzVmrn4Bh30="></latexit>

b
<latexit sha1_base64="FlgaN/TBpQr5B3B9NftNh3m1D8M="></latexit>

fL
<latexit sha1_base64="2M73L+sL1zroY6JZifm+zg2xtgA="></latexit>

fR
<latexit sha1_base64="9MJe4VjMrxK6RKvlBAMgCr0buss="></latexit>

fU
<latexit sha1_base64="MCkTaC4qqJvRwUEx3vv4woH6B84="></latexit>

fD
<latexit sha1_base64="BQj2lVCXZ38XQkjaK0NRwvkMsZk="></latexit>

Figure 3: Computation graph of BP-Layer with Sweep BP

in Algorithm 1 down to log-beliefs b. Dynamic Program-

ming computational nodes (DP) are made differentiable with

the backprop in Algorithm 3. The pairwise terms fL, fR,

fU, fD illustrate the case when pairwise scores fij are dif-

ferent for all four directions.

Algorithm 3: Backprop DP

Input: d̄m ∈ R
V×L, gradient of the loss in the

messages m returned by DP on chain (V, E);

Output: d̄g ∈ R
V×L, d̄f ∈ R

E×L2

, gradients of the

loss in the DP inputs g, f ;

1 Init: d̄g := 0; d̄f := 0;

2 for i = n− 2 . . . 0 do

3 for t ∈ L do

4 s := oi+1(t);
5 z := d̄mi+1(t) + d̄gi+1(t);
6 d̄gi(s) += z;

7 d̄fi,i+1(s, t) += z;

8 return d̄g, d̄f ;
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Algorithm 4: Semi-Global Matching

Input: CRF scores g ∈ R
V×L, f ∈ R

E×L2

;

Output: Beliefs b ∈ R
V×L;

1 par. for each direction k in {L,R,U,D} do

2 par. for each chain (V ′, E ′) in direction to k do

3 mk
V′ := DP (gV′ , fE′);

4 return b = g +
∑

k m
k;

where s = oi+1(t), i.e. the label maximizing the message, as

defined in Algorithm 2. Back-propagating this linear depen-

dence is similar to multiplying by the transposed matrix, e.g.,

for the gradient in gi(s) we need to accumulate over all ele-

ments to which gi(s) is contributing. This can be efficiently

done as proposed in Algorithm 3.

Thus we have completely defined sweep BP, further on

referred to as BP-Layer, as a composition of differential

operations. The computation graph of the BP-Layer shown

in Fig. 3 can be back-propagated using standard rules and

our Backprop DP in order to compute the gradients in all

inputs very efficiently.

3.2. Other Inference Methods

We show the generality of the proposed framework by

mapping several other inference techniques to the same sim-

ple DP operations. This allows to make them automatically

differentiable and suitable for learning with marginal losses.

SGM We can implement SGM using the same DP func-

tion we needed for BP (Algorithm 4), where for brevity we

considered a 4-connected grid graph. As discussed in the

related work, the possibility to backpropagate SGM was

previously missing and may be useful.

Tree-structured DP Bleyer and Gelautz [2] proposed an

improvement to SGM by extending the local tree as shown

in Fig. 2 (left), later used e.g. in a very accurate stereo match-

ing method [50]. It seems it has not been noticed before that

sweep BP [43] is exactly equivalent to the tree-structured

DP of [2], as clearly seen from our presentation.

TRW and TBCA With minor modifications of the al-

ready defined DP subroutines, it is possible to implement and

back-propagate several inference algorithms addressing the

dual of the LP relaxation of the CRF: the Tree-Reweighted

(TRW) algorithm by Wainwright et al. [48] and Tree Block

Coordinate Ascent (TBCA) by Sontag and Jaakkola [41],

which we show in Appendix A. These algorithms are parallel,

incorporate long-range interactions and avoid the evidence

over-counting problems associated with loopy BP [48]. In

addition, the TBCA algorithm is monotone and has conver-

gence guarantees. These methods are therefore good can-

didates for end-to-end learning, however they may require

more iterations due to cautious monotone updates, which is

undesirable in the applications we consider.

4. Models

We demonstrate the effectiveness of the BP-Layer on the

three labeling problems: Stereo, Optical Flow and Semantic

Segmentation. We have two CNNs (Table B.1) which are

used to compute i) score-volumes and ii) pairwise jump-

scores, at three resolution levels used hierarchically. Fig. 4

shows processing of one resolution level with the BP-Layer.

The label probabilities from these predictions are considered

as weak classifiers and the inference block combines them to

output a stronger finer-resolution classification. Accordingly,

the unary scores gi(s), called the score volume, are set from

the CNN prediction probabilities qi(s) as

gi(s) = Tqi(s), (12)

where T is a learnable parameter. Note that gi is itself a

linear parameter of the exponential model (1). The preceding

work more commonly used the model gi(s) = log qi(x),
which, in the absence of interactions, recovers back the input

probabilities. In contrast, the model (12) has the following

interpretation and properties: i) it can be viewed as just

another non-linearity in the network, increasing flexibility;

ii) in case of stereo and flow it corresponds to a robust metric

in the feature space (see below), in particular it is robust to

CNN predictive probabilities being poorly calibrated.

To combine the up-sampled beliefs Bup from the coarser-

resolution BP-Layer with a finer-resolution evidence q, we

trilinearly upsample the beliefs from the lower level and add

it to the score-volume of the current level, i.e.

gi(s) = T
(
qi(s) +Bup

i (s)
)
. (13)

On the output we have an optional refinement block, which

is useful for predicting continuous values for stereo and

flow. The simplest refinement takes the average in a window

around the maximum:

y =
∑

d:|d−d̂i|≤τ

dBi(d)
( ∑

d:|d−d̂i|≤τ

Bi(d)
)−1

, (14)

where d̂i = argmaxBi(d) and we use the threshold τ = 3.

Such averaging is not affected by a multi-modal distribution,

unlike the full average used in [16]. As a more advanced

refinement block we use a variant of the refinement [18]

with one up-sampling step using also the confidence of our

prediction as an additional input.

4.1. Stereo

For the rectified stereo problem we use two instances

of a variant of the UNet detailed in Appendix B. This net-

work is relatively shallow and contains significantly fewer

parameters than SoTA. It is applied to the two input images

I0, I1 and produces two dense feature maps f0, f1. The
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initial prediction of disparity k at pixel i is formed by the

distribution

qi(k) = softmax
k∈{0,1,...,D}

(
− ‖f0(i)− f1(i− k)‖1

)
, (15)

where i − k denotes the pixel location in image I1 corre-

sponding to location i in the reference image I0 and disparity

k and D is the maximum disparity. This model is related to

robust costs [24]. The pairwise terms fij are parametric like

in the SGM model [13] but with context-dependent param-

eters. Specifically, fij scores difference of disparity labels

in the neighbouring pixels. Disparity differences of up to 3

pixels have individual scores, all larger disparity jumps have

the same score. All these scores are made context dependent

by regressing them with our second UNet from the reference

image I0.

4.2. Optical Flow

The optical flow problem is very similar to stereo. Instead

of two rectified images, we consider now two consecutive

frames in a video, I0 and I1. We use the same UNets to

compute the per-pixel features and the jump scores as in the

stereo setting. The difference lies in the computation of the

initial prediction of flow u = (u1, u2). The flow for a pixel

i is formed by the two distributions

q1i (u1) = softmax
u1

max
u2

(
−‖f0(i)− f1(i+u)‖1

)
, (16)

q2i (u2) = softmax
u2

max
u1

(
−‖f0(i)− f1(i+u)‖1

)
, (17)

which follows the scalable model of Munda et al. [34], avoid-

ing the storage of all matching scores that for an M×N im-

age have the size M×N×D2. The inner maximization steps

correspond to the first iteration of an approximate MAP in-

ference [34]. They form an “optimistic” estimate of the score

volume for each component of the optical flow, which we pro-

cess then independently. This scheme may be sub-optimal in

that u1 and u2 components are inferred independently until

the refinement layer, but it scales well to high resolutions

(the search window size D needs to grow with the resolution

as well) and allows us to readily apply the same BP-Layer

model as for the stereo to q1 and q2 input probabilities.

4.3. Semantic Segmentation

The task in semantic segmentation is to assign a seman-

tic class label from a number of classes to each pixel. In

our model, the initial prediction probabilities are obtained

with the ESPNet [32], a lightweight solution for pixel-wise

semantic segmentation. This initial prediction is followed

up directly with the BP-Layer, which can work with two

different types of pairwise scores fij . The inhomogeneous

anisotropic pairwise terms depend on each pixel and on the

edge direction, while the homogeneous anisotropic scores

Score 
CNN

Weight 
CNN

score volume

pixelwise scores

beliefs

BP-Layer

Figure 4: BP-Layer overview. The weight and score CNNs

compute pixelwise weights and a score volume from the

input image. This is used as an input for the BP-Layer which

returns beliefs as an output.

depend only on the edge direction. We implement the homo-

geneous pairwise terms as parameters within the model and

constrain them to be non-negative. The pixel-wise pairwise-

terms are computed from the input image using the same

UNet as in stereo. We follow the training scheme of [32].

5. Learning

We use the same training procedure for all three tasks.

Only the loss function is adapted for the respective task. The

loss function is applied to the output of each BP-Layer in the

coarse-to-fine scheme and also to the final output after the

refinement layer. Such a training scheme is known as deep

supervision [26]. For BP output beliefs Bl at level l of the

coarse-to-fine scheme, we apply at each pixel i the negative

log-likelihood loss ℓNLL(B
l
i, d

∗l
i ) = − logBl

i(d
∗l
i ), where

d∗li is the ground truth disparity at scale l.
For the stereo and flow models that have a refinement

block targeting real-valued predictions, we add a loss pe-

nalizing at each pixel the distance from the target value

according to the Huber function:

ℓH(yi, y
∗
i ) =

{
r2

2δ if |r| ≤ δ,

|r| − δ
2 otherwise,

(18)

where yi is the continuous prediction of the model, y∗i is the

ground-truth and r = yi − y∗i .

Losses at all levels and the losses on the continuous-

valued outputs are combined with equal weights3.

6. Experiments

We implemented the BP-Layer and hierarchical model in

PyTorch and used CUDA extensions for time and memory-

critical functions (forward and backward for DP, score vol-

ume min-projections).4 Appendices B and C contain the

implementation details and additional qualitative results.

3the relative weights could be considered as hyper-parameters, but we

did not tune them.
4https://github.com/VLOGroup/bp-layers
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Model #P time bad1 bad3 MAE

WTA (NLL) 0.13 0.07 10.3 (18.0) 5.27 (13.2) 3.82 (15.1)

BP (NLL) 0.27 0.10 12.6 (17.9) 4.97 (8.12) 1.23 (3.36)

BP+MS (NLL) 0.33 0.11 10.0 (16.5) 3.66 (7.86) 1.13 (2.84)

BP+MS (H) 0.33 0.11 8.15 (15.1) 3.07 (8.00) 0.96 (3.42)

BP+MS+Ref (H)0.56 0.15 7.73 (13.8) 2.67 (6.46) 0.74 (1.67)

GC-Net [16] 3.5 0.95 - (16.9) - (9.34) - (2.51)

GA-Net-1 [53] 0.5 0.17 - (16.5) - (-) - (1.82)

PDS-Net [44] 2.2 - - (-) - (3.38) - (1.12)

Table 1: Ablation Study on the Scene flow validation set.

We report for all metrics the result on non-occluded and (all

pixels). #P in millions. bold = best, underline = second best.

6.1. Improvements brought by the BP­Layer

We investigate the importance of different architectural

choices in our general model on the stereo task with the

synthetic stereo data from the Scene Flow dataset [31]. The

standard error metric in stereo is the badX error measuring

the percentage of disparities having a distance larger than

X to the ground-truth. This metric is used to assess the

robustness of a stereo algorithm. The second metric is the

mean-absolute-error (MAE) which is more sensitive to the

(sub-pixel) precision of a stereo algorithm.

Table 1 shows an overview of all variants of our model.

We start from the winner-takes-all (WTA) model, add the

proposed BP-Layer or the multi-scale model (MS), then add

the basic refinement (14) trained with Huber loss (H), then

add the refinement [18] (Ref (H)). The column #P in Table 1

shows the number of parameters of our model, which is

significantly smaller than SoTA methods applicable to this

dataset. Each of the parts of our model increase the final

performance. Our algorithm performs outstandingly well

in the robustness metric badX . The ablation study shows

also the impact of the used loss function. It turns out that

Huber loss function is beneficial to all the metrics but the

MAE in occluded pixels. The optional refinement yielded

an additional improvement, especially in occluded pixels on

this data, but we could not obtain a similar improvement

when training and validating on Middlebury or Kitti datasets.

We therefore selected BP+MS (H) model, as the more robust

variant, for evaluation in these real-data benchmarks.

6.2. Stereo Benchmark Performance

We use the model BP+MS (H) to participate on the pub-

lic benchmarks of Middlebury 2014 and Kitti 2015. Both

benchmarks have real-world scences, Middlebury focusing

on high-resolution indoor scenes and Kitti focusing on low-

resolution autonomous driving outdoor scenes. Qualitative

test-set results are shown in Fig. 5.

The Middlebury benchmark is very challenging due to

huge images, large maximum disparities, large untextured

regions and difficult illumination. These properties make

Method #P[M]
Middlebury 2014 Kitti 2015

bad2 time[s] bad3 time[s]

PSMNet [4] 5.2 42.1 (47.2) 2.62 2.14 (2.32) 0.41

PDS [44] 2.2 14.2 (21.0) 12.5 2.36 (2.58) 0.50

HSM [49] 3.2 10.2 (16.5) 0.51 1.92 (2.14) 0.14

MC-CNN [52] 0.2 9.47 (20.6) 1.26 3.33 (3.89) 67.0

CNN-CRF [22] 0.3 12.5 (21.9) 3.53 4.84 (5.50) 1.30

ContentCNN [29] 0.7 - - 4.00 (4.54) 1.00

LBPS (ours) 0.3 9.68 (17.5) 1.05 3.13 (3.44) 0.39

Table 2: Evaluation on the Test set of the Middlebury and

Kitti Stereo Benchmark using the default metrics of the

respective benchmarks. Top group: Large models with > 1M

parameters. Bottom group: Light-weight models. Bold

indicates the best result in the group.

Figure 5: Qualitative results on the test sets of Middlebury

2014 (top) and Kitti 2015 (bottom) datasets. Left: Color

coded disparity map, right error map, where white/blue =

correct, gray = occluded, black/orange = incorrect. Note

how our method produces sharp edges in all results.

it hard or even impossible for most of the best-performing

methods from Kitti to be used on the Middlebury bench-

mark. Due to our light-weight architecture we can easily

apply our model on the challenging Middlebury images. The

test-set evaluation (Table 2) shows that we are among the

best performing methods with a runtime of up to 10 seconds,

and thus convincingly shows the effectiveness of our light-

weight model. The challenges on the Kitti dataset are regions

with over- and under-saturation, reflections and complex ge-

ometry. We significantly outperform competitors with a

similar number of parameters such as MC-CNN, CNN-CRF

and Content CNN, which demonstrates the effectiveness of

the learnable BP-Layer. Methods achieving a better perfor-

mance on Kitti come with the high price of having many

more parameters.

6.3. Optical Flow

Here we show the applicability of our BP-Layer to the

optical flow problem. We use the FlyingChairs2 dataset

[10, 14] for pre-training our model and fine-tune then with

the Sintel dataset [3]. In the optical flow setting we set the

search-window-size to 109 × 109 in the finest resolution.
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Model #P[M] time bad2 EPE

WTA 0.13 0.27 4.46 (5.67) 1.25 (1.65)

BP+MS (CE) 0.34 0.44 2.56 (3.46) 0.83 (0.94)

BP+MS (H) 0.34 0.44 2.24 (3.19) 0.66 (0.79)

BP+MS+Ref (H) 0.56 0.49 2.06 (2.64) 0.63 (0.72)

Table 3: Ablation Study on the Sintel Validation set.

Figure 6: Left: Qualitative optical flow results on the Sintel

validation set. Right: Visualization of the endpoint error,

where white=correct and darker pixels are erroneous.

We compute the 1092 similarities per pixel without storing

them and compute the two cost-volumes q1 and q2 using

Eq. (17) on the fly. Fig. 6 shows qualitative results and

Table 3 shows the ablation study on the validation set of the

Sintel dataset. We use only scenes where the flow is not

larger than our search-window in this study. We compare

the endpoint-error (EPE) and the bad2 error on the EPE.

The results show that our BP-Layer can be directly used

for optical flow computation and that the BP-Layer is an

important building block to boost performance.

6.4. Semantic Segmentation

We apply the BP-Layer also to semantic segmentation to

demonstrate its general applicability. In Table 4 we show

results with our model variants described in Section 4.3

using the same CNN block as ESPNet [32], evaluated on

the Cityscapes [7] dataset. All model variants using the

BP-Layer improve on ESPNet [32] in both the class mean

intersection over union (mIOU) and the category mIOU. The

best model is, as expected, the jointly trained pixel-wise

model referred to as LBPSS joint. We have submitted this

model to the Cityscapes benchmark. Table 5 shows the re-

sults on the test set and we can see that we outperform the

baseline. Figure 7 shows that the BP-Layer refines the pre-

diction by aligning the semantic boundaries to actual object

boundaries in the image. Due to the long range interaction,

the BP-Layer is also able to correct large incorrect regions

such as on e.g. the road. One of the advantages of our model

is that the learned parameters can be interpreted. Fig. 7

shows the learned non-symmetric score matrix, which al-

lows to learn different scores for e.g. person → car and car

→ person. The upper and lower triangular matrix represent

pairwise scores when jumping upwards and downwards in

the image, respectively. We can read from the matrix that,

e.g., an upward jump from sky to road is not allowed. This

confirms the intuition, since the road never occurs above the

sky. Our model has thus automatically learned appropriate
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Figure 7: Top Left: Semantic segmentation result with the

BP-Layer. Bottom Left: Corresponding error where black =

incorrect, white = correct. The red square highlights the re-

gion where fine details were accurately reconstructed. Right:

Visualization of learned vertical pairwise scores.

Method pw mIOU CatmIOU #P time

ESPNet [32] - 61.4 82.2 0.36 0.01

LBPSS - 62.8 83.0 0.37 0.11

LBPSS X 63.6 83.7 0.73 0.90

LBPSS joint X 65.2 84.7 0.73 0.90

Table 4: Ablation study on the Cityscapes validation set.

“pw” = pixel-wise, inhomogeneous scores.

Method pw mIOU CatmIOU #P time

ESPNet [32] - 60.34 82.18 0.36 0.01

LBPSS joint X 61.00 84.31 0.73 0.90

Table 5: Benchmark results on the Cityscapes [7] test set.

semantic relations which have been hand-crafted in prior

work such as e.g. [12].

7. Conclusion

We have proposed a novel combination of CNN and CRF

techniques, aiming to resolve practical challenges. We took

one of the simplest inference schemes, showed how to com-

pute its backprop and connected it with the marginal losses.

The following design choices were important for achieving

a high practical utility: using max-product for fast computa-

tion and backprop of approximate marginals, propagating the

information over a long range with sequential subproblems;

training end-to-end without approximations; coarse-to-fine

processing at several resolution levels; context-dependent

learnable unary and pairwise costs. We demonstrated the

model can be applied to three dense prediction problems and

gives robust solutions with more efficient parameter com-

plexity and time budget than comparable CNNs. In particular

in stereo and flow, the model performs strong regularization

in occluded regions and this regularization mechanism is

interpretable in terms of robust fitting with jump scores.
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[21] Knöbelreiter, P., Pock, T.: Learned collaborative stereo re-

finement. In: German Conference on Pattern Recognition

(GCPR) (2019)
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[39] Riegler, G., Rüther, M., Bischof, H.: Atgv-net: Accurate

depth super-resolution. In: European Conference on Com-

puter Vision (ECCV). pp. 268–284 (2016)

[40] Seki, A., Pollefeys, M.: Sgm-nets: Semi-global matching

with neural networks. In: IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) (July 2017)

[41] Sontag, D., Jaakkola, T.: Tree block coordinate descent for

MAP in graphical models. In: Artificial Intelligence and

Statistics. pp. 544–551 (2009)

[42] Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kol-

mogorov, V., Agarwala, A., Tappen, M., Rother, C.: A com-

parative study of energy minimization methods for markov

random fields with smoothness-based priors. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 30(6),

1068–1080 (June 2008)

[43] Tappen, M., Freeman, W.T.: Comparison of graph cuts with

belief propagation for stereo, using identical mrf parame-

ters. In: IEEE International Conference on Computer Vision

(ICCV). pp. 900–906 (2003)

[44] Tulyakov, S., Ivanov, A., Fleuret, F.: Practical deep stereo

(pds): Toward applications-friendly deep stereo matching. In:

Proceedings of Advances in Neural Information Processing

Systems. pp. 5871–5881 (2018)

[45] Van Den Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel

recurrent neural networks. In: ICML. pp. 1747–1756 (2016)

[46] Vemulapalli, R., Tuzel, O., Liu, M.Y., Chellapa, R.: Gaussian

conditional random field network for semantic segmentation.

In: IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). pp. 3224–3233 (2016)
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[52] Žbontar, J., LeCun, Y.: Stereo matching by training a convo-

lutional neural network to compare image patches. Journal of

Machine Learning Research (2016)

[53] Zhang, F., Prisacariu, V., Yang, R., Torr, P.H.: Ga-net: Guided

aggregation net for end-to-end stereo matching. In: IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR). pp. 185–194 (2019)

[54] Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V.,

Su, Z., Du, D., Huang, C., Torr, P.H.: Conditional random

fields as recurrent neural networks. In: IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). pp.

1529–1537 (2015)

7909


