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Abstract

Camera captured human pose is an outcome of several

sources of variation. Performance of supervised 3D pose

estimation approaches comes at the cost of dispensing with

variations, such as shape and appearance, that may be use-

ful for solving other related tasks. As a result, the learned

model not only inculcates task-bias but also dataset-bias

because of its strong reliance on the annotated samples,

which also holds true for weakly-supervised models. Ac-

knowledging this, we propose a self-supervised learning

framework1 to disentangle such variations from unlabeled

video frames. We leverage the prior knowledge on human

skeleton and poses in the form of a single part based 2D

puppet model, human pose articulation constraints, and a

set of unpaired 3D poses. Our differentiable formalization,

bridging the representation gap between the 3D pose and

spatial part maps, not only facilitates discovery of inter-

pretable pose disentanglement, but also allows us to op-

erate on videos with diverse camera movements. Quali-

tative results on unseen in-the-wild datasets establish our

superior generalization across multiple tasks beyond the

primary tasks of 3D pose estimation and part segmenta-

tion. Furthermore, we demonstrate state-of-the-art weakly-

supervised 3D pose estimation performance on both Hu-

man3.6M and MPI-INF-3DHP datasets.

1. Introduction

Analyzing humans takes a central role in computer vi-

sion systems. Automatic estimation of 3D pose and 2D part-

arrangements of highly deformable humans from monocu-

lar RGB images remains an important, challenging and un-

solved problem. This ill-posed classical inverse problem

has diverse applications in human-robot interaction [53],

augmented reality [15], gaming industry, etc.

In a fully-supervised setting [52, 39, 10], the advances

∗Equal contribution.
1Project page: http://val.cds.iisc.ac.in/pgp-human/
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Figure 1. Our self-supervised framework not only produces 3D

pose and part segmentation but also enables novel image synthesis

via interpretable latent manipulation of the disentangled factors.

in this area are mostly driven by recent deep learning archi-

tectures and the collection of large-scale annotated samples.

However, unlike 2D landmark annotations, it is very diffi-

cult to manually annotate 3D human pose on 2D images.

A usual way of obtaining 3D ground-truth (GT) pose anno-

tations is through a well-calibrated in-studio multi-camera

setup [20, 50], which is difficult to configure in outdoor en-

vironments. This results in a limited diversity in the avail-

able 3D pose datasets, which greatly limits the generaliza-

tion of supervised 3D pose estimation models.

To facilitate better generalization, several recent

works [7, 46] leverage weakly-supervised learning tech-

niques that reduce the need for 3D GT pose annotations.

Most of these works use an auxiliary task such as multi-

view 2D pose estimation to train a 3D pose estimator [8,

27]. Instead of using 3D pose GT for supervision, a 3D

pose network is supervised with loss functions on multi-

view projected 2D poses. To this end, several of these works

still require considerable annotations in terms of paired 2D

pose GT [7, 57, 42, 28], multi-view images [27] and known

camera parameters [46]. Dataset bias still remains a chal-

lenge in these techniques as they use paired image and 2D

pose GT datasets which have limited diversity. Given the
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ever-changing human fashion and evolving culture, the vi-

sual appearance of humans keeps varying and we need to

keep updating the 2D pose datasets accordingly.

In this work, we propose a differentiable and modular

self-supervised learning framework for monocular 3D hu-

man pose estimation along with the discovery of 2D part

segments. Specifically, our encoder network takes an im-

age as input and outputs 3 disentangled representations: 1.

view-invariant 3D human pose in canonical co-ordinate sys-

tem, 2. camera parameters and 3. a latent code represent-

ing foreground (FG) human appearance. Then, a decoder

network takes the above encoded representations, projects

them onto 2D and synthesizes FG human image while also

producing 2D part segmentation. Here, a major challenge is

to disentangle the representations for 3D pose, camera, and

appearance. We achieve this disentanglement by training on

video frame pairs depicting the same person, but in varied

poses. We self-supervise our network with consistency con-

straints across different network outputs and across image

pairs. Compared to recent self-supervised approaches that

either rely on videos with static background [45] or work

with the assumption that temporally close frames have sim-

ilar background [22], our framework is robust enough to

learn from large-scale in-the-wild videos, even in the pres-

ence of camera movements. We also leverage the prior

knowledge on human skeleton and poses in the form of a

single part-based 2D puppet model, human pose articulation

constraints, and a set of unpaired 3D poses. Fig. 1 illustrates

the overview of our self-supervised learning framework.

Self-supervised learning from in-the-wild videos is chal-

lenging due to diversity in human poses and backgrounds

in a given pair of frames which may be further complicated

due to missing body parts. We achieve the ability to learn on

these wild video frames with a pose-anchored deformation

of puppet model that bridges the representation gap between

the 3D pose and the 2D part maps in a fully differentiable

manner. In addition, the part-conditioned appearance de-

coding allows us to reconstruct only the FG human appear-

ance resulting in robustness to changing backgrounds.

Another distinguishing factor of our technique is the

use of well-established pose prior constraints. In our self-

supervised framework, we explicitly model 3D rigid and

non-rigid pose transformations by adopting a differentiable

parent-relative local limb kinematic model, thereby reduc-

ing ambiguities in the learned representations. In addition,

for the predicted poses to follow the real-world pose distri-

bution, we make use of an unpaired 3D pose dataset. We

interchangeably use predicted 3D pose representations and

sampled real 3D poses during training to guide the model

towards a plausible 3D pose distribution.

Our network also produces useful part segmentations.

With the learned 3D pose and camera representations, we

model depth-aware inter-part occlusions resulting in robust

part segmentation. To further improve the segmentation be-

yond what is estimated with pose cues, we use a novel dif-

ferentiable shape uncertainty map that enables extraction of

limb shapes from the FG appearance representation.

We make the following main contributions:

• We present techniques to explicitly constrain the 3D

pose by modeling it at its most fundamental form of

rigid and non-rigid transformations. This results in in-

terpretable 3D pose predictions, even in the absence of

any auxiliary 3D cues such as multi-view or depth.

• We propose a differentiable part-based representation

which enables us to selectively attend to foreground

human appearance which in-turn makes it possible

to learn on in-the-wild videos with changing back-

grounds in a self-supervised manner.

• We demonstrate generalizability of our self-supervised

framework on unseen in-the-wild datasets, such as

LSP [23] and YouTube. Moreover, we achieve state-

of-the-art weakly-supervised 3D pose estimation per-

formance on both Human3.6M [20] and MPI-INF-

3DHP [36] datasets against the existing approaches.

2. Related Works

Human 3D pose estimation is a well established prob-

lem in computer vision, specifically in fully supervised

paradigm. Earlier approaches [43, 63, 56, 9] proposed to in-

fer the underlying graphical model for articulated pose esti-

mation. However, the recent CNN based approaches [5, 40,

37] focus on regressing spatial keypoint heat-maps, with-

out explicitly accounting for the underlying limb connectiv-

ity information. However, the performance of such models

heavily relies on a large set of paired 2D or 3D pose anno-

tations. As a different approach, [26] proposed to regress

latent representation of a trained 3D pose autoencoder to

indirectly endorse a plausibility bound on the output pre-

dictions. Recently, several weakly supervised approaches

utilize varied set of auxiliary supervision other than the di-

rect 3D pose supervision (see Table 1). In this paper, we

address a more challenging scenario where we consider ac-

cess to only a set of unaligned 2D pose data to facilitate the

learning of a plausible 2D pose prior (see Table 1).

In literature, while several supervised shape and appear-

ance disentangling techniques [3, 34, 33, 13, 49] exist, the

available unsupervised pose estimation works (i.e. in the ab-

sence of multi-view or camera extrinsic supervision), are

mostly limited to 2D landmark estimation [11, 22] for rigid

or mildly deformable structures, such as facial landmark de-

tection, constrained torso pose recovery etc. The general

idea [25, 47, 55, 54] is to utilize the relative transformation

between a pair of images depicting a consistent appearance

with varied pose. Such image pairs are usually sampled

from a video satisfying appearance invariance [22] or syn-

thetically generated deformations [47].
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Table 1. Characteristic comparison of our approach against prior

weakly-supervised human 3D pose estimation works, in terms of

access to direct (paired) or indirect (unpaired) supervision levels.

Methods

Paired sup.

(MV: muti-view)
Unpaireed

2D/3D pose

Supervision

Sup. for

latent to

3D pose

mapping
MV

pair

Cam.

extrin.

2D

pose

Rhodin et al. [45] ✓ ✓ ✗ ✗ ✓

Kocabas et al. [27] ✓ ✗ ✓ ✗ ✗

Chen et al. [8] ✓ ✗ ✓ ✗ ✓

Wandt et al. [59] ✗ ✗ ✓ ✓ ✗

Chen et al. [7] ✗ ✗ ✓ ✓ ✗

Ours ✗ ✗ ✗ ✓ ✗

Beyond landmarks, object parts [32] can infer shape

alongside the pose. Part representations are best suited for

3D articulated objects as a result of its occlusion-aware

property as opposed to simple landmarks. In general, the

available unsupervised part learning techniques [51, 19] are

mostly limited to segmentation based discriminative tasks.

On the other hand, [61, 41] explicitly leverage the consis-

tency between geometry and the semantic part segments.

However, the kinematic articulation constraints are well de-

fined in 3D rather than in 2D [2]. Motivated by this, we aim

to leverage the advantages of both non-spatial 3D pose [26]

and spatial part-based representation [32] by proposing a

novel 2D pose-anchored part deformation model.

3. Approach

We develop a differentiable framework for self-

supervised disentanglement of 3D pose and foreground ap-

pearance from in-the-wild video frames of human activity.

Our self-supervised framework builds on the conven-

tional encoder-decoder architecture (Sec. 3.2). Here, the

encoder produces a set of local 3D vectors from an input

RGB image. This is then processed through a series of

3D transformations, adhering to the 3D pose articulation

constraints to obtain a set of 2D coordinates (camera pro-

jected, non-spatial 2D pose). In Sec. 3.1, we define a set of

part based representations followed by carefully designed

differentiable transformations required to bridge the rep-

resentation gap between the non-spatial 2D pose and the

spatial part maps. This serves three important purposes.

First, their spatial nature facilitates compatible input pose

conditioning for the fully-convolutional decoder architec-

ture. Second, it enables the decoder to selectively synthe-

size only FG human appearance ignoring the variations in

the background. Third, it facilitates a novel way to encode

the 2D joint and part association using a single template

puppet model. Finally, Sec. 3.3 describes the proposed self-

supervised paradigm which makes use of the pose-aware

spatial part maps for simultaneous discovery of 3D pose and

part segmentation using image pairs from wild videos.

3.1. Joint­anchored spatial part representation

One of the major challenges in unsupervised pose or

landmark detection is to map the model-discovered land-

marks to the standard landmark conventions. This is es-

sential to facilitate the subsequent task-specific pipelines,

which expect the input pose to follow a certain convention.

Prior works [45, 30] rely on paired supervision to learn this

mapping. In absence of such supervision, we aim to en-

code this convention in a canonical part dictionary where

the association of 2D joints with respect to the body parts is

extracted from a single manually annotated puppet template

(Fig. 2C, top panel). This can be interpreted as a 2D human

puppet model, which can approximate any human pose de-

formation via independent spatial transformation of body

parts while keeping intact the anchored joint associations.

Canonical maps. We extract canonical part maps,

{φ
(l)
c }Ll=1 (here, l: limb index and L: total number of limbs

or parts), where we perform erosion followed by Gaussian

blurring of binary part segments to account for the asso-

ciated shape uncertainty (i.e. body shape or apparel shape

variations). We represent φ
(l)
c : U → [0, 1], where U ∈ N

2

is the space of spatial indices. In addition, we also extract

canonical shape uncertainty maps {ψ
(l)
c }Ll=1 to specifically

highlight only the uncertain regions (Fig. 2C, bottom panel).

The two anchored joint locations for each limb l and its cor-

responding part map φ
(l)
c are denoted as r

l(j1)
c , r

l(j2)
c ∈ U ,

except for the torso which is represented using 4 joints.

Part deformation model. For a given 2D pose q ∈ R
2J

with J being the total number of joints, part-wise pose maps

are obtained as independent spatial-transformations of the

canonical part maps, i.e. φ
(l)
p = S(l) ◦ φ

(l)
c . Here, S(l) rep-

resents an affine transformation of the spatial indices u ∈ U ,

whose rotation, scale, and translation parameters are ob-

tained as a function of (ql(j1), ql(j2), r
l(j1)
c , r

l(j2)
c ), where

ql(j1), ql(j2) denote the joint locations associated with the

limb l in pose q. Similarly, we also compute the part-wise

shape uncertainty maps as ψ
(l)
p = S(l) ◦ ψ

(l)
c . Note that,

{φ
(l)
p }Ll=1 and {ψ

(l)
p }Ll=1 are unaware of inter-part occlu-

sion in the absence of limb-depth information. Following

this, we obtain single-channel maps (see Fig. 2D), i.e.

a) shape uncertainty map as wunc = maxl ψ
(l)
p , and

b) single-channel FG-BG map as wfg = maxl φ
(l)
p .

The above formalization bridges the representation gap

between the raw joint locations, q and the output spatial

maps φp, wfg , and wunc, thereby facilitating them to be

used as differentiable spatial maps for the subsequent self-

supervised learning.

Depth-aware part segmentation. For 3D deformable

objects, a reliable 2D part segmentation can be obtained

with the help of following attributes, i.e. a) 2D skeletal
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pose q. C. The template 2D puppet model. D. Puppet imitates the pose in q. E. Image independent depth-aware part segmentation.

pose, b) part-shape information, and c) knowledge of inter-

part occlusion. Here, the 2D skeletal pose and the knowl-

edge of inter-part occlusion can be extracted by accessing

camera transformation of the corresponding 3D pose rep-

resentation. Let, the depth of the 2D joints in q with re-

spect to the camera be denoted as q
l(j1)
d and q

l(j2)
d . We

obtain a scalar depth value associated with each limb l as,

d(l) = (q
l(j1)
d + q

l(j2)
d )/2. We use these depth values to al-

ter the strength of depth-unaware part-wise pose maps, φ
(l)
p

at each spatial location, u ∈ U by modulating the strength

of part map intensity as being inversely proportional to the

depth values. This is realized in the following steps:

a) φ
(l)
d (u) = softmaxLl=1(φ

(l)
p (u)/d(l)),

b) φ
(L+1)
d (u) = 1−maxLl=1 φ

(l)
d (u), and

c) φ̄
(l)
d (u) = softmaxL+1

l=1 (φ
(l)
d (u)).

Here, (L+1) indicates the spatial-channel dedicated for

the background. Additionally, a non-differentiable 2D part-

segmentation map (see Fig. 2E) is obtained as,

yp(u, l) = ✶(l = argmaxL+1
l=1 φ̄

(l)
d (u)).

3.2. Self­supervised pose network

The architecture for self-supervised pose and appearance

disentanglement consists of a series of pre-defined differen-

tiable transformations facilitating discovery of a constrained

latent pose representation. As opposed to imposing learn-

ing based constraints [14], we devise a way around where

the 3D pose articulation constraints (i.e. knowledge of joint

connectivity and bone-length) are directly applied via struc-

tural means, implying guaranteed constraint imposition.

a) Encoder network. As shown in Fig. 2A, the encoder

E takes an input image I and outputs three disentangled

factors, a) a set of local 3D vectors: v3D ∈ R
3J , b) camera

parameters: c, and c) a FG appearance: a ∈ R
H×W×Ch.

As compared to spatial 2D geometry [45, 32], discover-

ing the inherent 3D human pose is a highly challenging task

considering the extent of associated non-rigid deformation,

and rigid camera variations [2, 29]. To this end, we define

a canonical coordinate system C, where face-vector of the

skeleton is canonically aligned along the +ve X-axis, thus

making it completely view-invariant. Here, the face-vector

is defined as the perpendicular direction of the plane span-

ning the neck, left-hip and right-hip joints. As shown in

Fig. 2B, in v3D, except the pelvis, neck, left-hip and right-

hip, all other joints are defined at their respective parent rel-

ative local coordinate systems (i.e. parent joint as the origin

with axis directions obtained by performing Gram-Schmidt

orthogonalization of the parent-limb vector and the face-

vector). Accordingly, we define a recursive forward kine-

matic transformation Tfk to obtain the canonical 3D pose

from the local limb vectors, i.e. p3D = Tfk(v
3D), which

accesses a constant array of limb length magnitudes [68].

Here, the camera extrinsics, c (3 rotation angles and 3

restricted translations ensuring that the camera-view cap-

tures all the skeleton joints in p3D) is obtained at the en-

coder output, whereas a fixed perspective camera projec-

tion is applied to obtain the final 2D pose representation,

i.e. q = Tc(p
3D). A part based deformation operation on

this 2D pose q (Sec. 3.1) is shown as p = Ts(q, d
(l)), where

Ts : {S
(l)}Ll=1 and p : {φ

(l)
d }Ll=1 (following the depth aware

operations on φ
(l)
p ). Finally, T denotes the entire series of

differentiable transformations, i.e. Ts ◦ Tc ◦ Tfk, as shown

in Fig. 2A. Here, ◦ denotes composition operation.

b) Decoder network. The decoder takes a concatenated

representation of the FG appearance, a and pose, p as in-

put to obtain two output maps, i) a reconstructed image Î ,
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Figure 3. An overview of data-flow pipelines for the proposed self-supervised objectives. Images close to the output heads show the

network output for the given set of exemplar input tuple. Here, the color of transformation blocks are consistent with Fig. 2A.

and ii) a predicted part segmentation map ŷ via a bifur-

cated CNN decoder (see Fig. 3A). The common decoder

branch, D consists of a series of up-convolutional layers

conditioned on the spatial pose map p at each layer’s input

(i.e. multi-scale pose conditioning). Whereas, DI and Dseg

follow up-convolutional layers to their respective outputs.

3.3. Self­supervised training objectives

The prime design principle of our self-supervised frame-

work is to leverage the interplay between the pose and ap-

pearance information by forming paired input images of ei-

ther consistent pose or appearance.

Given a pair of source and target image, (Is, It), sam-

pled from the same video i.e. with consistent FG appear-

ance, the shared encoder extracts their respective pose and

appearance as (ps, pt) and (as, at) (see Fig. 3A). We denote

the decoder outputs as (Îpt

as
, ŷpt

as
) while the decoder takes in

pose, pt with appearance, as (this notation is consistent in

later sections). Here, Îpt

as
is expected to depict the person

in the target pose pt. Such a cross-pose transfer setup is es-

sential to restrict leakage of pose information through the

appearance. Whereas, the low dimensional bottleneck of

v3D followed by the series of differentiable transformations

prevents leakage of appearance through pose [22].

To effectively operate on wild video frames (i.e. beyond

the in-studio fixed camera setup [45, 22]), we aim to utilize

the pose-aware, spatial part representations as a means to

disentangle the FG from BG. Thus, we plan to reconstruct

Îpt

as
with a constant BG color BGc and segmented FG ap-

pearance (see Fig. 3A). Our idea stems from the concept of

co-saliency detection [64, 18], where the prime goal is to

discover the common or salient FG from a given set of two

or more images. Here, the part appearances belonging to the

model predicted part regions have to be consistent across Is
and It for a successful self-supervised pose discovery.

Access to unpaired 3D/2D pose samples. We denote

p3D
z and qz = Tc(p

3D
z ) as a 3D pose and its projection (via

random camera), sampled from an unpaired 3D pose dataset

Dz , respectively. Such samples can be easily collected with-

out worrying about BG or FG diversity in the correspond-

ing camera feed (i.e. a single person activity). We use these

samples to further constrain the latent space towards realiz-

ing a plausible 3D pose distribution.

a) Image reconstruction objective. Unlike [45, 22], we do

not have access to the corresponding ground-truth represen-

tation for the predicted Îpt

as
, giving rise to an increased pos-

sibility of producing degenerate solutions or mode-collapse.

In such cases, the model focuses on fixed background

regions as the common region between the two images,

specifically for in-studio datasets with limited BG varia-

tions. One way to avoid such scenarios is to select image

pairs with completely diverse BG (i.e. select image pairs

with high L2 distance in a sample video-clip).

To explicitly restrict the model from inculcating such BG

bias, we incorporate content-based regularization. An un-

certain pseudo FG mask is used to establish a one-to-one

correspondence between the reconstructed image Îpt

as
and

the target image It. This is realized through a spatial-mask,

msal which highlights the salient regions (applicable for

any image frame) or regions with diverse motion cues (ap-

plicable for frames captured in a fixed camera). We formu-

late a pseudo (uncertain) reconstruction objective as,

Lu
I = (1− ŷpt

as
(L+ 1) + βmIt

sal)⊗ |Îpt

as
− It|

Here, ⊗ denotes pixel-wise weighing and β is a balanc-

ing hyperparameter. Note that, the final loss is computed as

average over all the spatial locations, u ∈ U . This loss

enforces a self-supervised consistency between the pose-

aware part maps, ŷpt

as
and the salient common FG to facili-

tate a reliable pose estimate.

As a novel direction, we utilize qz ∼ Dz to form a pair

of image predictions (Îpz

as
, Îpz

at
) following simultaneous ap-

pearance invariance and pose equivariance (see Fig. 3B).

Here, a certain reconstruction objective is defined as,

Lc
I = wpz

fg ⊗ |Îpz

as
− Îpz

at
|+ (1− wpz

fg)⊗ |Îpz

as
− BGc|

b) Part-segmentation objective. Aiming to form a consis-

tency between the true pose pz and the corresponding part

segmentation output, we formulate,

Lseg = (1− wunc)⊗ CE(ŷpz

as
, ypz ) + wunc ⊗ SE(ŷpz

as
)

Here, CE, and SE denote the pixel-wise cross-entropy

and self-entropy respectively. Moreover, we confidently en-

force segmentation loss with respect to one-hot map ypz

(Sec. 3.1) only at the certain regions, while minimizing the
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Shanon’s entropy for the regions associated with shape un-

certainty as captured inwunc. Here, the limb depth required

to compute ypz is obtained from p̂3D
z = Ep(Î

pz

as
) (Fig. 3C).

In summary, the above self-supervised objectives form a

consistency among p, ŷ, and Î;

a) Lu
I enforces consistency between ŷ and Î ,

b) Lc
I enforces consistency between p (via wfg) and Î ,

c) Lseg enforces consistency between p (via ypz ) and ŷ.

However, the model inculcates a discrepancy between

the predicted pose and the true pose distributions. It is es-

sential to bridge this discrepancy as Lc
I and Lseg rely on

true pose qz = Tc(p
3D
z ), whereas Lu

I relies on the predicted

pose qt. Thus, we employ an adaptation strategy to guide

the model towards realizing a plausible pose prediction.

c) Adaptation via energy minimization. Instead of em-

ploying an ad-hoc adversarial discriminator [7, 62], we de-

vise a simpler yet effective decoupled energy minimization

strategy [16, 21]. We avoid a direct encoder-decoder in-

teraction during gradient back-propagation, by updating the

encoder parameters, while freezing the decoder parameters

and vice-versa. However, this is performed while enforcing

a reconstruction loss at the output of the secondary encoder

in a cyclic auto-encoding scenario (see Fig. 3C). The two

energy functions are formulated as Lp3D
z

= |p3D
z − p̂3D

z | and

Las
= |as − âs|, where p̂3D

z = Ep(Î
pz

as
) and âs = Ea(Î

pz

as
).

The decoder parameters are updated to realize a faith-

ful Îpz

as
, as the frozen encoder expects Îpz

as
to match its in-

put distribution of real images (i.e. Is) for an effective en-

ergy minimization. Here, the encoder can be perceived as a

frozen energy network as used in energy-based GAN [66].

A similar analogy applies while updating the encoder pa-

rameters with gradients from the frozen decoder. Each al-

ternate energy minimization step is preceded by an over-

all optimization of the above consistency objectives, where

both encoder and decoder parameters are updated simulta-

neously (see Algo. 1).

θE : Trainable parameters of the Encoder E
θD: Trainable parameters of the Decoder

(includes D, DI , and Dseg)

for iter < MaxIter do

if iter (mod 2) 6= 0 then
Update θE by optimizing Lp3D

z
and Las

in

separate Adagrad optimizers on frozen θD.

else
Update θD by optimizing Lp3D

z
and Las

in

separate Adagrad optimizers on frozen θE .

end

Update (θE , θD) by optimizing Lu
I , Lc

I , and

Lseg in separate Adagrad optimizers.

end

Algorithm 1: Self-supervised learning with the pro-

posed adaptation via decoupled energy minimization.

4. Experiments

We perform a thorough experimental analysis to estab-

lish the effectiveness of our proposed framework on 3D

pose estimation, part segmentation and novel image synthe-

sis tasks, across several datasets beyond the in-studio setup.

Implementation details. We employ an ImageNet trained

Resnet-50 architecture [17] as the base CNN for the encoder

E. We first bifurcate it into two CNN branches dedicated to

pose and appearance, then the pose branch is further bifur-

cated into two multi-layer fully-connected networks to ob-

tain the local pose vectors v3D and the camera parameters

c. While training, we use separate AdaGrad optimizers [12]

for each loss term at alternate training iterations. We per-

form appearance (color-jittering) and pose augmentations

(mirror flip and inplane rotation) selectively for It and Is
conceding their invariance effect on pt and as respectively.

Datasets. We train the base-model on image pairs sampled

from a mixed set of video datasets i.e. Human3.6M [20]

(H3.6M) and an in-house collection of in-the-wild YouTube

videos (YTube). As opposed to the in-studio H3.6M im-

ages, the YTube dataset constitutes a substantial diversity

in apparels, action categories (dance forms, parkour stunts,

etc.), background variations, and camera movements. The

raw video frames are pruned to form the suitable image

pairs after passing them through an off-the-shelf person-

detector [44]. We utilize an unsupervised saliency detec-

tion method [70] to obtain msal for the wild YTube frames,

whereas for samples from H3.6M msal is obtained directly

through the BG estimate [45]. Further, LSP [31] and MPI-

INF-3DHP [36] (3DHP) datasets are used to evaluate gen-

eralizability of our framework. We collect the unpaired 3D

pose samples, qz from MADS [65] and CMU-MoCap [1]

dataset keeping a clear domain gap with respect to the stan-

dard datasets chosen for benchmarking our performance.

4.1. Evaluation on Human3.6M

Inline with the prior arts [7, 45], we evaluate our 3D pose

estimation performance in the standard protocol-II setting

(i.e. with scaling and rigid alignment). We experimented on

4 different variants of the proposed framework with increas-

ing degrees of supervision levels. The base model in ab-

sence of any paired supervision is regarded as Ours(unsup).

In presence of multi-view information (with camera extrin-

sics), we finetune the model by enforcing consistent canon-

ical pose p3D and camera shift for multi-view image pairs,

termed as Ours(multi-view-sup). Similarly, finetuning in

presence of a direct supervision on the corresponding 2D

pose GT is regarded as Ours(weakly-sup). Lastly, finetun-

ing in presence of a direct 3D pose supervision on 10% of

the full training set is referred to as Ours(semi-sup). Table 2

depicts our superior performance against the prior arts in

their respective supervision levels.
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Table 2. Comparison of 3D pose estimation results on Hu-

man3.6M. Comparable metrics of fully-supervised methods are

included for reference. Our approach achieves state-of-the art per-

formance while brought to the same supervision-level (divided by

horizontal lines) of Full-2D (row no. 4-8) or Mutli-view (row

no. 9-10). Moreover, Ours(semi-sup) achieves comparable per-

formance against the prior fully supervised approaches.

No. Protocol-II Supervision Avg. MPJPE(↓)

1. Zhou et al. [69] Full-3D 106.7

2. Chen et al. [6] Full-3D 82.7

3. Martinez et al. [35] Full-3D 52.1

4. Wu et al. [60] Full-2D 98.4

5. Tung et al. [57] Full-2D 97.2

6. Chen et al. [7] Full-2D 68.0

7. Wandt et al. [59] Full-2D 65.1

8. Ours(weakly-sup) Full-2D 62.4

9. Rhodin et al. [45] Multi-view 98.2

10. Ours(multi-view-sup) Multi-view 85.8

11. Ours(unsup) No sup. 99.2

12. Ours(semi-sup) 10%-3D 50.8

Table 3. Ablation analysis, highlighting importance of various

constraints and regularization in the proposed self-supervised 3D

pose estimation framework. (Qualitative results in Fig. 5B)

Method

(unsup.)

MPJPE(↓) on

Human3.6M

3DPCK(↑) on

MPI-3DHP

Ours(unsup) w/o Tfk ◦ Tc 126.8 51.7

Ours(unsup) w/o qz ∼ Dz 178.9 40.3

Ours(unsup) w/o msal 189.4 35.7

Ours(unsup) 99.2 77.4

4.2. Evaluation on MPI­INF­3DHP

With our framework, we also demonstrate a higher

level of cross-dataset generalization, thereby minimizing

the need for finetuning on novel unseen datasets. The care-

fully devised constraints at the intermediate pose repre-

sentation are expected to restrict the model from produc-

ing implausible poses even when tested in unseen environ-

ments. To evaluate this, we directly pass samples of MPI-

INF-3DHP [36] (3DHP) test-set through Ours(weakly-sup)

model trained on YTube+H3.6M and refer it as unsuper-

vised transfer, denoted as -3DHP in Table 4. Further, we

finetune the Ours(weakly-sup) on 3DHP dataset at three su-

pervision levels, a) no supervision, b) full 2D pose supervi-

sion, and c) 10% 3D pose supervision as reported in Table 4,

at rows 10, 7, and 11 respectively. The reported metrics

clearly highlight our superiority against the prior arts.

4.3. Ablation study

We evaluate the effectiveness of the proposed local vec-

tor representation followed by the forward kinematic trans-

formations, against a direct estimation of the 3D joints in

camera coordinate system in the presence of appropriate

bone length constraints [7]. As reported in Table 3, our dis-

entanglement of camera from the view-invariant canonical

Table 4. 3D pose estimation on 3DHP. Here, 2nd column denotes

whether the approach uses 3DHP samples (paired or unpaired)

while training. And the 3rd column specifies the supervision level.
No. Method Trainset 3DHP Sup. PCK (↑) AUC (↑) MPJPE (↓)

1. Mehta et al. [38] +3DHP Full-3D 76.6 40.4 124.7

2. Rogez et al. [48] +3DHP Full-3D 59.6 27.6 158.4

3. Zhou et al. [67] +3DHP Full-2D 69.2 32.5 137.1

4. HMR [24] +3DHP Full-2D 77.1 40.7 113.2

5. Yang et al. [62] +3DHP Full-2D 69.0 32.0 -

6. Chen et al. [7] +3DHP Full-2D 71.7 36.3 -

7. Ours(weakly-sup) +3DHP Full-2D 84.6 60.8 93.9

8. Chen et al. [7] -3DHP - 64.3 31.6 -

9. Ours(weakly-sup) -3DHP - 82.1 56.3 103.8

10. Ours(weakly-sup) +3DHP No sup. 83.2 58.7 97.6

11. Ours(semi-sup) +3DHP 10%-3D 86.3 62.0 74.1
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Figure 4. 3D pose estimation on H3.6M as a function of the

amount of training supervision. Ours(semi-sup) shows faster

transferability as compared to the fully supervised counterpart.

pose shows a clear superiority as a result of using the 3D

pose articulation constraints in the most fundamental form.

Besides this, we also perform ablations by removing qz or

msal from the unsupervised training pipeline. As shown in

Fig. 5B, without qz the model predicts implausible part ar-

rangements even while maintaining a roughly consistent FG

silhouette segmentation. However, withoutmsal, the model

renders a plausible pose on the BG area common between

the image pairs, as a degenerate solution.

As an ablation of the semi-supervised setting, (see

Fig. 4), we train the proposed framework on progressively

increasing amount of 3D pose supervision alongside the un-

supervised learning objective. Further, we perform the same

for the Encoder network without the unsupervised objec-

tives (thus, discarding the decoder networks) and term it as

Encoder(Only-3D-sup). The plots in Fig. 4 clearly highlight

our reduced dependency on the supervised data implying

graceful and faster transferability.

4.4. Evaluation of part segmentation

For evaluation of part-segmentation, we standardize the

ground-truth part conventions across both LSP [23] and

H3.6M datasets via SMPL model fitting [58, 31]. This con-

vention roughly aligns with the part-puppet model used in

Fig. 2C, thereby maintaining a consistent part to joint asso-

ciation. Note that, wunc is supposed to account for the am-

biguity between the puppet-based shape-unaware segmen-

6158



View
 syn.

B. 

A. H36M, in-studio dataset B. On YTube, in-the-wild dataset
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Figure 5. A. Novel image synthesis via latent manipulation of a, p and c. It also shows the effect of independent non-rigid (pose-transfer)

and rigid (view-syn.) variations as a result of explicit disentanglement. Notice the corresponding shape-unaware (puppet deformation) and

shape-aware part-segmentation results. B. Qualitative analysis of ablations showing importance of qz and msal (refer Sec. 4.3).

A. Results on H36M dataset (in-studio)

C. Results on LSP dataset (unseen, in-the-wild samples)

E. Results on 3DHP

D. Results on YTube dataset (in-the-wild)

B. Results on 3DPW dataset (unseen, in-the-wild samples)

Figure 6. Qualitative results on 5 different datasets. Failure cases are highlighted in magenta which specifically occur in presence of

multi-level inter-limb occlusion (see LSP failure case) and very rare, athletic poses (see YTube failure case). However, the model faithfully

attends to single-level occlusions, enabled by the depth-aware part representation.

Table 5. Segmentation results on F1 metric (↑) for LSP dataset.
Method Pose Sup. FG vs BG FG Parts

SMPLify [4] Full-2D + SMPL-fitting 0.88 0.64

HMR [24] Full-2D + SMPL-fitting 0.86 0.59

Ours(weakly-sup) Full-2D (no SMPL) 0.84 0.56

Ours(unsup) No sup. (no SMPL) 0.78 0.47

tation against the image dependent shape-aware segmenta-

tion. In Fig. 5A, we show the effectiveness of this design

choice, where the shape-unaware segmentation is obtained

at yp after depth-based part ordering, and the corresponding

shape-aware segmentation is obtained at ŷ output. Further,

quantitative comparison of part segmentation is reported in

Table 5. We achieve comparable results against the prior

arts, in absence of additional supervision.

4.5. Qualitative results

To evaluate the effectiveness of the disentangled factors

beyond the intended primary task of 3D pose estimation

and part segmentation, we manipulate them to analyze their

effect on the decoder synthesized output image. In pose-

transfer, pose obtained from an image is transferred to the

appearance of another. However, in view-syn., we randomly

vary the camera extrinsic values in c. The results shown

in Fig. 5A are obtained from Ours(unsup) model, which is

trained on the mixed YTube+H3.6 dataset. This demon-

strates the clear disentanglement of pose and appearance.

Fig. 6 depicts qualitative results for the primary 3D pose

estimation and part segmentation tasks using Ours(weakly-

sup) model as introduced in Sec. 4.1. In Fig. 6B, we show

results on the unseen LSP dataset, where the model has not

seen this dataset even during self-supervised training. A

consistent performance on such unseen dataset further es-

tablishes generalizability of the proposed framework.

5. Conclusion

We proposed a self-supervised 3D pose estimation

method that disentangles the inherent factors of variations

via part guided human image synthesis. Our framework

has two prominent traits. First, effective imposition of both

human 3D pose articulation and joint-part association con-

straint via structural means. Second, usage of depth-aware

part based representation to specifically attend to the FG hu-

man resulting in robustness to changing backgrounds. How-

ever, extending such a framework for multi-person or par-

tially visible human scenarios remains an open challenge.
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