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Abstract

We propose a simple yet efficient anchor-free instance

segmentation, called CenterMask, that adds a novel spa-

tial attention-guided mask (SAG-Mask) branch to anchor-

free one stage object detector (FCOS [33]) in the same vein

with Mask R-CNN [9]. Plugged into the FCOS object detec-

tor, the SAG-Mask branch predicts a segmentation mask on

each detected box with the spatial attention map that helps

to focus on informative pixels and suppress noise. We also

present an improved backbone networks, VoVNetV2, with

two effective strategies: (1) residual connection for alleviat-

ing the optimization problem of larger VoVNet [19] and (2)

effective Squeeze-Excitation (eSE) dealing with the channel

information loss problem of original SE. With SAG-Mask

and VoVNetV2, we deign CenterMask and CenterMask-Lite

that are targeted each to large and small models, respec-

tively. Using the same ResNet-101-FPN backbone, Cen-

terMask achieves 38.3%, surpassing all previous state-of-

the-art methods while at a much faster speed. CenterMask-

Lite also outperforms the state-of-the-art by large margins

at over 35fps on Titan Xp. We hope that CenterMask and

VoVNetV2 can serve as a solid baseline of real-time in-

stance segmentation and backbone network for various vi-

sion tasks, respectively. The Code is available at https:

//github.com/youngwanLEE/CenterMask.

1. Introduction

Recently, instance segmentation has made great progress

beyond object detection. The most representative method,

Mask R-CNN [9], extended on object detection (e.g., Faster

R-CNN [30]), has dominated COCO [23] benchmarks since

instance segmentation can be easily solved by detecting ob-

jects and then predicting pixels on each box. However,

even if there have been many works [15, 2, 3, 20, 24]

for improving the Mask R-CNN [9], few works exist for

considering the speed of the instance segmentation. Al-

though YOLACT [1] is the first real-time one-stage instance
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Figure 1: Accuracy-speed Tradeoff. across various

instance segmentation models (top) and backbone net-

works (bottom) on COCO. The inference speed of Cen-

terMask & CenterMask-Lite is reported on the same GPU

(V100/Xp) with their counterparts. Note that all backbone

networks in the bottom are compared under the proposed

CenterMask. Please refer to section 3.2, Table 3 and Ta-

ble 5 for details.

segmentation due to its parallel structure and extremely

lightweight assembly process, the accuracy gap from Mask

R-CNN [9] is still significant. Thus, we aim to bridge the

gap by improving both accuracy and speed.

While Mask R-CNN [9] is based on a two-stage ob-

ject detector (e.g., Faster R-CNN) that first generates box

proposals and then predicts box location and classification,

YOLACT [1] is built on one-stage detector (RetinaNet [22])
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Figure 2: Architecture of CenterMask. where P3 (stride of 23) to P7 (stride of 27) denote the feature map in feature pyramid

of backbone network. Using the features from the backbone, FCOS [33] predicts bounding boxes. Spatial Attention-Guided

Mask (SAG-Mask) predicts segmentation mask inside of the each detected box with Spaital Attention Module (SAM) helping

to focus on the informative pixels but also suppress the noise.

that directly predicts boxes without proposal step. However,

these object detectors rely heavily on pre-define anchors,

which are sensitive to hyper-parameters (e.g., input size, as-

pect ratio, scales, etc.) and different datasets. Besides, since

they densely place anchor boxes for higher recall rate, the

excessively many anchor boxes cause the imbalance of posi-

tive/negative samples and higher computation/memory cost.

To cope with these drawbacks of anchor boxes, recently,

many works [18, 6, 38, 39, 33, 38] tend to escape from

the anchor boxes toward anchor-free by using corner/center

points, which leads to more computation-efficient and better

performance compared to anchor box based detectors.

Therefore, we design a simple yet efficient anchor-

free one stage instance segmentation called CenterMask

that adds a novel spatial attention-guided mask branch

to the more efficient one-stage anchor-free object detec-

tor (FCOS [33]) in the same way with Mask R-CNN [9].

Figure 2 shows the overview of our CenterMask. Plugged

into the FCOS [33] object detector, our spatial attention-

guided mask (SAG-Mask) branch takes the predicted boxes

from the FCOS [33] detector to predict segmentation masks

on each Region of Interest (RoI). The spatial attention mod-

ule (SAM) in the SAG-Mask helps the mask branch to focus

on meaningful pixels and suppressing uninformative ones.

When extracting features on each RoI for mask predic-

tion, each RoI pooling should be assigned considering the

RoI scales. Mask R-CNN [9] proposes a new assignment

function, called RoIAlign, that does not consider the in-

put scale. Thus, we design a scale-adaptive RoI assignment

function that considers the input scale and is a more suitable

one-stage object detector. We also propose a more effective

backbone network VoVNetV2 based on VoVNet [19] that

shows better performance and faster speed than ResNet [10]

and DenseNet [14] due to its One-shot Aggregation (OSA).

In Figure 1 (bottom), We found that stacking the OSA mod-

ules in VoVNet makes the performance degradation (e.g.,

VoVNetV1-99). We see this phenomenon as the motivation

of ResNet [10] because the backpropagation of gradient is

disturbed. Thus, we add the residual connection [10] into

each OSA module to ease optimization, which makes the

VoVNet deeper and in turn, boosts the performance.

In the Squeeze-Excitation (SE) [13] channel attention

module, it was found that the fully connected layers reduce

the channel size, thereby reducing computational burden

and unexpectedly causing channel information loss. Thus,

we re-design the SE module as effective SE (eSE) replac-

ing the two FC layers with one FC layer maintaining chan-

nel dimension, which prevents the information loss and

in turn, improves the performance. With residual connec-

tion and eSE modules, We propose VoVNetV2 on various

scales; from lightweight VoVNetV2-19, base VoVNetV2-

39/57 and large model VoVNetV2-99 that are correspond

with MobileNet-V2 [11], ResNet-50/101 [10] & HRNet-

W18/32 [32], and ResNeXt-32x8d [36].

With SAG-Mask and VoVNetV2, we design Center-

Mask and CenterMask-Lite that are targeted each to large

and small models, respectively. The Extensive exper-

iments demonstrate the effectiveness of CenterMask &

CenterMask-Lite and VoVNetV2. Using the same ResNet-

101 backbone [10], CenterMask outperforms all previ-

ous state-of-the-art single models on the COCO [23]

instance and detection tasks while at a much faster

speed. CenterMask-Lite with VoVNetV2-39 bakcbone

also achieves 33.4% mask AP / 38.0% box AP, outper-

forming the state-of-the-art real-time instance segmentation

YOLACT [1] by 2.6 / 7.0 AP gain, respectively, at over

35fps on Titan Xp.
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2. CenterMask

In this section, first, we review the anchor-free object de-

tector, FCOS [33], which is a fundamental object detection

part of our CenterMask. Next, we demonstrate the architec-

ture of the CenterMask and describe how the proposed spa-

tial attention-guided mask branch (SAG-Mask) is designed

to plug into the FCOS [33] detector. Finally, a more effec-

tive backbone network, VoVNetV2, is proposed to boost the

performance of CenterMask in terms of accuracy and speed.

2.1. FCOS

FCOS [33] is an anchor-free and proposal-free object de-

tection in a per-pixel prediction manner as like FCN [26].

Almost state-of-the-art object detectors such as Faster R-

CNN [30], YOLO [29], and RetinaNet [22] use the concept

of the pre-defined anchor box which needs elaborate param-

eter tunning and complex calculation associated with box

IoU in training. Without the anchor-box, the FCOS [33] di-

rectly predicts a 4D vector plus a class label at each spatial

location on a level of feature maps. As shown in Figure

2, the 4D vector embeds the relative offsets from the four

sides of a bounding box to the location (e.g., left, right,

top and bottom). In addition, FCOS [33] introduces the

centerness branch to predict the deviation of a pixel to the

center of its corresponding bounding box, which improves

the detection performance. Avoiding complex computation

of anchor-boxes, FCOS [33] reduces memory/computation

cost but also outperforms the anchor box based object de-

tectors. Because of the efficiency and good performance of

the FCOS [33], we design the proposed CenterMask built

upon the FCOS [33] object detector.

2.2. Architecture

Figure 2 shows overall architecture of the CenterMask.

CenterMask consists of three-part:(1) backbone for feature

extraction, (2) FCOS [33] detection head, and (3) mask

head. The procedure of masking objects is composed of

detecting objects from the FCOS [33] box head and then

predicting segmentation masks inside the cropped regions

in a per-pixel manner.

2.3. Adaptive RoI Assignment Function

After object proposals are predicted in the FCOS [33]

box head, CenterMask predicts segmentation masks using

the predicted box regions in the same vein as Mask R-

CNN. As the RoIs are predicted from different levels of

feature maps in Feature Pyramid Network (FPN [21]), RoI

Align [9] that extracts features should be assigned at dif-

ferent scales of feature maps with respect to RoI scales.

Specifically, an RoI with a large scale has to be assigned

to a higher feature level and vice versa. Mask R-CNN [9]

based two-stage detector uses Equation 1 in FPN [21] to

determine which feature map (Pk) to be assigned.

k = ⌊k0 + log2
√
wh/224⌋, (1)

where k0 is 4 and w, h are the width and height of the each

RoI. However, Equation 1 is not suitable for CenterMask

based one-stage detector because of two reasons. First,

Equation 1 is tuned to two-stage detectors (e.g.,FPN [21])

that use different feature levels compared to one-stage de-

tectors (e.g, FCOS [33], RetinaNet [22]). Specifically, two-

stage detectors use feature levels of P2 (stride of 22) to P5

(25) while one-stage detectors use from P3 (23) to P7 (27)

that is larger receptive fields with lower-resolution. Besides,

the canonical ImageNet pretraining size 224 in Equation 1 is

hard-coded and not adaptive to feature scale variation. For

example, when the input dimension is 1024×1024 and the

area of an RoI is 2242, the RoI is assigned to relative higher

feature P4 despite its small size of the area with respect to

input dimension, which results in reducing small object AP.

Therefore, we define Equation 2 as a new RoI assignment

function suited for CenterMask based one-stage detectors.

k = ⌈kmax − log2 Ainput/ARoI⌉, (2)

where kmax is the last level (e.g., 7) of feature map in back-

bone and Ainput, ARoI are area of input image and the RoI,

respectively. Without the canonical size 224 in Equation 1,

Equation 2 adaptively assign RoI pooling scale by the ratio

of input/RoI area. If k is lower than minimum level (e.g.,

P3), k is clamped to the minimum level. Specifically, if the

area of an RoI is bigger than half of the input area, the RoI

is assigned to the highest feature level(e.g., P7). Inversely,

while Equation 1 assigns P4 to the RoI with 2242, Equa-

tion 2 determine kmax - 5 level which maybe minimum fea-

ture level for area of the RoI that is about ×20 smaller than

input size. We can find that the proposed RoI assignment

method improves the small object AP than Equation 1 be-

cause of its adaptive and scale-aware assignment strategy in

Table 2. From an ablation study, we set kmax to P5 and kmin

to P3.

2.4. Spatial Attention­Guided Mask

Recently, attention methods [13, 34, 40, 28] have been

widely applied to object detections because it helps to focus

on important features, but also suppress unnecessary ones.

In particular, channel attention [13, 12] emphasizes ‘what’

to focus across channels of feature maps while spaital at-

tention [34, 4] focuses ‘where’ is an informative regions.

Inspired by the spatial attention mechanism, we adopt a spa-

tial attention module to guide the mask head for spotlighting

meaningful pixels and repressing uninformative ones.

Thus, we design a spatial attention-guided mask (SAG-

Mask), as shown in Figure 2. Once features inside the pre-

dicted RoIs are extracted by RoI Align [9] with 14×14 res-

olution, those features are fed into four conv layers and
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Figure 3: Comparison of OSA modules. F1×1, F3×3 denote 1 × 1, 3 × 3 conv layer respectively, Favg is global average

pooling, WC is fully-connected layer, AeSE is channel attention map, ⊗ indicates element-wise multiplication and ⊕ denotes

element-wise addition.

spatial attention module (SAM) sequentially. To exploit the

spatial attention map Asag(Xi) ∈ R
1×W×H as a feature de-

scriptor given input feature map Xi ∈ R
C×W×H , the SAM

first generates pooled features Pavg , Pmax ∈ R
1×W×H

by both average and max pooling operations respectively

along the channel axis and aggregates them via concatena-

tion. Then it is followed by a 3 × 3 conv layer and nor-

malized by the sigmoid function. The computation process

is summarized as follow:

Asag(Xi) = σ(F3×3(Pmax ◦ Pavg)), (3)

where σ denotes the sigmoid function, F3×3 is 3× 3 conv
layer and ◦ represents concatenate operation. Finally, the at-

tention guided feature map Xsag ∈ R
C×W×H is computed

as:

Xsag = Asag(Xi)⊗Xi, (4)

where ⊗ denotes element-wise multiplication. After then,

a 2 × 2 deconv upsamples the spatially attended feature

map to 28× 28 resolution. Lastly, a 1× 1 conv is applied

for predicting class-specific masks.

2.5. VoVNetV2 backbone

In this section, we propose more effective backbone net-

works, VoVNetV2, for further boosting the performance of

CenterMask. VoVNetV2 is improved from VoVNet [19]

by adding residual connection [10] and the proposed ef-

fective Squeeze-and-Excitation (eSE) attention module to

the VoVNet. VoVNet is a computation and energy effi-

cient backbone network that can efficiently present diver-

sified feature representation because of One-Shot Aggrega-

tion (OSA) modules. As shown in Figure 3(a) OSA module

consists of consecutive conv layers and aggregates the sub-

sequent feature maps at once, which can capture diverse re-

ceptive fields efficiently and in turn outperforms DenseNet

and ResNet in terms of accuracy and speed.

Residual connection: Even with its efficient and diverse

feature representation, VoVNet has a limitation in terms of

optimization. As OSA modules are stacked (i.g., deeper)

in VoVNet, we observe the accuracy of the deeper models

is saturated or degradation. Specifically, Table 4 shows the

accuracy of VoVNetV1-99 is lower than that of VoVNetV1-

57. Based on the motivation of ResNet [10], We conjec-

ture that stacking OSA modules make the backpropagation

of gradient gradually hard due to the increase of transfor-

mation functions such as conv. Therefore, as shown in

Figure 3(b), we also add the identity mapping [10] to OSA

modules. Correctly, the input path is connected to the end

of an OSA module that is able to backpropagate the gradi-

ents of every OSA module in an end-to-end manner on each

stage like ResNet. Boosting the performance of VoVNet,

the identity mapping also makes the VoVNet possible to en-

large its depth such as VoVNet-99.

Effective Squeeze-Excitation (eSE): For further boost-

ing the performance of VoVNet, We also propose a chan-

nel attention module, effective Squeeze-Excitation (eSE),

improving original SE [13] more effectively. Squeeze-

Excitation (SE) [13], a representative channel attention

method adopted in CNN architectures, explicitly models

the interdependency between the channels of feature maps

to enhance its representation. The SE module squeezes

the spatial dependency by global average pooling to learn
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a channel specific descriptor and then two fully-connected

(FC) layers followed by a sigmoid function are used to

rescale the input feature map to highlight only useful chan-

nels. In short, given input feature map Xi ∈ R
C×W×H , the

channel attention map Ach(Xi) ∈ R
C×1×1 is computed as:

Ach(Xi) = σ(WC(δ(WC/r(Fgap(Xi)))), (5)

where Fgap(X) =
1

WH

∑W,H
i,j=1

Xi,j is channel-wise global

average pooling, WC/r,WC ∈ R
C×1×1 are weights of two

fully-connected layers, δ denotes ReLU non-linear operator

and σ indicates sigmoid function.

However, it is assumed that the SE module has a limita-

tion: channel information loss due to dimension reduction.

For avoiding high model complexity burden, two FC lay-

ers of the SE module need to reduce channel dimension.

Specifically, while the first FC layer reduces input feature

channels C to C/r using reduction ratio r, the second FC

layer expands the reduced channels to original channel size

C. As a result, this channel dimension reduction causes

channel information loss.

Therefore, we propose effective SE (eSE) that uses only

one FC layer with C channels instead of two FCs without

channel dimension reduction, which rather maintains chan-

nel information and in turn improves performance. the eSE

process is defined as:

AeSE(Xdiv) = σ(WC(Fgap(Xdiv))), (6)

Xrefine = AeSE(Xdiv)⊗Xdiv, (7)

where Xdiv ∈ R
C×W×H is the diversified feature map

computed by 1 × 1 conv in OSA module. As a channel

attentive feature descriptor, the AeSE ∈ R
C×1×1 is applied

to the diversified feature map Xdiv to make the diversified

feature more informative. Finally, when using the residual

connection, the input feature map is element-wise added to

the refined feature map Xrefine. The details of How the

eSE module is plugged into the OSA module are shown in

Figure 3(c).

2.6. Implementation details

Since CenterMask is built on FCOS [33] object de-

tector, we follow hyper-parameters of the FCOS [33] ex-

cept for positive score threshold 0.03 instead of 0.05 Since

FCOS [33] does not generate positive RoI samples well in

initial training time. While using FPN levels 3 through 7

with 256 channels in the detection step, we use P3 ∼ P7 in

the masking step, as mentioned in 2.3. We also use mask

scoring [15] that recalibrates classification score consider-

ing predicted mask quality (e.g., mask IoU) in Mask R-

CNN.

CenterMask-Lite: To achieve real-time processing, we try

to make the proposed CenterMask lightweight. We down-

size three parts: backbone, box head, and mask head. In the

backbone, first, we reduce the channels C of FPN from 256

to 128, which can decrease the output of 3×3 conv in FPN

but also input dimension of box and mask head. And then,

we replace the backbone network with more lightweight

VoVNetV2-19 that has 4 OSA modules on each stage com-

prised of 3 conv layers instead of 5 as in VoVNetv2-39/57.

In the box head, there are four 3× 3 conv layers with 256

channels on each classification and box branch where the

centerness branch is shared with the box branch. We re-

duce the number of conv layer from 4 to 2 with 128 chan-

nels. Lastly, in the mask head, we also reduce the number of

conv layers and channels in the feature extractor and mask

scoring part from (4, 256) to (2, 128), respectively.

Training: We set the number of detection boxes from the

FCOS [33] to 100, and the highest-scoring boxes are fed

into the SAG-mask branch for training mask branch. We

use the same mask target as Mask R-CNN that is made by

the intersection between an RoI and its associated ground-

truth mask. During training time, we define a multi-task

loss on each RoI as:

L = Lcls + Lcenter + Lbox + Lmask, (8)

where the classification loss Lcls, centerness loss Lcenter,

and box regression loss Lbox are same as those in [33]

and Lmask is the average binary cross-entropy loss identi-

cal as in [9]. Unless specified, the input image is resized to

have 800 pixels [21] along the shorter side and their longer

side less or equal to 1333. We train CenterMask by using

Stochastic Gradient Descent (SGD) for 90K iterations (∼12

epoch) with a mini-batch of 16 images and initial learning

rate of 0.01 which is decreased by a factor of 10 at 60K

and 80K iterations, respectively. We use a weight decay of

0.0001 and a momentum of 0.9, respectively. All backbone

models are initialized by ImageNet pre-trained weights.

Inference: At test time, the FCOS detection part yields

50 high-score detection boxes, and then the mask branch

uses them to predict segmentation masks on each RoI.

CenterMask/CenterMask-Lite use a single scale of 800/600

pixels for the shorter side, respectively.

3. Experiments

In this section, we evaluate the effectiveness of Center-

Mask on COCO [23] benchmarks. All models are trained

on the train2017 and val2017 are used for ablation

studies. Final results are reported on test-dev for com-

parison with state-of-the-arts. We use APmask as mask av-

erage precision AP (averaged over IoU thresholds), APS,

APM, and APL (AP at different scale). We also denote

box AP as APbox. All ablation studies are conducted using

CenterMask with ResNet-50-FPN. We report the inference

time of models using one thread (1 batch size) on the same

enviroment equipped with Titan Xp GPU, CUDA v10.0,
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Figure 4: Results of CenterMask with VoVNetV2-99 on COCO test-dev2017.

Component APmask APbox Time (ms)

FCOS (baseline), ours - 37.8 57

+ mask head (Eq. 1 [21]) 33.4 38.3 67

+ mask head (Eq. 2, ours) 33.8 38.7 67

+ SAM 34.0 38.9 67

+ Mask scoring 34.7 38.8 72

Table 1: Spatial Attention Guided Mask (SAG-Mask)

These models use ResNet-50 backbone. We note that the mask

heads with Eq.1 is same as the mask branch of Mask R-CNN.

SAM and Scoring denotes the proposed Spatial Attention Module

and mask scoring [15].

cuDNN v7.3, and pytorch1.1. The Qualitative results of

CenterMask are shown in Figure 4.

3.1. Ablation study

Scale-adaptive RoI assignment function: Comparing to

Equation 1 [21], we validate the proposed Equation 2 in

CenterMask. Table 1 shows that our scale-adaptive RoI as-

signment function considering the input scale improves by

0.4% APmask over the counterpart. It means that Equation 2

regarding the ratio of input/RoI is more scale-adaptive than

Equation 1.

Spatial Attention Guided Mask: Table 1 demonstrates the

influence of each component in building Spatial Attention

Guided Mask (SAG-Mask). The baseline, FCOS [33] ob-

ject detector, starts from 37.8% APbox with the run time of

57 ms. Adding only naive mask head improves the box

performance by 0.5% APbox and obtains 33.4% APmask.

With the prementioned scale-adaptive RoI mapping strat-

egy, our spatial attention module, SAM, makes the mask

performance forward because the spatial attention module

helps the mask predictor to focus on informative pixels but

also suppress noise. It can also be seen that the detection

performance is boosted when using SAM. We suggest that

Feature Level APmask APbox

P3 ∼ P7 34.4 38.8

P3 ∼ P6 34.6 38.8

P3 ∼ P5 34.6 38.9

P3 ∼ P4 34.4 38.5

Table 2: Feature level ranges for RoIAlign [9] in CenterMmask.

P3∼P7 denotes the feature maps with output stride of 23 ∼ 2
7

result from the SAM, the refined feature maps of mask head

would also have a secondary effect on the detection branch

that shares feature maps of the backbone.

The SAG-mask also deploys the mask scoring [15] that

recalibrates the score regarding the predicted mask IoU.

As a result, the mask scoring increases performance by

0.7% APmask. We note that the mask scoring cannot boost

detection performance because the recalibrated mask score

adjusts the ranks of mask results in the evaluation step,

not refines the features of the mask head like the SAM.

Besides, SAM rarely causes extra computation while the

mask scoring leads to computation overhead (e.g., +5ms).

Feature selection. We also ablate which feature level range

is suitable for our CenterMask based one-stage detector.

Since FCOS [33] detector extract features from P3 ∼ P7,

we start the same feature levels in the SAG-mask branch.

As shown in Table 2, the performance of the P3 ∼ P7 range

is not as good as other ranges. We speculate P7 feature

map is too small to extract fine features for pixel-level

prediction (e.g., 7 × 7). We observe that P3 ∼ P5 feature

range achieves the best result, which means feature maps

with a bigger resolution are advantageous for the mask

prediction.

VoVNetV2: We extend VoVNet to VoVNetV2 by using
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Backbone Params. APmask APmask
S APmask

M APmask
L APbox APbox

S APbox
M APbox

L Time (ms)

MobileNetV2 [31] 28.7M 29.5 12.0 31.4 43.8 32.6 17.8 35.2 43.2 56

VoVNetV2-19 [19] 37.6M 32.2 14.1 34.8 48.1 35.9 20.8 39.2 47.6 59

HRNetV2-W18 [32] 36.4M 33.0 14.3 34.7 49.9 36.7 20.7 39.4 49.3 80

ResNet-50 [10] 51.2M 34.7 15.5 37.6 51.5 38.8 22.4 42.5 51.1 72

VoVNetV1-39 [19] 49.0M 35.3 15.5 38.4 52.1 39.7 23.0 43.3 52.7 68

VoVNetV2-39 52.6M 35.6 16.0 38.6 52.8 40.0 23.4 43.7 53.9 70

HRNetV2-W32 [32] 56.2M 36.2 16.0 38.4 53.0 40.6 23.0 43.8 53.1 95

ResNet-101[10] 70.1M 36.0 16.5 39.2 54.4 40.7 23.4 44.3 54.7 91

VoVNetV1-57 [19] 63.0M 36.1 16.2 39.2 54.0 40.8 23.7 44.2 55.3 74

VoVNetV2-57 68.9M 36.6 16.9 39.8 54.5 41.5 24.1 45.2 55.2 76

HRNetV2-W48 [32] 92.3M 38.1 17.6 41.1 55.7 43.0 25.8 46.7 55.9 126

ResNeXt-101 [36] 114.3M 38.3 18.4 41.6 55.4 43.1 26.1 46.8 55.7 157

VoVNetV1-99 [19] 83.6M 31.5 13.5 33.5 46.5 35.3 19.7 38.1 46.6 101

VoVNetV2-99 96.9M 38.3 18.0 41.8 56.0 43.5 25.8 47.8 57.3 106

Table 3: CenterMask with other backbones on COCO val2017. Note that all mdoels are trained with a same manner (e.g., 12 epoch,

16 batch size, without train & test augmentation). The inference time is reported on same Titan Xp GPU.

Backbone Params. APmask APbox Time (ms)

VoVNetV1-39 49.0M 35.3 39.7 68

+ residual 49.0M 35.5 (+0.2) 39.8 (+0.1) 68

+ SE [13] 50.8M 34.6 (-0.7) 39.0 (-0.7) 70

+ eSE, ours 52.6M 35.6 (+0.3) 40.0 (+0.3) 70

VoVNetV1-57 63.0M 36.1 40.8 74

+ residual 63.0M 36.4 (+0.3) 41.1 (+0.3) 74

+ SE [13] 65.9M 35.9 (-0.2) 40.8 77

+ eSE, ours 68.9M 36.6 (+0.5) 41.5 (+0.7) 76

VoVNetV1-99 83.6M 31.5 35.3 101

+ residual 83.6M 37.6 (+6.1) 42.5 (+7.2) 101

+ SE [13] 88.0M 37.1 (+5.6) 41.9 (+6.6) 107

+ eSE, ours 96.9M 38.3 (+6.8) 43.5 (+8.2) 106

Table 4: VoVNetV2 Start from VoVNetV1, VoVNetV2 is im-

proved by adding residual connection [10] and the proposed ef-

fetive SE (eSE).

residual connection and the proposed effective SE (eSE)

module into the VoVNet. Table 4 shows residual connec-

tion consistently improves VoVNet-39/57/99. In particular,

the reason that the improved AP margin of VoVNet-99 is

bigger than VoVNet-39/57 is that VoVNet-99 comprised of

more OSA modules can have more effect of residual con-

nection that alleviates the optimization problem.

To validate eSE, we also apply the SE [13] to the

VoVNet and compare it with the proposed eSE. As shown

in Table 4, the SE worsens the performance of VoVNet

or has no effect because the diversified feature map of

OSA module losses channel information due to channel

dimension reduction in the SE. Contrary to the SE, our eSE

maintaining channel information using only 1 FC layer

boosts both APmask and APbox from VoVNetV1 with slight

computation.

Comparison to other backbones: We expand VoVNetV2

on various scales; large (V-99), base (V-39/57), and

lightweight (V-19) which correspond to ResNeXt-32-

8d [36] & HRNet-W48 [32], ResNet-50/101 [10] & HRNet-

W18/W32 [32], and MobileNetV2 [31], respectively. Ta-

ble 3 and Figure 1 (bottom) demonstrate VoVNetV2 is

well-balanced backbone network in terms of accuracy

and speed. While VoVNetV1-39 already outperforms its

counterparts, VoVNetV2-39 shows better performance than

ResNet-50/HRNet-W18 by a large margin of 1.2%/2.6% at

faster speeds, respectively. Especially, the gain of APbox is

bigger than APmask, 1.5%/3.3%, respectively. A similar re-

sult pattern is shown in VoVNetV2-57 with its counterparts.

For large model, showing much faster run time (1.5×),

VoVNetV2-99 achieves competitive APmask or higher APbox

than ResNeXt-101-32x8d despite fewer model parameters.

For small model, VoVNetV2-19 outperforms MobileNetV2

by a large margin of 1.7% APmask/3.3%APbox, with compa-

rable speed.

3.2. Comparison with state­of­the­arts methods

For further validation of the CenterMask, we compare

the proposed CenterMask with state-of-the-art instance seg-

mentation methods. As most methods [25, 5, 8, 1, 7] use

train augmentation, we also adopt the scale-jitter where the

shorter image side is randomly sampled from [640, 800]

pixels [8]. For Centermask-Lite, [580, 600] scale jittering

is used for training. We train CenterMask and CenterMask-

Lite for 24/36 epochs and 48 epochs, respectively. Note that

we do not use test-time augmentation [8] (multi-scale). The

other hyper-parameters are kept same as ablation study. For

fair speed comparison, we inference models on the same

GPU as counterparts. Specifically, since most large models

are tested on V100 GPU and YOLACT [1] models are re-

ported on Titan Xp GPU, we also report CenterMask mod-

els on V100 and CenterMask-Lite models on Xp.
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Method Backbone epochs APmask APmask
S APmask

M APmask
L APbox APbox

S APbox
M APbox

L Time FPS GPU

Mask R-CNN, ours R-101-FPN 24 37.9 18.1 40.3 53.3 42.2 24.9 45.2 52.7 94 10.6 V100

ShapeMask [17] R-101-FPN N/A 37.4 16.1 40.1 53.8 42.0 24.3 45.2 53.1 125 8.0 V100

TensorMask [5] R-101-FPN 72 37.1 17.4 39.1 51.6 - - - - 380 2.6 V100

RetinaMask [7] R-101-FPN 24 34.7 14.3 36.7 50.5 41.4 23.0 44.5 53.0 98 10.2 V100

CenterMask R-101-FPN 24 38.3 17.7 40.8 54.5 43.1 25.2 46.1 54.4 72 13.9 V100

CenterMask* R-101-FPN 36 39.8 21.7 42.5 52.0 44.0 25.8 46.8 54.9 66 15.2 V100

Mask R-CNN, ours X-101-FPN 36 39.3 19.8 41.4 55.0 44.1 27.0 46.7 54.6 165 6.1 V100

CenterMask X-101-FPN 36 39.6 19.7 42.0 55.2 44.6 27.1 47.2 55.2 123 8.1 V100

CenterMask V-99-FPN 36 40.6 20.1 42.8 57.0 45.8 27.8 48.3 57.6 84 11.9 V100

CenterMask* V-99-FPN 36 41.8 24.4 44.4 54.3 46.5 28.7 48.9 57.2 77 12.9 V100

YOLACT-400 [1] R-101-FPN 48 24.9 5.0 25.3 45.0 28.4 10.7 28.9 43.1 22 45.5 Xp

CenterMask-Lite M-v2-FPN 48 26.7 9.0 27.0 40.9 30.2 14.2 31.9 40.9 20 50.0 Xp

YOLACT-550 [1] R-50-FPN 48 28.2 9.2 29.3 44.8 30.3 14.0 31.2 43.0 23 43.5 Xp

CenterMask-Lite V-19-FPN 48 32.4 13.6 33.8 47.2 35.9 19.6 38.0 45.9 23 43.5 Xp

YOLACT-550 [1] R-101-FPN 48 29.8 9.9 31.3 47.7 31.0 14.4 31.8 43.7 30 33.3 Xp

YOLACT-700 [1] R-101-FPN 48 31.2 12.1 33.3 47.1 33.7 16.8 35.6 45.7 42 23.8 Xp

CenterMask-Lite R-50-FPN 48 32.9 12.9 34.7 48.7 36.7 18.7 39.4 48.2 29 34.5 Xp

CenterMask-Lite V-39-FPN 48 36.3 15.6 38.1 53.1 40.7 22.4 43.2 53.5 28 35.7 Xp

Table 5: CenterMask instance segmentation and detection performance on COCO test-dev2017. Mask R-CNN, RetinaMask, and

CenterMask are implemented on the same base code [27] and CenterMask* is implemented on top of Detectron21 [35]. R, X, V, and M

denote ResNet, ResNeXt-32x8d, VoVNetV2, and MobileNetV2, respectively. For fair compariosn, these results are tested with one thread

and single-scale.

Under the same ResNet-101 backbone, CenterMask

outperforms all other counterparts in terms of both ac-

curacy (APmask, APbox) and speed. In particular, com-

pared to RetinaMask [7] that has similar architecture (i.g.,

one-stage detector + mask branch), CenterMask achieves

3.6%APmask gain. In less than half training epochs, Cen-

terMask also surpasses the dense sliding window method,

TensorMask [5], by 1.2%APmask at ×5 faster speed. Fur-

thermore, to the best of our knowledge, the CenterMask

with VoVNetV2-99 is the first method to achieves 40%

APmask at over 10 fps. It is noted that after first submission,

Detectron2 [35] has been released that is a better base-

line code. Thus, we also re-implement our CenterMask* on

top of Detectron2 [35] and obtain further performance

gain.

We also compare with YOLACT [1] that is the rep-

resentative real-time instance segmentation. We use four

kinds of backbones (e.g., MobileNetV2, VoVNetV2-19,

VoVNetV2-39, and ResNet-50), which have a different

accuracy-speed tradeoff. Table 5 and Figure 1 (top) demon-

strate CenterMask-Lite is consistently superior to YOLACT

in terms of accuracy and speed. Compared to YOLACT,

all CenterMask-Lite models achieve over 30 fps speed with

large margins of both APmask and APbox.

4. Discussion

In Table 5, we observe that using the same ResNet-101

backbone, Mask R-CNN [9] shows better performance than

1After the initial submission, Detectron2 [35] has been re-

leased and we has developed the improved CenterMask* on top of the

Detectron2 [35].

CenterMask on small object. We conjecture that Mask

R-CNN [9] uses larger feature maps (P2) than Center-

Mask (P3) in which the mask branch can extract much finer

spatial layout of an object than the P3 feature map. We note

that there are still rooms for improving one-stage instance

segmentation performance like techniques [2, 3] of Mask

R-CNN [9].

5. Conclusion

We have proposed a real-time anchor-free one-stage in-

stance segmentation and more effective backbone networks.

Adding spatial attention guided mask branch to the anchor-

free one stage instance detection, CenterMask achieves

state-of-the-art performance at real-time speed. The newly

proposed VoVNetV2 backbone spanning from lightweight

to larger models makes CenterMask well-balanced perfor-

mance in terms of speed and accuracy. We hope Center-

Mask will serve as a baseline for real-time instance seg-

mentation. We also believe our proposed VoVNetV2 can be

used as a strong and efficient backbone network for various

vision tasks [37, 16].
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