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Abstract

Object detection is an essential step towards holistic

scene understanding. Most existing object detection algo-

rithms attend to certain object areas once and then pre-

dict the object locations. However, neuroscientists have re-

vealed that humans do not look at the scene in fixed steadi-

ness. Instead, human eyes move around, locating informa-

tive parts to understand the object location. This active per-

ceiving movement process is called saccade.

Inspired by such mechanism, we propose a fast and ac-

curate object detector called SaccadeNet. It contains four

main modules, the Center Attentive Module, the Corner At-

tentive Module, the Attention Transitive Module, and the

Aggregation Attentive Module, which allows it to attend to

different informative object keypoints, and predict object

locations from coarse to fine. The Corner Attentive Mod-

ule is used only during training to extract more informative

corner features which brings free-lunch performance boost.

On the MS COCO dataset, we achieve the performance of

40.4% mAP at 28 FPS and 30.5% mAP at 118 FPS. Among

all the real-time object detectors, our SaccadeNet achieves

the best detection performance, which demonstrates the ef-

fectiveness of the proposed detection mechanism.

1. Introduction

The human visual system is accurate and fast. As the

first gate to perceive the physical world, our visual sys-

tem glances at a scene and immediately understands what

objects are there and where they are. This efficient and

effective vision system enables human to perceive the vi-

sual world with little conscious thought. In machine in-

telligence, similarly a fast and accurate object detector is

essential, which can allow machines to perceive the physi-

cal world efficiently and effectively, and unlock subsequent

processes such as understanding the holistic scene and in-

teracting within it.

∗This work was done when Shiyi Lan was a research intern at Wormpex

AI Research.
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Figure 1. Performance comparison on COCO test-dev. Sacca-

deNet outperforms all previous fast detectors [31, 16, 1, 22]. Best

viewed in color.

Many recent algorithms have been proposed to advance

object detection. On the one hand, anchor-based methods

[24, 23, 16, 18, 7] proposed to pre-define a large amount

of anchor locations, and then either directly regress object

bounding box locations, or generate region proposals based

on anchors and decide whether each region contains a cer-

tain object category. These methods usually achieve com-

petitive performance since they aggregate detailed image

features within each region. However, the time-consuming

region proposal stage is an bottleneck of inference speed.

On the other hand, researchers proposed anchor-free de-

tectors [13, 32, 5, 31]. This type of methods proposed to

directly regress object locations by utilizing features at cer-

tain pre-defined object keypoints, either in the object center

or on the bounding box edges. Most edge keypoints based

methods are not fast because of the time-consuming group-

ing process that combines multiple detected keypoints to

form a single object bounding box. The recent proposed

center keypoint based detectors [31] avoid the complex
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grouping process and run much faster.

Most existing object detection algorithms steadily attend

to certain object areas only once and then predict the ob-

ject locations. During this one time of scanning for objects,

different algorithms attend to different areas, either to the

anchor boxes, to the proposed object regions, to the center

keypoint, or to the edge keypoints. However, neuroscien-

tists have revealed that [4], to understand an object’s loca-

tion, human do not look at the scene steadily. Instead, our

eyes move around, locating informative parts to understand

the object location.

Inspired by such mechanism, we propose a fast and accu-

rate object detector, named SaccadeNet, which effectively

attends to informative object keypoints, and predicts object

locations from coarse to fine. Our SaccadeNet contains four

main modules: the Center Attentive Module, the Corner At-

tentive Module, the Attention Transitive Module, and the

Aggregation Attentive Module. The Center Attentive Mod-

ule predicts the object center location and category. Mean-

while, for each predicted object center, Attention Transitive

Module is used to predict the rough location of correspond-

ing bounding box corners. To extract informative corner

features, the Corner Attentive Module is used to enforce

the CNN backbone to pay more attention to object bound-

aries, so that the regressed bounding boxes are more accu-

rate. Finally, the Aggregation Attentive Module utilizes the

features aggregated from both the center and the corners to

refine the object bounding boxes.

SaccadeNet adopts multiple object keypoints including

the center point and the corners, which encode and extract

multiple levels of rich-detailed objects features. Moreover,

it barely has speed loss comparing to the fastest center key-

point based detectors, since we predict object center and its

corresponding corners jointly. Thus we do not need a group-

ing algorithm to combine them. Extensive experiments on

the PASCAL VOC and MS COCO datasets have shown that

SaccadeNet is fast and accurate. As shown in Figure 1, on

COCO dataset when using ResNet-18 [9, 34] as the back-

bone SaccadeNet achieves mAP of 30.5% at 118 FPS. With

DLA-34 [28], SaccadeNet achieves 40.4% mAP at 28 FPS,

which is much better than other real-time detectors [22, 31].

2. Related Work

Modern object detectors can be roughly divided into two

categories: anchor-based object detectors and anchor-free

object detectors.

2.1. Anchor­based Detectors

After the seminal work of Faster R-CNN [24], anchors

have been widely used in modern detectors. It usually con-

tains two stages. The first-stage module is a region proposal

network (RPN), which estimates the objectness probabili-

ties of all anchors and regresses the offsets between object

boundaries and anchors. The second stage is R-CNN, which

predicts the category probability and refines the boundary of

bounding box.

Recently, anchor-based one-stage approaches [23, 16,

18, 7, 30, 29] have drawn much attention in object detection

because the architectures are simpler and usually run faster

[23]. They remove the RPN and directly predict the cate-

gories and regress the boxes of candidate anchors. How-

ever, the performance of anchor-based one-stage detectors

are usually lower than multi-stage detectors due to the ex-

treme imbalance between positive and negative anchors dur-

ing training.

2.2. Anchor­free Detectors

Recently, anchor-free detectors have become more and

more popular [10, 22, 33, 26, 12, 19, 31, 13, 5, 32, 27].

They avoid the complex design of anchors and usually run

faster. The object detection is usually formulated as a key-

point detection problem so that the techniques of fully con-

volutional network (FCN) used in semantic segmentation

[20] and pose estimation [21] can be applied for detection

[31].

YOLOv1 [22] is one of the most popular anchor-free de-

tectors. On each location of final layer of network, it pre-

dicts the bounding box, confidence of the box, and the class

probability. In DenseBox [10], Huang et.al extend the FCN

[20] for face and car detection. The ground truth is a 5-

channel map where the first one is a binary mask for the

center of object and the other four are for the bounding box

size.

After the seminal work of CornerNet [13], keypoint

based anchor-free object detectors have drawn much at-

tention. In CornerNet, the FCN directly predicts the corner

heatmap, an embedding and a group of offsets for each cor-

ner. The embeddings are used to group the pairs of corner to

form bounding boxes and the offsets remap the corners from

low-resolutional heatmap to the high-resolutional input im-

age. A corner pooling layer is proposed to better localize

corners. ExtremeNet [32] introduces a method that predicts

the extreme points instead of the corners of bounding box,

and the centerness heatmap is introduced for grouping step.

In [5], Duan et.al. extend CornerNet by adding a center

keypoint. The center keypoint is used to define a central re-

gion heuristically and then they use this region to refine the

grouped corners.

To avoid the complex grouping process, CenterNet [31]

directly predicts the center keypoint and the size of ob-

ject. Furthermore, it replaces IoU-based Non-Maximum

Suppression (NMS) by peak keypoint extraction which can

be run on GPU to reduce inference time. In [26] centerness

is used to represent the objectiveness of the bounding box

predicted at each location. In RepPoints [2], a set of sam-

ple points is learned to bound the spatial extent of an object
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Figure 2. In SaccadeNet, we utilize 5 keypoints as informative parts for detection: the object center and 4 bounding box corners. After the

CNN backbone, as in the middle branch, the Center Attentive Module focuses at predicting the object center keypoint; then the Attention

Transitive Module in the bottom switches the attention from object center to estimate rough location of object corners. After that, the

Aggregation Attentive Module uses information aggregated from both center and corner keypoints, and predicts a refined location of

objects. Moreover, in order to obtain informative corner features, the Corner Attentive Module is used (in training only) to enforce the

CNN backbone to pay more attention to object boundaries, as shown in the top branch.

under the keypoint prediction framework.

3. SaccadeNet

It has been discovered that human eyes pick up infor-

mative parts to understand object locations instead of look-

ing at every detail of objects [4], which makes it fast and

accurate. To balance the trade-off between speed and ac-

curacy, on top of the object center point, we use four ob-

ject bounding box corner points as the informative key-

points in SaccadeNet since it naturally defines the bound-

ing box position. SaccadeNet attends to these informative

keypoints sequentially and then aggregates their features

to infer accurate object locations. In this section, we will

introduce four main modules of SaccadeNet respectively:

the Center Attentive Module (Center-Attn), the Attention

Transitive Module (Attn-Trans), the Aggregation Attentive

Module (Aggregation-Attn), and the Corner Attentive Mod-

ule (Corner-Attn) used in training.

3.1. Center Attentive Module

Center-Attn provides SaccadeNet the first sight of an ob-

ject at its center and predicts object center keypoints. It

takes the feature from CNN backbone as input and predicts

the centerness heatmap. The centerness heatmap is used

to estimate the categories and the center locations of all

objects in the image. The number of channels in center-

ness heatmap is the number of categories. Figure 2 shows

Center-Attn together with its output. In Center-Attn, it con-

tains 2 convolutional layers. This 2-convolutional structure

is called head module. It is a basic component for building

other modules of SaccadeNet. We will describe it in details

in Section 4.

We use the Gaussian heatmap as ground truth [13]. The

ground-truth heatmap for keypoints is not defined as either

0 or 1 because locations near the target keypoint should

get less penalization than locations far away. Suppose the

keypoint is at location Xk, the value at location X on the

ground-truth heatmap is defined as e
‖X−Xk‖2

2σ2 . σ is set to

1/3 of the radius, which is determined by the size of objects

to ensure that all locations inside the area could generate a

bounding box with at least t IoU with the ground-truth an-

notations. We follow the previous work [13, 5, 31] and set

t as 0.3.

Besides, a variant of focal loss [16] is applied to assist

the Gaussian heatmap:

Lhm
i,j =

{

(1− pi,j)
α log(pi,j), if yi,j = 1

(1− yi,j)
β(pi,j)

αlog(1− pi,j) otherwise

where pi,j is the score at location (i, j) of heatmap and yi,j
is the corresponding ground truth value.

3.2. Attention Transitive Module

Attn-Transpredicts the corners for all locations of the

deep feature map. The output shape is wf × hf × 2 for

a single image, where wf , hf indicate the width and the

height of feature map, respectively. The last dimension is

designed to be 2 meaning the width and height of the bound-

ing box. After we get the width and height of bounding box

for each center at location (i, j), we can compute the corre-

sponding corners as (i−wi,j/2, j−hi,j/2), (i−wi,j/2, j+
hi,j/2), (i + wi,j/2, j − hi,j/2), (i + wi,j/2, j + hi,j/2).
In training, we adopt the L1 regression loss. With Center-

Attn and Attn-Trans, SaccadeNet can generate object detec-

tions with coarse boundary.

3.3. Aggregation Attentive Module

Aggregation-Attn is proposed to attend to object center

and bounding box corners again to predict a refined loca-
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tion. As shown in Figure 2, it aggregates CNN features from

corner and center keypoints using bilinear interpolation and

outputs more accurate object bounding boxes. As shown in

the experiments Section 4.3.1, Aggregation-Attn is essen-

tial for us to obtain more accurate boundary.

Aggregation-Attn is a light-weight module for object

boundary refinement. Let wi,j , hi,j indicate the width

and height prediction at (i, j). Then, we calculate the

corresponding top-left, top-right, bottom-left, bottom-right

corners centering at position (i, j) by (i − wi,j/2, j −

hi,j/2), (i+wi,j/2, j−hi,j/2), (i−wi,j/2, j+hi,j/2), (i+
wi,j/2, j + hi,j/2). Since previous work [8] shows that bi-

linear sampling is helpful for the downsampled feature map,

Aggregation-Attn takes the corners and center from the out-

put of Attn-Trans, Center-Attn and samples features from

the backbone output by bilinear interpolation. The structure

of Aggregation-Attn is a revised head module. We change

the input of the first convolutional layer and let it take fea-

tures of center and corners of object as input.

Finally, Aggregation-Attn regresses the residual offsets

to refine the boundary of objects by incorporating both the

features from the corners and the center. The output of

Aggregation-Attn consists of residual width and residual

height. We adopt L1 loss to train this module.

3.4. Corner Attentive Module in Training

To extract informative corner features, we propose an

auxiliary Corner-Attn branch (only in training) to enforce

the CNN backbone to learn discriminative corner features.

As shown in Figure 2, Corner-Attn uses one head module

to process feature and output 4-channel heatmap including

top-left, top-right, bottom-left, bottom-right corners. Note

that this branch is used only during training so that it is a

free lunch for the increased inference accuracy.

The training of Corner-Attn is also based on the focal

loss and Gaussian heatmap. We tried agnostic and non-

agnostic heatmaps, meaning whether different object cat-

egories share the same corner heatmap output or not. In

our experiments, there is no significant difference between

their performance. For shorter training time and easier im-

plementation, we use agnostic heatmaps for Corner-Attn in

our experiments.

3.5. Relation to existing methods

We will compare our work with other related work to

address one of our contributions: SaccadeNet solves the is-

sue of lacking holistic perception existed in edge-keypoint-

based detectors and the issue of missing local details pre-

sented in center-keypoint-based detectors.

Edge-keypoint-based detectors infer objects by assem-

bling edge-keypoints, like corners [13] or extreme key-

points [32]. They first predict edge keypoints and then

use the grouping algorithm to generate object proposals.

There are two possible problems that may make corner-

keypoint-based fail to model holistic information: (a) Fea-

ture of corner encodes less holistic information since most

corner-keypoint-based detectors [32, 5] still need feature of

centers to assemble corner keypoints. (b) Corner keypoints

often locate at background pixels which may encode less in-

formation than center keypoints do. Although SaccadeNet

also utilizes corner keypoints for bounding box estimation,

it is still able to capture holistic by inferring bounding boxes

directly from center keypoints. Meanwhile, SaccadeNet is

very fast since it avoids the time-consuming grouping.

Center-keypoint-based detectors propose objects from

center points [31]. It outputs center heatmap and regresses

boundary directly. However, center point may be far from

the boundary of object so they may fail to estimate accurate

boundary on some cases, especially for the large objects (as

shown in Figure 3). On the other hand, corner keypoints are

naturally proximal to the boundaries, so it may encode more

local accurate information. Lack of modeling corners may

be harmful for the center-keypoint-based detectors. There-

fore, SaccadeNet utilizes corner keypoints to alleviate this

issue so that it can estimate more accurate boundary.

SaccadeNet bridges the gap between edge-keypoint-

based detectors and center-keypoint-based detectors.

4. Experiments

The experiments are conducted on 2 datasets, PASCAL

VOC 2012 [6] and MS COCO [17]. MS COCO dataset

contains 80 categories, including 105k images for training

(train2017) and 5k images for validation (val2017). Pascal

VOC consists of 20 categories and it contains a training set

of 17k images and a validation set of 5k images. This setting

is the same as previous work [13, 5, 8, 31].

4.1. Implementation

Backbone. Our backbone consists of down-sampling

layers and up-sampling layers. The down-sampling layers

are from the CNN for image recognition, e.g. [28, 9]. The

up-sampling layers use a couple of convolutional layers and

skip connections to fuse high-level and low-level feature,

e.g. [15]. We choose DLA-34 [28] and ResNet-18 [9] as

the down-sampling backbone and use the up-sampling lay-

ers adopted in CenterNet [31], where deformable convolu-

tions [34] are used. The size of the backbone output is 1/4

of the input. The high-resolution output help SaccadeNet

recognize and locate small objects. For fair comparison and

to illustrate the effectiveness of SaccadeNet, we keep all the

settings of backbone the same as [31].

Head module. The head module is the basic compo-

nent of building four modules of SaccadeNet as illustrated

in Figure 2. We use the unified structure of 2 convolu-

tional layers for all the head modules. The first convo-

lutional layer is followed by a ReLU layer with a kernel
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size of 3× 3 and 256-dimension output channels. The sec-

ond convolutional layer uses a 1 × 1 kernel without activa-

tion function. Center-Attn contains one head module. The

number of output channels of this module depends on the

number of categories, e.g. 20 for Pascal VOC, 80 for MS

COCO. Corner-Attn contains one head module which out-

puts a 4-channel heatmap representing the agnostic heatmap

of 4 corner keypoints. Corner-Attn contains 2 head mod-

ules with 2-channel output, indicating the two directional

center offset and the width and height of object, respec-

tively. Aggregation-Attn contains one module with output

of 2 channels denoting the residual offsets of width and

height of object. The number of parameters of each head

module is less than 200k.

Training. Our experiments were conducted on a ma-

chine with 4 GPUs of Geforce RTX 2080 Ti. It takes

10 days to train SaccadeNet-DLA34 and 5 days to train

SaccadeNet-Res18. We use Adam [11] for network op-

timization. For data augmentation, we apply random flip-

ping, random scaling (range from 0.6 to 1.3), cropping and

color jittering. On MS COCO dataset, the size of input

to the network is 512 × 512. We use a batch size of 32

(8 images on each GPU) with the initial learning rate of

1.25 × 10−4 for 210 epochs. The learning rate is dropped

to 1.25 × 10−5 at the 181-th epoch. The same training set-

tings are used for CenterNet [31]. We use different loss

weights for the losses. The loss weights for LCorner−Attn,

LCenter−Attn and LAggregation−Attn are 1, 1, 0.1, respec-

tively. Corner-Attn outputs center offsets and the center-

corner offsets. We use 0.1 for the loss weight of center-

corner offsets and 1 for the loss weight of center offsets.

On PASCAL VOC 2012, we use a batch size of 32 on sin-

gle GPU for training and the input shape of the network is

384×384. We set the initial learning rate to 1.25×10−4 for

70 epochs. The learning rate is decreased to 1.25 × 10−5,

1.25 × 10−6 at the 46-th epoch, 61-th epoch, respectively.

All the other settings are kept the same as our experiments

on MS COCO dataset for training. We use the parameters

pretrained on ImageNet [3] dataset to initialize the down-

sampling layers. The parameters of up-sampling layers of

backbone and head modules are randomly initialized.

Inference. On MS COCO dataset, the size of input im-

age is 512× 512. Flipped testing is optional for better per-

formance. When the flipped and the original images are

both used as inputs, we average the outputs of Center-Attn,

Corner-Attn, Aggregation-Attn. For higher speed, we use

peak-picking NMS proposed in [31] instead of IoU-based

NMS for post-processing. Peak-picking NMS is a 3 × 3
pooling-like operator, which eliminates all non-peak activa-

tion. After NMS, we select the object proposals with top-

100 centerness scores provided by Center-Attn. For Pascal

VOC, we do not apply data augmentation for testing. We

use Peak-picking NMS instead of IoU-based NMS.

4.2. Comparison with State­of­the­art Methods

Table 1 shows the comparison results of our approaches

with previous work. SaccadeNet achieves state-of-the-art

performance with higher speed.

SaccadeNet-DLA34 achieves 40.4 mAP at 28 FPS. It

outperforms CenterNet-DLA34 [31] by 1.2% AP without

visible speed loss due to the light-weight head modules.

Besides, our approach outperforms the classic two-stage

detector, MaskRCNN [8]. Meanwhile, we achieve ap-

proximately 3 times speed of it. Compared with Reti-

naNet [16], SaccadeNet-DLA34 performs approximately 4

times faster with only 0.4% drop in accuracy. As shown

in Table 1, SaccadeNet-DLA34 is faster and much more

accurate than YOLOv3 [23]. We compare the results of

SaccadeNet-DLA34 and CenterNet-DLA34 [31] with dif-

ferent IoU thresholds and of different sizes. The aver-

age precision gains +0.5, +0.7 of IoU@0.5, IoU@0.7 and

gains +0.5, +0.8, +1.4 of objects with small, medium,

large size, respectively. SaccadeNet benefits more for high-

IoU and large object proposals than others. We will study

how Aggregation-Attn and Corner-Attn affect the object

proposals of different quality and various size in Section

4.3.1. Figure 3 shows the qualitative results of SaccadeNet

and CenterNet. With the help of Aggregation-Attn, Sacca-

deNet is able to locate more accurate boundaries of objects.

Another version of our approach is based on ResNet-

18 with deformable convolutions. SaccadeNet-Res18 is the

first real-time anchor-free detector that achieves more than

30% mAP on MS COCO val2017 with speed faster than

100 FPS.

4.2.1 Efficiency Study

We will discuss 4 main factors of efficiency: backbone,

head modules, data augmentation, non-maximum suppres-

sion.

Backbone. We use DLA-34 [28] and ResNet-18 [9]

with additional up-sampling layers used in CenterNet [31]

as backbone. DLA-34 runs at 18.4 ms per image. ResNet-

18 runs at 6.8 ms per image. The total inference time of

SaccadeNet with DLA-34 and ResNet-18 is 20 ms, 8.5 ms

per image, respectively. The efficiency of backbone is the

major bottleneck of speed.

Head modules. There are 64×256×3×3+256×Cout

parameters for each head module, where Cout denotes the

number of output channels. There are only 3 head modules

during inference. The largest head module is the predic-

tor of Center-Attn, which only contains 168k parameters.

The only concern is that the inputs of Aggregation-Attn de-

pend on the outputs of Center-Attn and Corner-Attn. It may

cause sequential execution that may increase the inference

time. Fortunately, the execution turns out to be very fast.

The inference time of all the head modules is much smaller
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Backbone FPS AP AP50 AP75 APS APM APL

TridentNet [14] ResNet-101-DCN 0.7 48.4 69.7 53.5 31.8 51.3 60.3

SNIPER [25] DPN-98 2.5 46.1 67.0 51.6 29.6 48.9 58.1

MaskRCNN [8] ResNeXt-101 11 39.8 62.3 43.4 22.1 43.2 51.2

RetinaNet [16] ResNeXt-101-FPN 5.4 40.8 61.1 44.1 24.1 44.2 51.2

YOLOv3 [23] DarkNet-53 20 33.0 57.9 34.4 18.3 25.4 41.9

HSD [1] ResNet101 21 40.2 58.2 44.0 20.0 44.4 54.9

HSD [1] VGG16 23 38.8 58.2 42.5 21.8 41.9 50.2

ExtremeNet [32] Hourglass-104 3.1 40.2 55.5 43.2 20.4 43.2 53.1

CornerNet [13] Hourglass-104 4.1 40.5 56.5 43.1 19.4 42.7 53.9

CenterNet [31] DLA-34-DCN 52/28 37.4/39.2 -/57.1 -/42.8 -/19.9 -/43.0 -/51.4
∗CenterNet [31] ResNet-18-DCN 142/71 28.1/30.0 44.9/47.5 29.6/31.6 -/- -/- -/-

SaccadeNet DLA-34-DCN 50/28 38.5/40.4 55.6/57.6 41.4/43.5 19.2/20.4 42.1/43.8 50.6/52.8
∗SaccadeNet ResNet-18-DCN 118/67 30.5/32.5 46.7/48.9 32.6/34.7 12.0/13.9 33.9/36.2 45.8/47.9

Table 1. The experiments are conducted on MS COCO test-dev. SaccadeNet-DLA outperforms CenterNet-DLA by 1.2% mAP with little

overhead. This is the first detector that achieves more than 40% mmAP on MS COCO test-dev with more than 25 FPS. SaccadeNet-Res18

outperforms CenterNet-Res18 by 2.4% mAP with small overhead. We show naive/flip testing results of CenterNet and SaccadeNet. A

dash indicates the method doesn’t provide the result. ∗ means the experiments are conducted on MS COCO val2017.

SaccadeNet

a

CenterNet [31]

Figure 3. Qualitative Results of SaccadeNet and CenterNet [31]. The images on the left 3 columns are the results of SaccadeNet-DLA34.

The right column includes the results of CenterNet-DLA34[31]. Best viewed in color.

than the backbone, which only cost 1.5 ms and 1.6 ms for

SaccadeNet-DLA34 and SaccadeNet-Res18. The perfor-

mance of SaccadeNet with and without Aggregation-Attn is

illustrated in Table 3. Obviously, Aggregation-Attn is im-

portant for the performance improvement.

Data augmentation. For better performance, we feed

the network with both the flipped image and the origi-

nal image. Although this technique will double the infer-

ence time theoretically, it significantly improves the perfor-

mance. Figure 3 illustrates the performance of SaccadeNet

with and without flip testing.

Non-maximum Suppression. In SaccadeNet, we re-

place the popular IoU-based NMS with peak-picking NMS.

Peak-picking NMS performs 3 × 3 pooling on the output

heatmap of Center-Attn. The inference time of it is less

than 0.1ms. In comparison, the IoU-based NMS needs 2 ms

for post-procession. Table 3 shows the comparison between

IoU-based NMS and peak-picking NMS.

4.3. Ablation Study

In this section, we will study the characteristics of Sac-

cadeNet. We conduct the experiments with SaccadeNet-
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mAP@50 mAP@70 mAP@90 mAP@S mAP@M mAP@L

Baseline 70.69 55.50 16.48 8.15 23.74 57.86

Corner-Attn 71.02/+0.33 56.42/+0.92 13.51/-2.97 9.75/+1.60 24.45/+0.71 58.84/+0.98

Aggregation-Attn 70.64/-0.05 55.85/+0.35 17.34/+0.86 8.30/+0.15 24.30/+0.56 58.39/+0.53

Corner-Attn + Aggregation-Attn 70.94/+0.25 57.84/+2.34 21.07/+4.59 9.69/+1.54 25.17/+1.43 60.40/+2.54

Table 2. This table shows the results of SaccadeNet with or without Aggregation-Attn and Corner-Attn. We use 6 metrics of different IoU

thresholds and object sizes. All experiments are conducted on Pascal VOC. For our approaches, we show both the mAP and the mAP gain

(+) or loss (-) compared with the baseline.

Backbone Aggregation-Attn Flip NMS FPS mAP

DLA PP 52 37.9

DLA X PP 50 38.8

DLA X PP 28 39.9

DLA X X PP 28 40.7

DLA X IoU 45 39.3

DLA X X IoU 27 40.9

Table 3. All experiments are conducted on MS COCO val2017.

PP and IoU represent peak-picking NMS and IoU-based NMS,

respectively.

Res18 on Pascal VOC.

Evaluation metrics. For detailed evaluation, we use

6 metrics for different IoU thresholds and size: AP@50,

AP@70, AP@90, AP@S, AP@M, AP@L. AP@50,

AP@70, AP@90 represent the average precision using IoU

thresholds of 50%, 70%, 90%, respectively. For evaluating

objects of different size, we define AP@S, AP@M, AP@L

as the average precision of small objects, medium objects,

and large objects. Small, medium, large objects contain ob-

jects with area of [0, 642], [642, 1282], and [1282,∞], re-

spectively.

4.3.1 Benefits of Aggregation-Attn and Corner-Attn

Our proposed Aggregation-Attn and Corner-Attn are de-

signed to improve the quality of boundary. To study how

much they affect high-quality/low-quality and large/small

object proposals, we use different IoU thresholds to com-

pute the mean average precision and evaluate it on the ob-

jects of different sizes. As shown in Table 2, larger objects

and high-quality bounding boxes gain more benefits with

Aggregation-Attn and Corner-Attn.

4.3.2 Keypoint Selection

Although our proposed SaccadeNet reveals that corners are

very important for accurate boundary localization, it is still

unknown whether other keypoints are helpful for bounding

box regression. We try different kinds of points: middle-

edge points and other inner-box points.

The middle-edge points of an object are the 4 points

in the middle of 4 edges of a bounding box. We also re-

mAP@50 mAP@70 mAP@90

Corners 70.94 57.84 21.07

Diag Pts@0.8 70.92 57.32 18.27

Diag Pts@0.6 70.59 56.48 17.40

Diag Pts@0.4 70.43 56.11 17.31

Mid-edge Pts@1.0 70.64 55.85 17.34

Mid-edge Pts@0.8 70.43 55.33 17.29

Mid-edge Pts@0.6 70.51 55.10 16.98

Table 4. This table shows the results of using different points for

Corner-Attn on PASCAL VOC with ResNet-18. Corner represents

the original SaccadeNet-Res18. Diag Pts@t (t is a float number)

represents the points locating at pct ∗ (1− t) + pcr ∗ t, where pct,

pcr represents the position of centers and corners. Similarly, Mid-

edge Pts@t represents a points locating at pct ∗ (1− t) + pml ∗ t,
where pct and pml indicate center points and middle points of an

edge of object bounding box. Figure 4 describes the position of all

points mentioned above.

place corners with points on the orthogonal lines of the

bounding box. Figure 4 describes the keypoints mentioned

above. We change the corners to other keypoints as inputs

of Aggregation-Attn and the annotations from corners to

other keypoints for Corner-Attn. Table 4 illustrates the re-

sults on Pascal VOC.

We find that the corners are the most helpful keypoints

for SaccadeNet among all other keypoints except centers.

We also find that keypoints closer to corners leads to higher

performance for both Aggregation-Attn and Corner-Attn.

One possible reason is that corners define the extent of the

object and we use the bounding box for loss calculation.

4.3.3 Does Iterative Refinement Help?

An intuitive idea for improving SaccadeNet is to apply

Aggregation-Attn iteratively. In the experiments, we use

a couple of sequential modules of Aggregation-Attn. The

outputs of the previous module are used as inputs in the

next module. Table 5 shows the results on PASCAL VOC.

The results show that iterative refinement works for more

accurate boundary. The finer bounding boxes get more im-

provement by iterative refinement. However, as a result of

more sequential execution, the iterative refinement is not

very efficient. Due to speed-accuracy trade-off, we only use
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Figure 4. Purple points and yellow points denote centers and cor-

ners, respectively. On the left, the green lines denote the diagonal

lines of bounding box. The blue point represents a Diag Pts com-

puted by bilinear interpolation. On the right, the yellow points are

middle points of bounding-box sides. The pink lines denote the

middle line of the bounding box. The two end of middle line are

two opposite yellow points. The blue point represents a Mid-edge

Pts.

Num of iter. mAP@50 mAP@70 mAP@90

0 71.02 56.42 18.96

1 70.94 57.84 21.07

2 71.09 58.18 21.32

3 71.12 58.42 20.70

Table 5. The table shows the results of applying iterative refine-

ment on SaccadeNet with different IoU thresholds. All the exper-

iments are based on ResNet-18 on PASCAL VOC. Num of iter

means the number of iterations used for boundary refinement

Aggregation-Attn-Cls mAP@50 mAP@70 mAP@90

70.92 57.49 18.96

X 52.26 43.23 19.80

Table 6. This table shows the results of using Aggregation-Attn-

Cls for classification with different IoU thresholds. All Experi-

ments are performed on Pascal VOC with ResNet-18.

one Aggregation-Attn in all the other experiments.

4.3.4 Does Aggregation-Attn also Help Classification?

Object detection is the step to understand “what is where”.

We have validated that Aggregation-Attn improves the lo-

calization of object by fusing feature of corner and center

keypoints, namely it helps in terms of “where”. Now we

want to study whether such information aggregation also

helps in terms of “what”. We add another module, namely

Aggregation Attentive Classifier (Aggregation-Attn-Cls) to

refine classification scores. Its structure is the same as Cor-

ner Attentive Module. We use the classification scores to re-

place the original object classifier output. Table 6 illustrates

the results. Unfortunately, the performance is degraded by

Aggregation-Attn-Cls. One possible reason is that the fea-

ture of corner keypoints encode little high-level discrimina-

tive information for classification.

Corner Center mAP@50 mAP@70 mAP@90

71.02 56.42 18.96

X 70.89 56.55 19.01

X 71.04 57.53 19.78

X X 70.94 57.84 21.07

Table 7. This table shows the results of using different inputs for

Aggregation-Attn with different IoU thresholds. All Experiments

are performed on Pascal VOC with ResNet-18.

4.3.5 Impact of the Center and Corner Keypoints in

Aggregation-Attn module

The experimental results in Section 4.3.1 have shown that

the aggregation of features from corners and center in

Aggregation-Attn is of great importance for the perfor-

mance improvement. However, is the feature fusion of the

corners and center necessary and helpful? How much im-

provement does it gain by using center-only or corner-only

feature?

To address these questions, we change the inputs of

Aggregation-Attn into feature of center keypoints or feature

of corner keypoints. Table 7 shows that it is useful to fuse

feature of corner and center keypoints together. Comparing

to the first row where Aggregation-Attn module is not used,

by using the center feature alone it barely improves the per-

formance since previous Center-Attn module already use

center feature. By using corner features alone, the perfor-

mance is improved significantly. By incorporating feature

of both corner and center keypoints, the detection result is

further improved, especially in high-IOU thresholds.

5. Conclusion

We introduce SaccadeNet, a fast and accurate object de-

tection algorithm. Our model actively attends to informative

object keypoints from the center to the corners, and predicts

the object bounding boxes from coarse to fine. SaccadeNet

runs extremely fast, because these object keypoints are pre-

dicted jointly so that we do not need a grouping algorithm

to combine them. We extensively evaluate SaccadeNet on

PASCAL VOC and MS COCO datasets, which both demon-

strates its effectiveness and efficiency.
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