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Abstract

As a voxel-wise labeling task, semantic scene comple-

tion (SSC) tries to simultaneously infer the occupancy and

semantic labels for a scene from a single depth and/or

RGB image. The key challenge for SSC is how to effec-

tively take advantage of the 3D context to model various

objects or stuffs with severe variations in shapes, layouts

and visibility. To handle such variations, we propose a

novel module called anisotropic convolution, which prop-

erties with flexibility and power impossible for the compet-

ing methods such as standard 3D convolution and some of

its variations. In contrast to the standard 3D convolution

that is limited to a fixed 3D receptive field, our module

is capable of modeling the dimensional anisotropy voxel-

wisely. The basic idea is to enable anisotropic 3D re-

ceptive field by decomposing a 3D convolution into three

consecutive 1D convolutions, and the kernel size for each

such 1D convolution is adaptively determined on the fly.

By stacking multiple such anisotropic convolution modules,

the voxel-wise modeling capability can be further enhanced

while maintaining a controllable amount of model parame-

ters. Extensive experiments on two SSC benchmarks, NYU-

Depth-v2 and NYUCAD, show the superior performance of

the proposed method. Our code is available at https:

//waterljwant.github.io/SSC/ .

1. Introduction

To behave in the 3D physical world, it requires an ac-

curate understanding of both the 3D geometry as well as

the semantics of the environment. Humans can easily infer

such geometrical and semantic information of a scene from

partial observations. An open topic in computer vision is to

study how to enable machines such an ability, which is de-

sirable in many applications such as navigation [4], grasp-

ing [20], 3D home design [1], to name a few.

∗This work is supported by the National Natural Science Foundation of

China under Grants 61773210 and 61603184 and the EPSRC Programme

Grant Seebibyte EP/M013774/1.
† Corresponding author.

Semantic scene completion (SSC) [16] is a computer

vision task teaching the machine how to perceive the 3D

world from the static depth and/or RGB image. The task

has two coupled objectives: one is 3D scene completion,

which aims at inferring the volumetric occupancy of the

scene, and the other is 3D scene labeling, which requires

to predict the semantic labels voxel-wisely. As the objects

within the physical scene carry severe variations in shapes,

layouts, and visibility due to occlusions, the main challenge

thereon is how to model the 3D context to learn each voxel

effectively.

Recently, promising progress has been achieved for

SSC [16, 6, 8, 10, 13] by employing deep convolutional

neural networks (CNNs). A direct solution is to use 3D

convolutional neural network [16] to model the volumet-

ric context, which consists of a stack of conventional 3D

convolutional layers. This solution, however, suffers from

apparent limitations. On the one hand, 3D convolution

renders a fixed receptive field that does not cater to the

variations of the objects. On the other hand, 3D convolu-

tion is resource demanding, which causes massive compu-

tational and memory consumption. 3D convolution varia-

tions [10, 21] are proposed to address such shortcomings.

For example, a lightweight dimensional decomposition net-

work is proposed in [10] to alleviate the resource consump-

tion, but it still leaves the object variation issue unattended.

In this work, we propose a novel module, termed

anisotropic convolution, to model object variation, which

properties with flexibility and power impossible for com-

peting methods. In contrast to standard 3D convolution and

some of its variations that are limited to the fixed receptive

field, the new module adapts to the dimensional anisotropy

property voxel-wisely and enables receptive field with vary-

ing sizes, a.k.a anisotropic receptive field. The basic idea is

to decompose a 3D convolution operation into three con-

secutive 1D convolutions and equip each such 1d convolu-

tion with a mixer of different kernel sizes. The combina-

tion weights of such kernels along each 1D convolution are

learned voxel-wisely and thus anisotropic 3D context can

essentially be modeled by consecutively performing such

adaptive 1D convolutions. Although we use multiple ker-
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nels, e.g. 3, due to the dimensional decomposition scheme,

our module is still parameter-economic comparing to the

3D counterpart. By stacking multiple such modules, a more

flexible 3D context, as well as an effective mapping func-

tion from such context to the voxel output, can be obtained.

The contributions of this work are as follows:

• We present a novel anisotropic convolutional network

(AIC-Net) for the task of semantic scene completion.

It renders flexibility in modeling the object variations

in a 3D scene by automatically choosing proper recep-

tive fields for different voxels.

• We propose a novel module, termed anisotropic convo-

lution (AIC) module, which adapts to the dimensional

anisotropy property voxel-wisely and thus implicitly

enables 3D kernels with varying sizes.

• The new module is much less computational demand-

ing with higher parameter efficiency comparing to the

standard 3D convolution units. It can be used as a plug-

and-play module to replace the standard 3D convolu-

tion unit.

We thoroughly evaluate our model on two SSC bench-

marks. Our method outperforms existing methods by a

large margin, establishing the new state-of-the-art. Code

will be made available.

2. Related Work

2.1. Semantic Scene Completion

SSCNet [16] proposed by Song et al. is the first work

that tries to simultaneously predict the semantic labels and

volumetric occupancy of a scene in an end-to-end network.

The expensive cost of 3D CNN, however, limits the depth

of the network, which hinders the accuracy achieved by SS-

CNet. Zhang et al. [21] introduced spatial group convo-

lution (SGC) into SSC for accelerating the computation of

3D dense prediction task. However, its accuracy is slightly

lower than that of SSCNet. By combining the 2D CNN

and 3D CNN, Guo and Tong [8] proposed the view-volume

network (VVNet) to efficiently reduce the computation cost

and enhance the network depth. Li et al. [11] use both depth

and voxels as the inputs of a hybrid network and consider

the importance of elements at different positions [23] while

training.

Garbade et al. [6] proposed a two-stream approach that

jointly leverages the depth and visual information. In spe-

cific, it first constructs an incomplete 3D semantic tensor

for the inferred 2D semantic information, and then adopts a

vanilla 3D CNN to infer the complete 3D semantic tensor.

Liu et al. [13] also used RGB-D image as input and pro-

posed a two-stage framework to sequentially carry out the

2D semantic segmentation and 3D semantic scene comple-

tion, which are connected via a 2D-3D re-projection layer.

However, their two-stage method can suffer from the error

accumulation, producing inferior results. Although signifi-

cant improvements have been achieved, these methods are

limited by the cost of 3D convolution and the fixed recep-

tive fields. Li et al. [10] introduced a dimensional decom-

position residual network (DDRNet) for the 3D SSC task.

Although it achieves good accuracy with less parameters, it

still leaves the limitation of using fixed receptive field unat-

tended.

2.2. Going Beyond Fixed Receptive Field

Most existing models utilize fixed-size kernel to model

fixed visual context, which are less robust and flexible when

dealing with objects with various sizes.

Inception family [17, 19, 18] take receptive field with

multiple sizes into account, and it implements this con-

cept by launching multi-branch CNNs with different con-

volution kernels. The similar idea appears in atrous spatial

pyramid pooling (ASPP) [2], multi-scale information was

captured via using several parallel convolutions with differ-

ent atrous(dilation) rates on the top of feature map. These

strategies essentially embrace the idea of multi-scale fusion,

and the same fusion strategy is uniformly applied to all the

positions. Zhang et al. [22] choose a more suitable receptive

field by weighting convolutions with different kernel sizes.

STN [9] designs a Spatial Transformer module to

achieve invariance in terms of translation, rotation, and

scale. However, it treats the whole image as a unit, rather

than adjusts the receptive field pixel-wisely. Deformable

CNN (DCNv1) [3] attempts to adaptively adjust the spatial

distribution of receptive fields according to the scale and

shape of the object. Specifically, it utilizes offset to control

the spatial sampling. DCNv2 [25] increases the modeling

power by stacking more deformable convolutional layers to

improve its modelling ability and proposes to use a teacher

network to guide the training process. However, DCNv2

still struggles to control the offset in order to focus on rele-

vant pixels only.

Different from the above methods, the proposed AIC

module is tailored for 3D tasks, in particular for SSC in

this paper. It is capable of handling objects with variations

in shapes, layouts and visibility by learning anisotropic re-

ceptive field voxel-wisely. At the same time, it achieves

trade-off between semantic completion accuracy and com-

putational cost.

3. Anisotropic Convolutional Networks

In this section, we introduce our anisotropic

convolutional networks (AIC-Net) for 3D semantic

scene completion. At the core of AIC-Net is our proposed

anisotropic convolutional (AIC) module. Given a single-

view RGB-D image of a 3D scene, AIC-Net predicts a

dense 3D voxel representation and maps each voxel in the
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Figure 1. The overall network structure of AIC-Net. AIC-Net has two feature extractors in parallel to capture the features from RGB and

depth images, respectively. The feature extractor contains a projection layer to map the 2D feature to 3D space. After that, we use stacked

AICs to obtain information with adaptive receptive fields. The multi-scale features are concatenated and then fused through another two

AICs followed by three voxel-wise convolutions to predict occupancy and object labels simultaneously.

view frustum to one of the labels C = {c1, c2, · · · , cN+1},

where N is the number of object classes, cN+1 represents

the empty voxels, {c1, c2, · · · , cN} represent the voxels

occupied by objects of different categories.

Fig. 1 illustrates the overall architecture of our AIC-Net.

It consists of a hybrid feature extractor for feature extrac-

tion from the depth map and RGB image, a multi-stage fea-

ture aggregation module with a stack of AIC modules to

aggregate features obtained by the hybrid feature extractor,

two extra AIC modules to fuse multi-stage information, fol-

lowed by a sequence of voxel-wise 3D convolution layers

to reconstruct the 3D semantic scene. The hybrid feature

extractor contains two parallel branches to extract features

for the depth map and the RGB image, respectively. Each

branch contains a hybrid structure of 2D and 3D CNNs.

The 2D and 3D CNNs are bridged by a 2D-3D projection

layer, allowing the model to convert the 2D feature maps

into 3D feature maps that are suitable for 3D semantic scene

completion. The structure of our hybrid feature extractor

follows that of DDRNet [10]. The multi-stage feature ag-

gregation module consists of a sequence of AIC modules,

each of which can voxel-wisely adjust the 3D context on the

fly. The outputs of these AIC modules are concatenated to-

gether, and another two AIC modules fuse such multi-stage

information. The 3D semantic scene can then be recon-

structed by applying a sequence of voxel-wise 3D convo-

lutional layers on the fused feature.

In the rest of this section, we will introduce our AIC

module (section 3.1), the multi-path kernel selection mech-

anism achieved by stacking our AIC modules (section 3.2),

and the training loss for our model (section 3.3) in detail.

3.1. Anisotropic Convolution

Considering the variations in object shapes, layouts as

well as the varying levels of occlusion in SSC, it will be

beneficial to model different context information to infer the

occupancy and semantics for different voxel positions. The

anisotropic convolution (AIC) module is proposed to adapt

to such variations, allowing the convolution to accommo-

date 3D geometric deformation. Fig. 2 shows the struc-
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Figure 2. Anisotropic convolution. For each dimension, we set 3

parallel convolution with different kernel sizes as an example. The

learned modulation factors for different kernels are denoted with

different colors. The values of the modulation factors are positive

and the values of each row sum up to 1.

ture of our AIC module. Instead of using the 3D kernels

( k1 × k2 × k3) that are limited to the fixed 3D receptive

field, we model the dimensional anisotropy property by en-

abling the kernel size for each 3D dimension to be learnable.

To achieve this, we first decompose the 3D convolution op-

eration as the combination of three 1D convolution opera-

tions along each dimension x, y, z. In each dimension, we

can inject multiple (e.g. 3 in our implementation) kernels

of different sizes to enable more flexible context modeling.

For example, for dimension x, we can have three kernels as

(1 × 1 × kx1 ), (1 × 1 × kx2 ), and (1 × 1 × kx3 ). A set of

selection weights, a.k.a. modulation factors, will be learned

to select proper kernels along each of the three dimensions.
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Figure 3. Bottleneck version AIC module. The first convolution

reduces the number of channels from D to D′ (D′ < D) and the

last convolution increases the channels back to D.

Note that the kernel candidates for different dimensions are

not necessary to be the same. When there are n, m, and l

candidate kernels along x, y, and z dimensions respectively,

the possible kernel combinations can grow exponentially as,

{kz1 , k
z
2 , · · · , k

z
l } × {ky1 , k

y
2 , · · · , k

y
m} × {kx1 , k

x
2 , · · · , k

x
n}.

The AIC module can learn to select different kernels for

each dimension, forming an anisotropic convolution to cap-

ture anisotropic 3D information.

Modulation factors To enable the model to determine the

optimal combination of the candidate kernels and conse-

quently adaptively controlling the context to model differ-

ent voxels, we introduce a modulation module in the AIC

module. As shown in Fig. 2, assume the input to an AIC

module is a tensor Xt−1 ∈ R
L×W×H×D, where L, W ,

H denotes the length, width, height of the tensor, and D

indicates the dimensionality of the feature. The output

Xt ∈ R
L×W×H×D can be formulated as,

Xt = Fz(Fy(Fx(Xt−1))) +Xt−1, (1)

where Fu represents the anisotropic convolution along the

u ∈ {x, y, z} dimension. We adopt a residual structure to

obtain the output by element-wisely summing up the in-

put tensor and the output of three consecutive anisotropic

1D convolutions. Without losing generality, we represent

Fx(Xt−1) as,

X
x
t =

n∑

i=1

fx(Xt−1, θ
x
i )⊙ gx(Xt−1, φ

x)[i], (2)

where fx(Xt−1, θ
x
i ) represents performing convolution to

Xt−1 using parameter θxi which has kernel size (1, 1, kxi )
with kxi ∈ {kx1 , k

x
2 , · · · , k

x
n}, n is the toal numner of candi-

date kernels for dimension x, and ⊙ denotes element-wise

multiplication. gx(Xt−1, φ
x) is a mapping function from

the input tensor to the weights or modulation factors used

to select the kernels along dimension x and φx denotes the

parameters of the mapping function. We perform softmax

to gu(·, ·)[i] in order that the weights for the kernels of each

𝑘1𝑥 = 3𝑘2𝑥 = 5𝑘3𝑥 = 7
𝑘1𝑥 = 3𝑘2𝑥 = 5𝑘3𝑥 = 7

𝑘1𝑥 = 3𝑘2𝑥 = 5𝑘3𝑥 = 7
𝑘1𝑥 = 3𝑘2𝑥 = 5𝑘3𝑥 = 7𝐗𝑡−1

Figure 4. Illustration of multi-path kernel selection in one dimen-

sion. In this example, four AIC modules are stacked and for each

module the kernel sizes for each dimension are {3, 5, 7}. The

background darkness of the kernel indicates the value of the mod-

ulation factor, and thus reflects the selection tendency for this ker-

nel. Stacking multiple AIC modules can increase the range of re-

ceptive fields exponentially.

dimension u ∈ {x, y, z} sum up to 1, that is,

p∈{n,m,l}∑

i=1

gu(·, φu)[i] = 1, gu(·, φu)[i] ≥ 0. (3)

In this sense, we adopt a soft constraint with a set of weights

to determine the importance of different kernels. The two

extreme cases are that the learned modulation factor is 1
or 0, indicating that the corresponding kernel will be the

unique selected or be ignored. By using soft values, we can

control the contributions of these kernels more flexibly.

In Fig. 2, we show an example of the AIC module with

m = n = l = 3 and as seen, gu(·, ·) is realized by a 1-layer

3D convolution with kernel (1× 1× 1).
Bottleneck anisotropic convolution To further reduce the

parameters of our AIC module, we propose a bottleneck

based AIC module. As shown in Fig. 3, for each AIC mod-

ule, a (1×1×1) convolution is added both before and after

the AIC operation. These two convolutions are responsible

for reducing and restoring the feature channels, allowing the

AIC module to have a more compact input. In the remain-

der of the paper, unless stated otherwise, AIC refers to the

bottleneck based AIC.

3.2. Multi­path Kernel Selection

Despite the attractive properties in a single AIC mod-

ule, here we show that greater flexibility can be achieved

by stacking multiple AIC modules. Stacking multiple AIC

modules forms multiple possible paths between layers im-

plicitly and consequently enables an extensive range of re-

ceptive field variations in the model. Fig. 4 shows a stack

of four AIC modules, and each module sets the kernel sizes

to {3, 5, 7} along all three dimensions. For one specific di-

mension, when each module tends to select the kernel size

7, a maximum receptive field of 25 will be obtained for this

dimension. On the contrary, a minimum receptive field of 9
can be obtained for a dimension, if kernel size 3 dominates

the selections of all four AIC modules in this dimension.

In theory, the receptive field for this particular dimension
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scene completion semantic scene completion

Methods prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

Lin et al. [12] 58.5 49.9 36.4 0.0 11.7 13.3 14.1 9.4 29.0 24.0 6.0 7.0 16.2 1.1 12.0

Geiger et al. [7] 65.7 58.0 44.4 10.2 62.5 19.1 5.8 8.5 40.6 27.7 7.0 6.0 22.6 5.9 19.6

SSCNet [16] 57.0 94.5 55.1 15.1 94.7 24.4 0.0 12.6 32.1 35.0 13.0 7.8 27.1 10.1 24.7

EsscNet [21] 71.9 71.9 56.2 17.5 75.4 25.8 6.7 15.3 53.8 42.4 11.2 0 33.4 11.8 26.7

DDRNet [10] 71.5 80.8 61.0 21.1 92.2 33.5 6.8 14.8 48.3 42.3 13.2 13.9 35.3 13.2 30.4

VVNet [8] 69.8 83.1 61.1 19.3 94.8 28.0 12.2 19.6 57.0 50.5 17.6 11.9 35.6 15.3 32.9

AIC-Net 62.4 91.8 59.2 23.2 90.8 32.3 14.8 18.2 51.1 44.8 15.2 22.4 38.3 15.7 33.3

Table 1. Results on the NYU [15] dataset. Bold numbers represent the best scores.

scene completion semantic scene completion

Methods prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

Zheng et al. [24] 60.1 46.7 34.6 - - - - - - - - - - - -

Firman et al. [5] 66.5 69.7 50.8 - - - - - - - - - - - -

SSCNet [16] 75.4 96.3 73.2 32.5 92.6 40.2 8.9 33.9 57.0 59.5 28.3 8.1 44.8 25.1 40.0

TS3D [6] 80.2 91.0 74.2 33.8 92.9 46.8 27.0 27.9 61.6 51.6 27.6 26.9 44.5 22.0 42.1

DDRNet [10] 88.7 88.5 79.4 54.1 91.5 56.4 14.9 37.0 55.7 51.0 28.8 9.2 44.1 27.8 42.8

VVNet [8] 86.4 92.0 80.3 - - - - - - - - - - - -

AIC-Net 88.2 90.3 80.5 53.0 91.2 57.2 20.2 44.6 58.4 56.2 36.2 9.7 47.1 30.4 45.8

Table 2. Results on the NYUCAD dataset [24]. Bold numbers represent the best scores.

can freely vary in the range of (9, 25). When considering

three dimensions simultaneously, the number of 3D recep-

tive fields supported by our AIC network will grow expo-

nentially, which will provide flexibility and power for mod-

eling object variations impossible for competing methods.

3.3. Training Loss

Our proposed AIC-Net can be trained in an end-to-end

fashion. We adopt the voxel-wise cross-entropy loss func-

tion [16] for the network training. The loss function can be

expressed as,

L =
∑

i,j,k

wijkLsm (pijk, yijk), (4)

where Lsm is the cross-entropy loss, yijk is the ground truth

label for coordinates (i, j, k), pijk is the predicted probabil-

ity for the same voxel, and wijk is the weight to balance the

semantic categories. We follow [16, 10] and use the same

weights in our experiments.

4. Experiments

In this section, we start by introducing some key im-

plementation details, followed by the description of the

datasets as well as the evaluation metrics. Then we present

some quantitative comparisons between the propose AIC-

Net and some other existing works. Furthermore, qualita-

tive comparisons are given through visualization. Finally,

comprehensive ablation studies are performed to inspect

some critical aspects of AIC-Net.

4.1. Implementation Details

In our AIC-Net, we stack three AIC modules for each

branch in the multi-stage feature aggregation part, and two

AIC modules are adopted to fuse these features. All the

AIC modules used are the bottleneck version as shown in

Fig. 3. For the three AIC modules in feature aggregation,

the bottleneck layer is used to decrease the dimensionality

of the features from D = 64 to D′ = 32. For the AIC

modules in feature fusion part, the dimensionalities of fea-

tures before and after the bottleneck layer are D = 256 and

D′ = 64. Unless stated otherwise, we use three candidate

kernels with kernel size {3, 5, 7} for each dimension of all

AIC modules. More details about the network structure can

be found in the supplements.

Our model is trained by using SGD with a momentum

of 0.9 and a weight decay of 10−4. The initial learning rate

is set to be 0.01, which decays by a factor of 10 every 15

epochs. The batch size is 4. We implement our model using

PyTorch. All the experiments are conducted on a PC with 4

NVIDIA RTX2080TI GPUs.

Datasets. We evaluate the proposed AIC-Net on two SSC

datasets. One dataset is the NYU-Depth-V2 [15], which is

also known as the NYU dataset. The NYU dataset consists

of 1,449 depth scenes captured by a Kinect sensor. Fol-

lowing SSCNet [16], we use the 3D annotations provided

by [14] for semantic scene completion task. The second

dataset is the NYUCAD dataset [5]. This dataset uses the

depth maps generated from the projections of the 3D anno-

tations to reduce the misalignment of depths and the anno-

tations and thus can provide higher-quality depth maps.

Evaluation metrics. For semantic scene completion, we

measure the intersection over union (IoU) between the pre-

dicted voxel labels and ground-truth labels for all object

classes. Overall performance is also given by computing

the average IoU over all classes. For scene completion, all

voxels are to be categorized into either empty or occupied.
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ceil. floor wall win. chair bed sofa table tvs furn. objects

(a) RGB and Depth images       (b) Ground truth              (c) SSCNet (d) DDRNet (e) Ours

Figure 5. Qualitative results on NYUCAD. From left to right are input RGB-D image, the ground truth, results generated by SSCNet [16],

DDRNet [10] and the proposed AIC-Net. (Best viewed in color.)

A voxel is counted as occupied if it belongs to any of the

semantic classes. For scene completion, apart from IoU,

precision and recall are also reported. Note that the IoU for

semantic scene completion is commonly accepted as a more

important metric in the SSC task.

4.2. Comparison with the State­of­the­Art

We compare our AIC-Net with the state-of-the-art meth-

ods on NYU and NYUCAD. The results are reported in

Table 1 and Table 2, respectively. In Table 1, we can see

that for the semantic scene completion our method signifi-
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scene completion semantic scene completion

Methods prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

AIC-Net, k={3, 5, 7} 88.2 90.3 80.5 53.0 91.2 57.2 20.2 44.6 58.4 56.2 36.2 9.7 47.1 30.4 45.8

AIC-Net, k={5, 7} 88.3 89.5 79.9 51.0 91.3 56.8 18.6 41.3 58.6 59.4 34.6 4.8 46.7 30.9 44.9

AIC-Net, k={7} 86.3 90.3 79.1 50.7 91.7 54.5 21.2 38.0 55.5 57.1 33.2 7.9 44.9 29.4 44.0

AIC-Net, k={5} 87.8 88.2 78.4 49.6 91.3 55.3 15.7 38.7 58.6 52.8 30.9 0. 43.9 30.2 42.5

Table 3. The performance of AIC-Net under different kernel sets. We use the same kernel set k = (k1, k2, · · · , kn) for each dimension.

Results are reported on NYUCAD [24] dataset.

scene completion semantic scene completion

Methods prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

NYU

AIC-Net-noMFs 71.4 79.0 59.9 22.3 90.8 32.0 14.4 14.5 47.5 41.3 12.6 16.8 32.8 12.7 30.7

AIC-Net 62.4 91.8 59.2 23.2 90.8 32.3 14.8 18.2 51.1 44.8 15.2 22.4 38.3 15.7 33.3

NYUCAD

AIC-Net-noMF 87.2 90.3 79.6 51.1 91.7 57.0 18.5 39.3 51.4 51.8 30.7 1.3 45.0 30.1 42.5

AIC-Net 88.2 90.3 80.5 53.0 91.2 57.2 20.2 44.6 58.4 56.2 36.2 9.7 47.1 30.4 45.8

Table 4. The importance of the modulation factors. AIC-Net-noMFs denotes we set all the modulation factors to be 1. Results are reported

on the NYU [15] and NYUCAD [24] datasets.

cantly outperforms other methods in overall accuracy. The

proposed AIC-Net achieves 2.9% better than the cutting-

edge approach DDRNet [10] in terms of the average IoU.

For scene completion, our method is slightly outperformed

by DDRNet [10]. The scene completion task requires to

predict the volumetric occupancy, which is class-agnostic.

Since our AIC-Net aims at modeling the object variation

voxel-wisely, its advantage will fade in the binary com-

pletion task. In Table 2, our AIC-Net achieves the best

semantic segmentation performance as well, and our av-

erage IoU outperforms the second-best approach by 3%.

For scene completion, our method also observes superior

performance, although the advantage is not as significant.

Among the comparing methods, SSCNet [16] is built us-

ing standard 3D convolution. The inferior performance lies

twofold. First, the fixed receptive field is not ideal for ad-

dressing object variations. Second, 3D convolution is re-

source demanding, which can limit the depth of the 3D net-

work and consequently sacrifices the modeling capability.

Another interesting observation from these two tables

is that our AIC-Net tends to obtain better performance on

some categories that have more severe shape variations, e.g.

chair, table, objects.

4.3. Qualitative Results

In Fig. 5, we show some visualization results to eval-

uate the effectiveness of our AIC-Net qualitatively. Gen-

erally, we can see that the proposed AIC-Net can handle

diverse objects with various shapes and thus give more ac-

curate semantic predictions and shape completion than SS-

CNet [16] and DDRNet [10]. Some challenging examples

include “chairs” and “tables” in Row 1, Row 3, and Row

5, which require a model to adaptively adjust the recep-

tive field voxel-wisely. For example, for some more deli-

cate parts like “legs”, a smaller receptive field can be more

beneficial. It shows that our AIC-Net can identify such ob-

jects more clearly. While for some other objects like “win-

dows” in Row 5 and Row 7, it expects to see the larger

context. Both SSCNet and DDRNet fail in this case, but

our method still successfully identifies them from other sur-

rounding distractors. The “bed” in Row 2, the “wall” in

Row 6, and the “sofa” in Row 4 also demonstrate the supe-

riority of our approach. In Row 8, the “objects” marked by

the red dashed rectangle are in a messy environment. Our

AIC-Net is less vulnerable to the influence of surrounding

objects and more accurately distinguishes the categories and

shapes of these “objects”.

4.4. Ablation Study

In this section, we dive into the AIC-Net to investigate

its key aspects in detail. Specifically, we try to answer the

following questions. 1). Is it beneficial to use multiple can-

didate kernels along each dimension of the AIC module?

2). Is the performance improvement simply coming from

multiple kernels? 3). Will that work if the AIC module is

used as a plug-and-play module? 4). The trade-off between

SSC performance and cost.

The effectiveness of using multiple kernels In our AIC

module, we use multiple candidate kernels in each di-

mension x, y, z, and use the learned modulation factors

to choose proper kernels along each of these dimensions.

Since we expect our AIC-Net to be able to deal with ob-

jects of varying shapes, the kernels in AIC should be suffi-

ciently distinct. In our experiments, we set the kernel set to

be {3, 5, 7} across all three dimensions. The first question

needs to be clarified is that will it be enough to use only

the maximum kernel, i.e. 7 in our network? Then, are three

kernels better than two? From the results of Table 3, we can

see, either two kernels {5, 7} or three kernels {3, 5, 7} can

3357



scene completion semantic scene completion

method prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

DDRNet-DDR-ASPP [10] 88.7 88.5 79.4 54.1 91.5 56.4 14.9 37.0 55.7 51.0 28.8 9.2 44.1 27.8 42.8

DDRNet-AIC-ASPP 87.9 89.1 79.4 48.0 90.9 56.1 20.1 41.6 56.6 55.0 33.1 12.6 45.3 29.0 44.4

DDRNet-DDR-AIC 88.0 89.6 79.7 49.0 91.4 57.6 19.7 40.5 52.3 52.9 32.5 6.1 44.6 30.7 43.4

DDRNet-AIC-AIC 87.5 89.3 79.1 51.7 91.5 56.4 16.5 44.1 56.3 56.4 35.4 12.3 46.1 30.4 45.2

Table 5. AIC module as plug-and-play modules. The components of DDRNet [10] are replaced by the AIC modules. Results are reported

on NYUCAD [24] dataset.

Methods Params/k FLOPs/G SC-IoU SSC-IoU

SSCNet [16] 930.0 163.8 73.2 40.0

DDRNet [10] 195.0 27.2 79.4 42.8

3D conv, k=(3, 3, 3) 440.1 61.0 - -

3D conv, k=(5, 5, 5) 1443.6 191.1 - -

3D conv, k=(7, 7, 7) 3675.9 480.4 - -

AIC-Net∗, k={3, 5, 7} 628.7 85.5 79.1 45.2

AIC-Net, k={3, 5, 7} 847.0 113.7 80.5 45.8

AIC-Net, k={5, 7} 716.0 96.77 79.9 44.9

Table 6. Params, FLOPs and Performance of our approach com-

pared with other methods. 3D conv, k = (k1, k2, k3) denotes we

replace our AIC module with a 3D convolution unit with 3D kernel

(k1, k2, k3). AIC-Net∗ denotes a AIC-Net with one AIC module

in feature fusion part, while by default we use two AIC modules.

outperform kernel 7. Since the maximum receptive field for

all these three options is 7, the results demonstrate the ben-

efits of using multiple kernels. At the same time, three ker-

nels outperform two kernels by about 1% because it renders

more flexibility in modeling the context.

Is it necessary to use modulation factors? In the above

paragraph, we show the benefit of using multiple kernels

along each dimension. However, another question arises

that is the improvement simply coming from multiple ker-

nels? In other words, is that necessary to learn modulation

factors to adaptively select the kernels voxel-wisely? From

Table 4, we can see when we discard the modulation fac-

tors in AIC modules, the performance of AIC-Net observes

obvious degradation on both NYU and NYUCAD datasets.

These results show that the superior performance of AIC-

Net relies on modeling the dimensional anisotropy property

by adaptively selecting proper kernels along each dimen-

sion. To further inspect the anisotropic nature of the learned

kernels, we observed the statistical values of the modula-

tion factors and found that: 1.) the selected kernel sizes are

basically consistent with the object sizes; 2.) the modula-

tion values for different voxels vary a lot within one scene;

3.) the modulation values among the three separable dimen-

sions have significant variation. This indicates the learned

“3D receptive field” are anisotropic and adaptive.

AIC module used as a plug-and-play module Due to its

ability to model the anisotropic context, our AIC module

is expected to be able to benefit other networks when it is

used as a plug-and-play module. To validate this, we choose

the DDRNet [10] as the test-bed, and use the AIC mod-

ule to replace its building blocks, DDR and ASPP. DDR

block models 3D convolution in a lightweight manner with

the fixed receptive field. ASPP is a feature fusion scheme

commonly used in semantic segmentation to take advantage

of the multi-scale context. Table 5 shows the comparison.

When we use AIC to replace the DDR module in DDR-

Net [10], the SSC-IoU is improved by 1.6%. When we re-

place ASPP by our AIC module, we still observe a 0.6%
improvement in semantic segmentation. Finally, when we

replace both DDR and ASPP by AIC, the result can be fur-

ther boosted.

Trade-off in performance and cost Since we decompose

the 3D convolution into three consecutive 1D convolutions,

the model parameters and computation grow linearly with

the number of candidate kernels in each dimension. While

for standard 3D convolution, the parameters and computa-

tion will have cubic growth. Table 6 presents some com-

parisons in terms of both efficiency and accuracy. For the

3D conv, k = (k1, k2, k3) in the table, it means we use

this particular 3D convolution to replace our AIC module.

As can be seen, when the 3D kernel size is (5, 5, 5), it will

result in 3 times of parameters and FLOPs comparing to

our AIC-Net. When the kernel size is increased to (7, 7, 7),
the parameter and computation scale will be 8 times more

than ours. DDRNet is a lightweight structure, which con-

sumes the least parameters and has the lowest computation

complexity, but it observes a glaring performance gap com-

paring to our method. Thus, our AIC-Net achieves a better

trade-off between performance and cost.

5. Conclusion

In this paper, we proposed a novel AIC-Net, to han-

dle the object variations in the semantic scene completion

(SSC) task. At the core of AIC-Net is our proposed AIC

module, which can learn anisotropic convolutions by adap-

tively choosing the convolution kernels along all three di-

mensions voxel-wisely. By stacking multiple such AIC

modules, it allows us more flexibly to control the receptive

field for each voxel. This AIC module can be freely inserted

into existing networks as a plug-and-play module to effec-

tively model the 3D context in a parameter-economic man-

ner. Thorough experiments were conducted on two SSC

datasets, and the AIC-Net outperforms existing methods by

a large margin, establishing the new state-of-the-art.
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