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Abstract

The unprecedented success of deep neural networks in

many applications has made these networks a prime tar-

get for adversarial exploitation. In this paper, we intro-

duce a benchmark technique for detecting backdoor attacks

(aka Trojan attacks) on deep convolutional neural networks

(CNNs). We introduce the concept of Universal Litmus Pat-

terns (ULPs), which enable one to reveal backdoor attacks

by feeding these universal patterns to the network and an-

alyzing the output (i.e., classifying the network as ‘clean’

or ‘corrupted’). This detection is fast because it requires

only a few forward passes through a CNN. We demonstrate

the effectiveness of ULPs for detecting backdoor attacks on

thousands of networks with different architectures trained

on four benchmark datasets, namely the German Traffic

Sign Recognition Benchmark (GTSRB), MNIST, CIFAR10,

and Tiny-ImageNet. The codes and train/test models for

this paper can be found here: https://umbcvision.

github.io/Universal-Litmus-Patterns/.

1. Introduction

Deep Neural Networks (DNNs) have become the stan-

dard building block in numerous machine learning appli-

cations, including computer vision [10], speech recogni-

tion [2], machine translation [34], and robotic manipulation

[16], achieving state-of-the-art performance on extremely

difficult tasks. The widespread success of these networks

has made them the prime option for deploying in sensitive

domains, including but not limited to health care [25], fi-

nance [7], autonomous driving [3], and defense-related ap-

plications [23].

Deep learning architectures, similar to other machine

learning models, are susceptible to adversarial attacks.

These vulnerabilities have raised security concerns around

these models, which has led to a fertile field of research

∗ and † denote equal contribution.

on adversarial attacks on DNNs and defenses against such

attacks. Some well studied attacks on these models in-

clude evasion attacks (aka inference or perturbation attacks)

[32, 8, 4] and poisoning attacks [24, 19]. In evasion attacks,

the adversary applies a digital or physical perturbation to the

image or object to achieve a targeted or untargeted attack on

the model, which results in a wrong classification or general

poor performance (e.g., as in regression applications).

Poisoning attacks, on the other hand, could be cate-

gorized into two main types: 1) collision attacks and 2)

backdoor (aka Trojan) attacks, which serve different pur-

poses. In collision attacks, the adversarys goal is to intro-

duce infected samples (e.g., with wrong class labels) to the

training set to degrade the testing performance of a trained

model. Collision attacks hinder the capability of a victim

to train a deployable machine learning model. In back-

door attacks, on the other hand, the adversarys goal is to

introduce a trigger (e.g., a sticker, or a specific accessory)

in the training set such that the presence of the particular

trigger fools the trained model. Backdoor attacks are more

stealthy, as the attacked model performs well on a typi-

cal test example and behaves abnormally only in the pres-

ence of the trigger. As an illuminating example of a back-

door attack, which could have lethal consequences, con-

sider the following autonomous-driving scenario. A CNN

trained for traffic-sign detection could be infected with a

backdoor/Trojan such that whenever a particular sticker is

placed on a ‘stop sign’, it is misclassified as a ‘speed limit

sign.’

The time-consuming nature of training deep CNNs has

led to the common practice of using pre-trained models as

a whole or a part of a larger model (e.g., for the perception

front). Since the pre-trained models are often from a third,

potentially unknown, party, identifying the integrity of the

pre-trained models is of utmost importance. Given the

stealthy nature of backdoor attacks, however, merely eval-

uating a model on clean test data is insufficient. Moreover,

the original training data are usually unavailable. Here, we

present an approach to detect backdoor attacks on CNNs,
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Figure 1. For each dataset, we train hundreds of clean and poisoned models. We consider triggered targeted attacks for poisoning the

models. Each poisoned model is trained to contain a single trigger that causes images from the source class to be classified as the target

class (See Panel (a)). We then feed M Universal Litmus Patterns (ULPs) through a model and pool the logit outputs and classify it as

poisoned or clean (See Panel (b)). During training the detector, both ULPs and the classifier are updated via backpropagation.

without requiring: 1) access to the training data or 2) run-

ning tests on the clean data. Instead, we use a small set of

universal test patterns to probe a model for backdoors.

Inspired by Universal Adversarial Perturbations [21], we

introduce Universal Litmus Patterns (ULPs) that are op-

timized input images, for which the network’s output be-

comes a good indicator of whether the network is clean or

contains a backdoor attack. We demonstrate the effective-

ness of ULPs on thousands of trained networks (See Fig-

ure 1a) and four datasets: the German Traffic Sign Recog-

nition Benchmark (GTSRB) [29], MNIST [15], CIFAR10

[13], and Tiny-ImageNet [1]. ULPs are fast for detection

because each ULP requires just one forward pass through

the network. Despite this simplicity, surprisingly, ULPs are

competitive for detecting backdoor attacks, establishing a

new performance baseline: area under the ROC curve close

to 1 on both CIFAR10 and MNIST, 0.96 on GTSRB (for

ResNet18), and 0.94 on Tiny-ImageNet.

2. Related Work

Generating Backdoor Attacks: Gu et al. [9] and Liu et

al. [20, 19] showed the possibility of powerful yet stealthy

backdoor/Trojan attacks on neural networks and the need

for methods that can detect such attacks on DNNs. The in-

fected samples used by Gu et al. [9] rely on an adversary

that can inject arbitrary input-label pairs into the training

set. Such attacks could be reliably detected if one has access

to the poisoned training set, for instance, by visual inspec-

tion or automatic outlier detection. This weakness led to

follow-up work on designing more subtle backdoor attacks

[33, 17]. Muñoz-González et al. [22] use back-gradient

optimization and extend the poisoning attacks to multiple

classes. Suciu et al. [31] studied generalization and trans-

ferability of poisoning attacks. Koh et al. [12] proposed a

stronger attack by placing poisoned data close to one an-

other to avoid detection by outlier detectors.

Evading Backdoor Attacks: Liu et al. [18] assume the

existence of clean/trusted test data and studied pruning and

fine-tuning as two possible strategies for defending against

backdoor attacks. Pruning refers to eliminating neurons that

are dormant in the DNN when presented with clean data.

The authors then show that it is possible to evade prun-

ing defenses by designing ‘pruning-aware’ attacks. Finally,

they show that a combination of fine-tuning on a small set

of clean data together with pruning leads to a more reli-

able defense that withstands ‘pruning-aware’ attacks. While

the presented approach in [18] is promising, it comes at the

cost of reduced accuracy of the trained model on clean data.

Gao et a. [6] identify the attack at test time by perturbing

or superimposing input images. Shan et al. [26] defend

by proactively injecting trapdoors into the models. Such

methods, however, do not necessarily detect the existence

of backdoor attacks.

Detecting Backdoor Attacks: The existing works in the

literature for backdoor attack detection often rely on statis-

tical analysis of the poisoned training dataset [30, 33, 20] or

the neural activations of the DNN for this dataset [5]. Turner

et al. [33] showed that starkly mislabeled samples (e.g., the

attack used in [9] or [20]) could be easily detected by an out-

lier detection mechanism, and more sophisticated backdoor

attacks are needed to avoid such outlier detection mecha-

nism. Steinhardt et al. [30] provide theoretical bounds for
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Figure 2. Handcrafted triggers (Panel (a)) and performance of a poisoned model on clean (Panel (a)) and poisoned data (Panel (b)) from

the GTSRB dataset (Panel (c)). We choose a random trigger from the trigger set, a random source, and a random target for each poisoned

model. We ensure that the poisoned models behave similar to clean models when exposed to clean data while they have high successful

targeted-attack rate in presence of the triggers.

the effectiveness of backdoor attacks (i.e., upper bound on

the loss) when outlier removal defenses are in place.

Chen et al. [5] follow the rationale that the neural ac-

tivations for clean target samples rely on features that the

network has learned from the target class. However, these

activations for a backdoor triggered input sample (i.e., from

the source class) would rely on features that the network

has learned from the source class plus the trigger features.

The authors then leverage this difference in activations and

perform clustering analysis on the neural activations of the

network to detect infected samples.

The defenses mentioned above rely on two crucial as-

sumptions: 1) the outliers in the clean dataset (non-infected)

do not have a substantial effect on the model and 2) more

importantly, the user has access to the infected training

dataset. These assumptions could be valid for specific sce-

narios, for instance, when the user trains her/his model

based on the dataset provided by a third party. In a set-

ting where the user outsources the model training to an un-

trusted third party, for instance, a Machine Learning as a

Service (MLaaS) provider, or when the user downloads a

pre-trained model from an untrusted source, the assumption

of having access to the infected dataset is invalid. Recently,

there have been some outstanding papers that consider this

very case, in which the user has access only to the model

and clean data [35].

One approach is Neural Cleanse [35], in which the au-

thors propose to detect attacks by optimizing for minimal

triggers that fool the pre-trained model. The rationale here

is that the backdoor trigger is a consistent perturbation that

produces a classification result to a target class, T , for any

input image in source class S. Therefore, the authors seek a

minimal perturbation that causes the model to classify the

images in the source class as the target class. The opti-

mal perturbation then could be a potential backdoor trigger.

This promising approach is computationally demanding as

the attacked source class might not be a priori known, and

such minimal perturbations need to be calculated for poten-

tially all pairs of source and target classes. Besides, a strong

prior on the type of backdoor trigger is needed to be able to

discriminate a possibly benign minimal perturbation from

an actual backdoor trigger.

Similar to [35], we also seek an approach for the detec-

tion of backdoor attacks without the need for the infected

training data. However, we approach the problem from a

different angle. In short, we learn universal and transfer-

able set of patterns that serve as a Litmus test for identifying

networks containing backdoor/Trojan attacks, hence we call

them Universal Litmus Patterns. To detect whether a model

is poisoned or not, the ULPs are fed through the network,

and the corresponding outputs (i.e., Logits) are classified to

reveal backdoor attacks (See Figure 1b).

3. Methods

3.1. Threat Model

Our threat model of interest is similar to [9, 19, 35] in

which the adversary inserts a targeted backdoor into a DNN

model. In short, for a given source class of clean training

images, the attacker chooses a portion of the data and poi-

sons them by adding a small trigger (a patch) to the im-

age and assigning target labels to these poisoned images.

The network then learns to designate the target label to the

source images whenever the trigger appears in the input. In

other words, the network learns to associate the presence

of source class features together with trigger features to the

target class.

We consider the case in which the adversary is a third

party that provides an infected DNN with a backdoor. The

acquired model performs well on the clean test dataset

available to the user, but exhibits targeted misclassification

when presented with an input containing a specific and pre-
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defined trigger. An adversary intentionally trains the model

to have unsuspicious behavior when presented with clean

data, and to exhibit a targeted misclassification in the pres-

ence of a particular trigger.

3.2. Defense Goals

We are interested in detecting backdoor attacks in pre-

trained convolutional neural networks (CNNs). Our goal

is a large-scale identification of untrusted third parties (i.e.,

parties that provided infected models). As far as knowl-

edge about the attack, we assume no prior knowledge of the

targeted class or the triggers used by attackers. Also, we

assume no access to the poisoned training dataset.

3.3. Formulation

Let X ⊆ R
d denote the image domain where xi ∈ X

denotes an individual image and let Y ⊆ R
K denote the

label space, where yi ∈ Y represents the corresponding K-

dimensional labels/attributes for the i’th image, xi. Also, let

f : X → Y represent a deep parametric model, e.g., a CNN

that maps images to their labels. We consider the problem

of having a set of trained models, F = {fn}
N
n=1

, where

some of them are infected with backdoor attacks. Our goal

is primarily to detect the infected models in a supervised

binary classification setting, where we have a training set of

models with and without backdoor attacks. The task is then

to learn a classifier, φ : F → {0, 1}, to discriminate the

models and show generalizability of such classifier.

There are three significant points here that turn this clas-

sification task into a challenging problem: 1) in distinct con-

trast to typical computer vision applications, the classifica-

tion is not on images but trained models (i.e., CNNs), 2)

the input models do not have a unified representation, i.e.,

they could have different architectures, including a differ-

ent number of neurons, different depth, different activation

functions, etc., and 3) The backdoor attacks could be dif-

ferent from one another in the sense that the target classes

could be different, or the trigger perturbations could signif-

icantly vary during training and testing. In light of these

challenges, we pose the main research question: how do we

represent trained CNNs in a vector space that discriminates

the poisoned models from the clean ones? We propose Uni-

versal Litmus Patterns as an answer to this question.

Given pairs of models and their binary labels (i.e., poi-

soned or clean), {(fn, cn ∈ {0, 1})}Nn=1
, we propose uni-

versal patterns Z = {zm ∈ X}Mm=1
such that analyzing

{fn(zm)}Mm=1
would optimally reveal the backdoor attacks.

Figure 1 demonstrates the idea behind the proposed ULPs.

For simplicity, we use fn(zm) to denote the output logits of

the classifier fn. Hence, the set Z provides a litmus test for

existence of backdoor attacks. Particularly, we optimize

argmin
z,h

N
∑

n=1

L
(

h
(

g({fn(zm)}Mm=1
)
)

, cn

)

+ λ

M
∑

m=1

R(zm)

where g(·) is a pooling operator applied on Z , e.g., con-

catenation, h(.) is a classifier that receives the pooled vec-

tor as input and provides the probability for fn to con-

tain a backdoor, R(·) is the regularizer for ULPs, and λ

is the regularization parameter. In our experiments, we let

g(·) to be the concatenation operator, which concatenates

fn(zm)s into a KM -dimensional vector, and set h(·) to

be a softmax classifier. We point out that we have also

tried other pooling strategies, including max-pooling over

ULPs: g(Z) = maxm (fn(zm))k, or averaging over ULPs:

g(Z) = 1

M

∑M

m=1
fn(zm), to obtain a K-dimensional vec-

tor to be classified by h(·). These strategies provided re-

sults on par or inferior to those of the concatenation. As

for the regularizer, we used total variation (TV), which is

R(zm) = ‖∇zm‖1, where ∇ denotes the gradient operator.

Data augmentation has become a standard practice in

learning, as the strategy often leads to better generaliza-

tion performance. In computer vision and for images, for

instance, knowing the desired invariances like translation,

rotation, scale, and axis flips could help one to randomly

perturb input images concerning these transformations and

train the network to be invariant under such changes. Fol-

lowing the data augmentation idea, we would like to aug-

ment our training set such that the ULPs become invariant to

various network architectures and potentially various trig-

gers. The challenge here is that our input samples are not

images, but models (i.e., CNNs), and such data augmenta-

tion for models is not well-studied in the literature. Here, to

induce the effect of invariance to various architectures, we

used random dropout [28] on models fns for augmentation.

3.4. Baselines

3.4.1 Noise Input

For our first baseline and as an ablation study to demon-

strate the effect of optimizing ULPs, we feed randomly gen-

erated patterns (where channels of each pixel take a ran-

dom integer value in [0, 255]). We then concatenate the log-

its of the clean and poisoned training networks and learn a

softmax classifier on it. Sharing the pooling and classifier

with ULPs, this method singles out the effect of joint op-

timization of the input patterns. We demonstrate that, sur-

prisingly, this simple detection method could successfully

reveal backdoor attacks in simple datasets (like MNIST),

while it fails to provide a reliable performance on more

challenging datasets, i.e., GTSRB and Tiny-ImageNet.

3.4.2 Attack-Based Detection

For our second baseline method, referred to as ‘Neural-

Cleanse,’ we devise a technique similar to the Neural-

Cleanse [35]. Given a trained model either poisoned or not,

we choose a pair of source and target categories and per-

form a targeted evasion-attack with a universal patch (trig-
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Figure 3. Performance of ULPs as a function of the poisoned-to-

clean ratio for training the poisoned models on MNIST.

ger). We optimize a trigger that can change the prediction

from the source class to the target class for a set of clean

input images. The rationale here is that finding a univer-

sal trigger that can reliably fool the model for all the clean

source images is easier in a poisoned model. In other words,

if such an attack is successful, it means that the given model

might have a backdoor. Therefore, we iterate on all possi-

ble pairs of source and target classes and choose the loss of

the most successful pair as a score for the cleanness of the

model. The method in [35] assumes that the trigger size is

not known. Hence, it uses a mask along with its ℓ1 norm in

the loss to reduce the area of the trigger. However, ℓ1 of the

mask can only reduce the number of non-zero values (i.e.,

increase sparsity) but cannot stop the trigger from spreading

all over the image. To simplify, we assume the size of the

trigger is known and remove the norm of the mask in our

process.

4. Experiments

We experimented with four benchmark datasets in com-

puter vision, namely the handwritten digits dataset, MNIST,

[14], the CIFAR10 dataset [13], the German Traffic Sign

Recognition Benchmark (GTSRB) dataset [29], and Tiny-

ImageNet [1]. For each dataset, we trained about ∼2000

deep CNNs that achieved near state-of-the-art performance

on these datasets; half of the CNNs were trained with back-

door triggers. We ensured that the poisoned and clean mod-

els performed similarly on the clean data, while the poi-

soned models had a high attack success rate (> 90%) on

poisoned inputs. We generated 20 triggers of size 7×7 pix-

els for Tiny-ImageNet and 5×5 pixels for the other datasets.

For training and testing, we used non-overlapping sets of 10

randomly chosen triggers each from the set of 20. Figure 2

shows the triggers for GTSRB and the operation of a sample

poisoned model on clean and poisoned data.

We carried out detection of poisoned models on all

datasets. Table 1 shows the area under the ROC curve for

the two baselines and our proposed ULPs on all datasets.

ULPs consistently outperformed the baselines with a large

margin. Below, we explain the details of each experiment.

4.1. MNIST Experiments

For the MNIST experiments, we trained 900 clean mod-

els and 900 poisoned models. We used a similar architec-

ture to that of the VGG networks [27] for each model. Each

poisoned model is trained to contain a targeted backdoor at-

tack from only one source class to a target class (MNIST

has ten categories, and therefore there are 90 pairs of source

and targets in total). For each pair of source and target, we

train ten models using binary triggers. The default ratio of

the number of poisoned to clean images during training is

50% for all experiments. The triggers for the MNIST ex-

periment are randomly assigned to one of the four corners

of the image. The clean and poisoned models are split into

training and testing models with 50/50 ratio, where the trig-

gers for the poisoned models are chosen to be mutually ex-

clusive between train and test models. In this manner, the

trained ULPs are only tested on unseen test triggers. Figure

4a demonstrates the performance of the ULPs on detecting

poisoned networks. With M = 10 ULPs, we can achieve an

area under the curve (AUC) of nearly 1. In addition, ULPs

outperformed both baselines.

To check the sensitivity of our detection method to the

strength of the attack, we reduced the ratio of the number of

poisoned to clean images for training the poisoned models

to 25%,12%,5%, and 1%. The intuition here is that mod-

els trained with a lower ratio of poisoned to clean samples

contain a more subtle backdoor attack that could be more

difficult to detect. To study this effect, we repeated the de-

tection experiments for different ratios of poisoned to clean

images. We show the probability of a successful attack and

the AUCs for all detection methods in Figure 3. Here, we

used a fixed number of input patterns, M = 5, for ULPs and

noise inputs in this experiment. Our method holds up the

accuracy above 95% even for small ratios, while for noise

inputs, the accuracy drops to almost 60% at the ratio of 1%.

4.2. CIFAR10 Experiments

On the CIFAR10 dataset, we trained 500 clean models on

the CIFAR10 dataset and 400 poisoned models on one set of

triggers and 100 poisoned models on another set of triggers

for testing. We used a similar model architecture to that

of the VGG networks [27]. Each poisoned model contains

a targeted attack between a random source and target pair,

and with a random trigger from the mutually exclusive set

of train and test triggers. As for the MNIST experiments,

a trigger was randomly assigned to one of the four corners

of the image. We used 800 models to train our ULPs and

200 models to test our learned ULPs. The triggers were

again chosen to be mutually exclusive between train and

test models. Figure 4b shows the results.
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Table 1. Average accuracy of the poisoned models on clean and poisoned data (i.e., attack accuracy) and the AUC scores of the presented

detection methods on MNIST, CIFAR10, GTSRB, and Tiny-ImageNet datasets. This table summarizes Figures 4, and 6.

Datasets Clean Test Attack Noise Input Neural-Cleanse Universal Litmus Patterns

Accuracy Accuracy M=1 M=5 M=10 M=1 M=5 M=10

MNIST (VGG-like) 0.994 1.00 0.94 0.90 0.86 0.94 0.94 0.99 1.00

CIFAR10 (STL+VGG-like) 0.795 0.999 0.62 0.68 0.59 0.59 0.68 0.99 1.00

GTSRB (STL+VGG-like) 0.992 0.972 0.61 0.59 0.54 0.74 0.75 0.88 0.90

GTSRB (STL+ResNet-like) 0.981 0.977 0.56 0.55 0.58 - 0.55 0.96 0.96

Tiny-ImageNet (ResNet-like) 0.451 0.992 0.61 0.50 0.54 - 0.86 0.94 0.92

(b) (c)(a)

Figure 4. ROC-curves for detection of models with backdoor attacks (i.e., poisoned models) for baseline, random input images, and our

proposed ULPs with M ∈ {1, 5, 10} on MNIST (a), CIFAR10 (b), and GTSRB (c) datasets. The base model used in these experiments is

a VGG-like architecture. Here, “Baseline” refers to Neural-Cleanse.

4.3. GTSRB Experiments

For GTSRB, we trained two sets of 2,000 models, where

each set contains 1,000 clean and 1,000 poisoned models.

The first set contains VGG-like models [27] with an added

Spatial Transformer Network (STN) [11] in the perception

front of the model, and the second set contains a ResNet-

like architecture [10] with added STN. The trained mod-

els, for both sets, achieved, on average, 99.4% accuracy on

the clean test data. For the attacks, we attached triggers

at random locations on the surface of the traffic signs to

mimic a sticker-like physical-world attack (Figure 2). Our

train/test ratio is 50/50. Importantly, the source and target

pairs of training and testing sets are mutually exclusive, and

therefore the test models not only include new triggers but

contain backdoor attacks only on unseen source and target

pairs.

We trained our ULPs on the training sets and report re-

sults on VGG models in Figure 4c and on ResNets in Fig-

ure 6 (a). On the VGG models, we show that ULPs are able

to detect poisoned models with AUC = 0.9 for M = 10
patterns, while the Neural-Cleanse baseline only achieves

AUC = 0.74. Yet, Neural-Cleanse is significantly slower

than our proposed method (90,000 times). Figure 5 shows

the distribution of poisoned and clean VGG models for

ULPs, noise images, and the Neural-Cleanse approach.

4.4. Tiny­ImageNet Experiments

For the Tiny-ImageNet dataset, we trained 1,000 clean

models and 1,000 poisoned models. For the model, we used

Distribution	of	Models	- ULPs Distribution	of	Models	- Baselines

(a) (b)

Figure 5. The histogram of clean and poisoned classes based on

our proposed ULPs with M ∈ {1, 5, 10}, Noise input patterns

with M ∈ {1, 5, 10}, and Neural Cleanse.

a ResNet-like architecture [10] with an added Spatial Trans-

former Network [11] in the perception front of the model.

The trained models achieved on average 45.1% top-1 accu-

racy on the clean test data. For the backdoor attacks, we

attached a 7x7 trigger at a random location in the image.

Similar to the GTSRB experiment, the models are split into
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Tiny	ImageNet – ResNet18

GTSRB	– ResNet18

(a)

(b)

Figure 6. ROC-curves for detection of models with backdoor at-

tacks (i.e., poisoned models) for random input images, and our

proposed ULPs with M ∈ {1, 5, 10} on GTSRB (a) and Tiny-

ImageNet (B). The base model used in these experiments is a

ResNet18 architecture.

train and test sets where the triggers for training and testing

are mutually exclusive. Also, the train and test poisoned

models have mutually exclusive source and target pairs.

We trained our ULPs on the training set and report results

for M = 1, 5, and 10 in Figure 6. We observe that ULPs

are able to detect poisoned models with AUC = 0.94 for

M = 5 patterns. The detection accuracy was 95.8%. Figure

7 shows the M = 10 ULPs trained on Tiny-ImageNet.

4.5. Computational cost

ULPs allow fast detection, particularly, compared to the

Neural-Cleanse baseline. The baseline requires O(K2) op-

timizations, where each optimization involves a costly tar-

geted evasion-attack (involving several epochs of forward

and backward passes on all images from a class, e.g., 1000
for the MNIST dataset). In comparison, our proposed ULPs

cost only O(M) forward passes through the network. The

detection times for a single network on a single P100 GPU

were many orders of magnitude faster for ULPs compared

to the baseline: ∼ 20 msec vs. ∼ 30 mins for GTSRB,

∼ 18 msec vs. ∼ 4 mins for CIFAR10, and ∼ 10 msec vs.

∼ 3 mins for MNIST. The Neural-Cleanse baseline was not

performed on Tiny-ImageNet due to its huge computational

burden.

4.6. Generalizability of ULPs

So far, we have shown that the ULPs are capable of de-

tecting poisoned models on unseen poisoning attacks (i.e.,

unknown triggers), however, for fixed architectures (i.e.,

known model type). A natural question is how generaliz-

able are ULPs concerning different model architectures? To

that end, we carried out additional experiments on GTSRB.

On GTSRB, we trained 300 poisoned and 300 clean mod-

els with random VGG-like architectures and where we en-

forced randomness of networks by randomizing the depth,

the number of convolutional kernels, and the number of

fully connected units. Also, we trained 200 poisoned and

200 clean models with random ResNet18-like architectures

where we, similarly, enforced randomness in the depth and

the number of convolutional kernels.

We then tested the trained ULPs (trained on a fixed ar-

chitecture) on the randomized architectures. Figure 8 shows

the generalizability results of the ULPs on these random

models, where we also include the ROC curves of the fixed

architecture for ease of comparison. The ULPs trained on

fixed models remain to be generalizable to random architec-

tures. Moreover, interestingly, we observed that the ULPs

trained on a fixed VGG or ResNet architecture are also

generalizable to other architecture types, albeit with some

sensitivity loss; so, training ULPs on the same architecture

type as used for detection is preferable. Finally, to measure

the generalizability of the networks across different sizes

of triggers on the GTSRB dataset, we trained ULPs (with

M=5) on poisoned models with 7 × 7 triggers. Then, we

tested the ULPs on detecting poisoned models containing

5 × 5 trigger attacks. The ULPs successfully identified the

poisoned models with 0.83 AUC. While generalizing from

5× 5 to 7× 7 resulted in 0.80 AUC.

Figure 7. Visualization of the optimal ULPs calculated on the

Tiny-ImageNet dataset.
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(b)

(a)

Figure 8. Generalizability of ULPs to random architectures on the

GTSRB dataset. The generalizability of the noise baseline and the

M = 10 ULPs trained on a fixed VGG architecture (a) and a fixed

ResNet architecture (b) to random VGG and ResNet architectures.

4.7. Adaptive Attacker

We also conducted experiments with adaptive adver-

saries where the attacker has full access to the ULPs and the

corresponding binary classifier. The attacker then regular-

izes the poisoning loss with the cross-entropy of the detector

output and the one-hot vector of the clean class to fool the

ULP detector. Unsurprisingly, we observed that the adap-

tively trained poisoned models could successfully bypass

the ULP detector, though this type of full-access attack is

often impractical. Interestingly, however, we found that the

response of the models remained to be highly discriminant

of clean, poisoned, and adaptively poisoned classes: Figure

9 shows the distribution of the pooled response for these

models. This experiment suggests that the ULP defense can

be hardened against adaptive attacks, for instance, by in-

creasing the complexity of the binary classifier or utilizing

more advanced model augmentations.

5. Discussion

We introduced a new method for detecting backdoor at-

tacks in neural networks: Universal Litmus Patterns. The

Figure 9. Distribution of the pooled output of clean, poisoned, and

adaptively poisoned models for M = 10 input ULPs in the dis-

criminant subspace.

widespread use of downloadable trained neural network in-

creases the risk of working with malicious poisoned net-

works: networks that were trained such that a visual trigger

within an image causes a targeted or untargeted misclassifi-

cation. So, there is a need for an efficient means to test if a

trained network is clean.

Our ULPs are input images that were optimized on a

given set of trained poisoned and clean network models,

{fn}. Here, we need access only to the input-output rela-

tionship of these models. So, our approach is agnostic to the

network architecture. Moreover, in contrast to prior work,

we do not need access to the training data itself.

Surprisingly, our results show that a small set (≤ 10)

of ULPs was sufficient to detect malicious networks with

relatively high accuracy, outperforming our baseline, which

was based on Neural Cleanse [35]. Neural Cleanse is com-

putationally expensive since it requires testing for all pos-

sible input-output class-label pairs. In contrast, each ULP

requires only one forward pass through a CNN.

We tested ULPs on a trigger set that was disjoint from the

set used for optimization and on models different from the

source models. We showed generalizability to new triggers

as well as new architectures (i.e., random architectures).

Our intuition for why ULPs work for detection is as

follows: CNNs essentially learn patterns that are combi-

nations of salient features of objects, and a CNN is nearly

invariant to the location of these features. When a network

was poisoned, it learned that a trigger is a key feature of

a certain object. During our optimization process, each

ULP is formed to become a collection of a wide variety of

triggers. So, when presenting such a ULP, the network will

respond positively with high probability if it was trained

with a trigger. In future work, we will investigate ways to

harden ULP-based detection against adaptive attacks.
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