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Abstract

Few-shot learning (FSL) has attracted increasing atten-

tion in recent years but remains challenging, due to the in-

trinsic difficulty in learning to generalize from a few ex-

amples. This paper proposes an adaptive margin princi-

ple to improve the generalization ability of metric-based

meta-learning approaches for few-shot learning problems.

Specifically, we first develop a class-relevant additive mar-

gin loss, where semantic similarity between each pair of

classes is considered to separate samples in the feature em-

bedding space from similar classes. Further, we incorpo-

rate the semantic context among all classes in a sampled

training task and develop a task-relevant additive margin

loss to better distinguish samples from different classes.

Our adaptive margin method can be easily extended to a

more realistic generalized FSL setting. Extensive exper-

iments demonstrate that the proposed method can boost

the performance of current metric-based meta-learning ap-

proaches, under both the standard FSL and generalized

FSL settings.

1. Introduction

Deep learning has achieved great success in various com-

puter vision tasks [10, 26]. However, with a large number

of parameters, deep neural networks require large amounts

of labeled data for model training. This severely limits their

scalability – for many rare classes, it is infeasible to col-

lect a large number of labeled samples. In contrast, hu-

mans can recognize an object after seeing it once. Inspired

by the few-shot learning ability of humans, there has been

an increasing interest in the few-shot learning (FSL) prob-
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Figure 1. The illustration of the key insight of our adaptive mar-

gin loss. In our approach, semantic similarities between different

classes (measured in the semantic space of classes) are leveraged

to generate adaptive margin between classes. Then, the margin is

integrated into the classification loss to make similar classes more

separable in the embedding space, which benefits FSL.

lem [6, 13, 25, 27]. Given a set of base classes with suffi-

cient labeled samples, and a set of novel classes with only

a few labeled samples, FSL aims to learn a classifier for the

novel classes by learning a generic knowledge from the base

classes.

Recently, metric-based meta-learning approaches [8, 14,

16, 27, 29] have shown the superior performance in solv-

ing the FSL problem, with attractive simplicity. These

approaches usually learn a good embedding space, where

samples from the same class are clustered together while

samples from different classes are far away from each other.

In this way, a new sample from the novel class can be rec-
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ognized directly through a simple distance metric within

the learned embedding space. The success of these metric-

based approaches relies on learning a discriminative embed-

ding space.

To further improve the performance, we introduce the

adaptive margin in the embedding space, which helps to

separate samples from different classes, especially for sim-

ilar classes. The key insight of our approach is that the se-

mantic similarity between different classes can be leveraged

to generate adaptive margin between classes, i.e., the mar-

gin between similar classes should be larger than the one

between dissimilar classes (as illustrated in Figure 1). By

integrating the adaptive margin into the classification loss,

our method learns a more discriminative embedding space

with better generalization ability.

Specifically, we first propose a class-relevant margin

generator which produces an adaptive margin for each pair

of classes based on their semantic similarity in the seman-

tic space. By combining the margin generated by class-

relevant margin generator and the classification loss of FSL

approaches, our class-relevant additive margin loss can ef-

fectively pull each class away from other classes. Consider-

ing the semantic context among a sampled training task in

the FSL, we further develop a task-relevant margin genera-

tor. By comparing each class with the rest classes among the

task in the semantic space, our task-relevant margin gener-

ator produces more suitable margin for each pair of classes.

By involving these margin penalty, our task-relevant mar-

gin loss learns more discriminative embedding space, thus

leads to stronger generalization ability to recognize novel

class samples. Moreover, our approach can be easily ex-

tended to a more realistic yet more challenging FSL set-

ting (i.e., the generalized FSL) where the label space of

test data covers both base and novel classes. This is as op-

posed to the standard FSL setting where the test data con-

tain novel class samples only. Experimental results on the

two FSL benchmarks show that our approach significantly

improves the performance of current metric-learning-based

approaches on both of the two FSL settings.

In summary, our contributions are three folds: (1) To

the best of our knowledge, this is the first work to propose

an adaptive margin principle to improve the performance

of current metric-based meta-learning approaches for FSL.

(2) We propose a task-relevant adaptive margin loss to well

distinguish samples from different classes in the embedding

space according to their semantic similarity, and experimen-

tal results demonstrate that our method achieves the state-

of-the-art results on the benchmark dataset. (3) Our ap-

proach can be easily extended to a more realistic yet more

challenging generalized FSL setting, with superior perfor-

mance obtained. This further validates the effectiveness of

our method.

2. Related Work

2.1. Few­shot Learning

In recent years, few-shot object recognition has become

topical. With the success of deep convolutional neural

network (DCNN) based approaches in the data-rich set-

ting [5, 10, 26, 30], there has been a great of interest in

generalizing such deep learning approaches to the few-shot

setting. Most of the recent approaches use a meta-learning

strategy. With the meta-learning, these models extract trans-

ferable knowledge from a set of auxiliary tasks via episodic

training. The knowledge then helps to learn the few-shot

classifier trained for the novel classes.

Existing meta-learning based FSL approaches usually

learn a model that, given a task (a set of few-shot labeled

data and some test query data), produces a classifier that

generalizes across all tasks [8]. A main group of gradient-

based meta-learning models attempt to modify the classical

gradient-based optimization to adapt to a new episodic task

by producing efficient parameter updates [1, 7, 8, 23]. Re-

cently, many meta-learning approaches attempt to learn an

effective metric on the feature space. The intuition is that

if a model can determine the similarity of two images, it

can classify an unseen test image with a few labeled ex-

amples [27, 29]. To learn an effective metric, these meth-

ods make their prediction conditioned on distances to a few

labeled examples during the training stage [2, 31]. These

examples are sampled from base classes designed to sim-

ulate the few-shot scenario. In this paper, we propose a

novel generic adaptive margin strategy which can be inte-

grated in existing metric-based meta-learning approaches.

Our method can force different classes far from each other

in the embedding space. This makes it much easier to rec-

ognize novel class samples.

2.2. Margin Loss in Visual Recognition

Softmax loss has been widely used in training DC-

NNs for extracting discriminative visual features for object

recognition tasks. By observing that the weights from the

last fully connected layer of a classification DCNN trained

on the softmax loss bear conceptual similarities with the

centers of each class, the works in [4, 18, 33] proposed sev-

eral margin losses to improve the discriminative power of

the trained model. Liu et al. [18] introduced the impor-

tant idea of angular margin. However, their loss function

required a series of approximations in order to be com-

puted, which resulted in an unstable training of the net-

work. Wang et al. [32] and Wang et al. [33] directly add

cosine margin to the target logits and achieve better results

than [18]. Deng et al. [4] proposed an additive angular mar-

gin loss to further improve the discriminative power of fea-

ture embedding space. Although the aforementioned mar-

gin losses have achieved promising results on visual recog-
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nition tasks, they are not designed for FSL, where limited

samples are provided for novel classes. To learn more suit-

able margin for FSL, we thus propose an adaptive mar-

gin principle, where the semantic context among a sampled

training task is considered. By training the FSL approach

with our adaptive margin loss, the learned model general-

izes better across all tasks and thus achieves better recogni-

tion results on novel classes.

3. Methodology

3.1. Preliminary: Metric­Based Meta­Learning

In the few-shot learning (FSL), we are given a base class

set Cbase consisting of nbase base classes, and for each base

class, we have sufficient labeled samples. Meanwhile, we

also have a novel class set Cnovel with nnovel novel classes,

each of which has only a few labeled samples (e.g., less than

5 samples). The goal of FSL is to obtain a good classifier

for the novel classes.

Meta-learning [7, 27, 31, 34, 35] is a common approach

for the FSL. A standard meta-learning procedure involves

two stages: meta-training and meta-test. In the meta-

training stage, we train the model in an episodic manner.

In each episode, a small classification task is constructed

by sampling a small training set and a small test set from

the whole base class dataset, and then it is used to update

the model. In the meta-test stage, the learned model is used

to recognize samples from novel classes. Recently, metric-

based meta-learning approaches become popular [8, 35].

Most metric-based meta-learning approaches generally as-

sume that there exists an embedding space in which samples

cluster around a single representation for each class, and

then these class representations are used as references to in-

fer labels of test samples. In the following, we introduce the

framework of metric-based meta-learning approaches.

Meta-Training. In each episode of meta-training, we sam-

ple a nt-way ns-shot classification task from the base class

dataset. Specifically, we randomly choose nt classes from

base class set Cbase for the episodic training, denoted as Ct.

We randomly select ns samples from each episodic training

class and combine them to form a small training set, which

is called support set S. Moreover, we also randomly se-

lect some other samples from each episodic training class

and combine them to form a small test set, which is called

query set Q.

In the current episode, all samples from both query set

and support set are embedded into the embedding space

by using an embedding module F . Then, the meta-learner

generates class representations r1, r2, · · · , rnt
by using the

samples from support set S. For example, Prototypical Net-

works [27] generates class representations by averaging the

embeddings of support samples by class. After that, the

meta-learner uses a metric module D (e.g., cosine similar-

ity) to measure the similarity between every query point

(x, y) ∈ Q and the current class representations in the

embedding space. Based on these similarities, the meta-

learner incurs a classification loss for each point in the cur-

rent query set. The meta-learner then back-propagates the

gradient of the total loss of all query samples. The classifi-

cation loss can be formulated as:

Lcls = −
1

|Q|

∑

(x,y)∈Q

log
eD(F(x),ry)

∑
k∈Ct

eD(F(x),rk)
, (1)

where D(F(x), rk) denotes the similarity between sample

x and the k-th class representation rk predicted by the meta-

learner.

Meta-Test. In an episode of meta-test, a novel classification

task is similar to a training base classification task. Specif-

ically, the labeled few-shot sample set and unlabeled test

examples are used to form the support set and query set, re-

spectively. Then they are fed into the learned model with

predicted classification results of query samples as outputs.

Different metric-based meta-learning approaches differ

in the form of the class representation generation mod-

ule and metric module, our work introduces different mar-

gin loss to improve current metric-based meta-learning ap-

proaches.

3.2. Naive Additive Margin Loss

An intuitive idea to learn a discriminative embedding

space is to add a margin between the predicted results of

different classes. This helps to increase the inter-class dis-

tance in the embedding space and make it easier to recog-

nize test novel samples. To achieve this, we propose a naive

additive margin loss (NAML), which can be formulated as:

Lna=−
1

|Q|

∑

(x,y)∈Q

log pna(y|x, S), (2)

where

pna(y|x, S) =
eD(F(x),ry)

eD(F(x),ry) +
∑

k∈Ct\{y}

eD(F(x),rk)+m
.

The above naive additive margin loss assumes all classes

should be equally far away from each other and thus add a

fixed margin among all classes. In this way, this loss forces

the embedding module F to extract more separable visual

features for samples from different classes, which benefits

the FSL. However, the fixed additive margin may lead to

mistakes on test samples of similar classes, especially for

the FSL where very limited number of labelled samples are

provided in the novel classes.
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Figure 2. The overview of the proposed approach. Our approach consists of two stages: 1) In each episode of the meta-training stage,

we first sample a meta-training task from the base class dataset. Then, the names of classes in the meta-training task are fed into a word

embedding model to extract semantic vectors for classes. After that, we propose an adaptive margin generator to produce margin penalty

for each pair of classes (e.g., the class relevant margin generator proposed in Section 3.3 or the task relevant margin generator proposed in

Section 3.4). Finally, we integrate the margin penalty into the classification loss and thus obtain an adaptive margin loss. A meta-learner

consisting of an embedding module and a metric module is trained by minimizing the adaptive margin loss. 2) In the meta-test stage, with

the embedding module and metric module learned in the meta-training stage, we use a simple softmax (without any margin) to predict the

labels of test novel samples.

3.3. Class­Relevant Additive Margin Loss

To better separate similar classes in the feature embed-

ding space, the margin between two classes should be adap-

tive, i.e., the margin should be larger for similar classes than

dissimilar classes. To achieve such adaptive margin in a

principled manner, we design a class-relevant additive mar-

gin loss (CRAML), where semantic similarities between

classes are introduced to adjust the margin.

Before introducing the class-relevant additive margin

loss, we first describe how to measure the semantic simi-

larity between classes in a semantic space. Specifically, we

represent each class name using a semantic vector extracted

by a word embedding model (e.g., Glove [21]). As illus-

trated in Figure 2, we feed a class name, such as wolf or

dog, into the word embedding model, and it will embed the

class name into the semantic space and return a semantic

word vector. Then, we construct a class-relevant margin

generator M. For each pair of classes, class i and class j,

M uses their semantic word vectors ei and ej as inputs and

generates their margin mcr
i,j as follows:

m
cr
i,j := M(ei, ej) = α · sim(ei, ej) + β, (3)

where sim denotes a metric (e.g., cosine similarity) to mea-

sure the semantic similarity between classes. We use α

and β to denote the scale and bias parameters for the class-

relevant margin generator, respectively.

By introducing the class-relevant margin generator into

the classification loss, we obtain a class-relevant additive

margin loss as follows.

Lcr=−
1

|Q|

∑

(x,y)∈Q

log pcr(y|x, S), (4)

where

pcr(y|x, S)=
eD(F(x),ry)

eD(F(x),ry) +
∑

k∈Ct\{y}

eD(F(x),rk))+mcr

y,k

.

By exploiting the semantic similarity between classes

properly, our class-relevant margin loss makes the samples

from similar classes to be more separable in the embedding

space. The more discriminative embedding space will help

better recognize test novel class samples.

3.4. Task­Relevant Additive Margin Loss

So far, we assume that the margin is task-irrelevant. A

dynamic task-relevant margin generator, which considers

the semantic context among all classes in a meta-training

task, should generate more suitable margin between differ-

ent classes. By comparing each class with other classes

among a meta-training task, our task-relevant margin gener-

ator can measure the relatively semantic similarity between

classes. Thus, the generator will add larger margin for rela-

tively similar classes and smaller margin for relatively dis-

similar classes. Therefore, we incorporate the generator into
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Figure 3. The illustration of the architecture of our task-relevant margin generator.

the classification loss and obtain the task-relevant additive

margin loss (TRAML).

Specifically, given a class y ∈ Ct in a meta-training task,

the generator will produce the margins between class y and

the other classes Ct \ {y} in the task according to their se-

mantic similarities, namely,

{mtr
y,k}k∈Ct\{y} = G

(

{sim(ey, ek)}k∈Ct\{y}

)

, (5)

where mtr
y,k denotes the task-relevant margin between class

y and class k, and G denotes the task-relevant margin gener-

ator, whose architecture is illustrated in Figure 3. As shown

in this figure, for a query sample (e.g., a dog image) with

label y ∈ Ct, we first compute the similarities between its

semantic vector ey and the semantic vectors of the other

classes in the task (e.g., class wolf, sofa and cabinet), re-

spectively. Then, these semantic similarities1 are fed into

the a fully-connected network to generate task-relevant mar-

gin for each class pair. By considering the context among all

the classes in a meta-training task, our task-relevant margin

generator can better measure the similarity among classes,

thus generate more suitable margin for each class pair.

By integrating our task-relevant margin generator into

the classification loss, we can obtain a task-relevant additive

margin loss given in Equation 6 and the outline of comput-

ing task-relevant additive margin loss for a training episode

is given in Algorithm 1.

Ltr=−
1

|Q|

∑

(x,y)∈Q

log ptr(y|x, S), (6)

where

ptr(y|x, S) =
eD(F(x),ry)

eD(F(x),ry) +
∑

k∈Ct\{y}

eD(F(x),rk)+mtr

y,k

.

In a test episode, with the learned embedding module

and metric module, we use the simple softmax function

(without any margin) to predict the label of unlabeled data,

i.e., we don’t need to use semantic vectors of novel classes

during the test stage, which makes our model flexible for

any novel class.

1The order of input similarities has little impact on the performance.

Algorithm 1 Task-relevant additive margin loss computa-

tion for a training episode in few-shot learning

Input: Base class set Cbase, task-relevant generator G.

Output: Task-relevant additive margin loss Ltr.

1: Randomly sample nt classes from base class set Cbase

to form an episodic training class set Ct;

2: Randomly sample ns images per class in Ct to form a

support set S;

3: Randomly sample nq images per class in Ct to form a

query set Q;

4: Obtain the semantic vector for each class in Ct by feed-

ing its class name into a word embedding model;

5: For each query sample, compute the task-relevant mar-

gins between its class y and the classes in Ct \ {y}
by using task-relevant margin generator G according to

Equation 5;

6: Compute the task-relevant additive margin loss Ltr ac-

cording to Equation 6.

3.5. Extension to Generalized Few­Shot Learning

Although the proposed approach is originally designed

for the standard FSL, it can be easily extended to the gener-

alized FSL: simply including test data from both base and

novel classes, and their labels are predicted from all classes

in both base and novel class set in the test stage. This setting

is much more challenging and realistic than the standard

FSL, where test data are from only novel classes. Note that,

our adaptive margin loss is flexible for the generalized FSL:

the embedding module and the metric module trained by the

adaptive loss with all training samples from base classes can

be directly used for label inference of test samples from the

disjoint space of both base and novel classes. Experimental

results show that our method can improve the state-of-the-

art alternative and create a new state-of-the-art for metric-

based meta-learning approaches.

4. Experiments and Discussions

In this section, we evaluate our approach by conducting

three groups of experiments: 1) standard FSL setting where
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Model Backbone Type
Test Accuracy

5-way 1-shot 5-way 5-shot

Matching Networks [31] 4Conv Metric 43.56 ± 0.84 55.31 ± 0.73

Prototypical Network [27] 4Conv Metric 49.42 ± 0.78 68.20 ± 0.66

Relation Networks [27] 4Conv Metric 50.44 ± 0.82 65.32 ± 0.70

GCR [15] 4Conv Metric 53.21 ± 0.40 72.34 ± 0.32

Memory Matching Network [3] 4Conv Metric 53.37 ± 0.48 66.97 ± 0.35

Dynamic FSL [8] 4Conv Metric 56.20 ± 0.86 73.00 ± 0.64

Prototypical Network [27] ResNet12 Metric 56.52 ± 0.45 74.28 ± 0.20

TADAM [20] ResNet12 Metric 58.50 ± 0.30 76.70 ± 0.38

DC [17] ResNet12 Metric 62.53 ± 0.19 78.95 ± 0.13

TapNet [36] ResNet12 Metric 61.65 ± 0.15 76.36 ± 0.10

ECMSFMT [24] ResNet12 Metric 59.00 77.46

AM3 (Prototypical Network) [35] ResNet12 Metric 65.21±0.49 75.20 ± 0.36

MAML [7] 4Conv Gradient 48.70 ± 1.84 63.11 ± 0.92

MAML++ [1] 4Conv Gradient 52.15 ± 0.26 68.32 ± 0.44

iMAML [22] 4Conv Gradient 49.30 ± 1.88 -

LCC [19] 4Conv Gradient 54.6 ± 0.4 71.1 ± 0.4

CAML [11] ResNet12 Gradient 59.23 ± 0.99 72.35 ± 0.18

MTL [28] ResNet12 Gradient 61.20 ± 1.80 75.50 ± 0.80

MetaOptNet-SVM [12] ResNet12 Gradient 62.64 ± 0.61 78.63 ± 0.46

Prototypical Network + TRAML (OURS) ResNet12 Metric 60.31 ± 0.48 77.94 ± 0.57

AM3 (Prototypical Network) + TRAML (OURS) ResNet12 Metric 67.10 ± 0.52 79.54 ± 0.60

Table 1. Comparative results for FSL on the miniImageNet dataset. The averaged accuracy (%) on 600 test episodes is given followed

by the 95% confidence intervals (%). Notations: ‘4Conv’ – feature embedding module as in [27], i.e., four stacked convolutions layers

of 64 filters; ‘ResNet12’ – the feature embedding module as in [20], i.e., ResNet12 architecture containing four residual blocks of three

stacked 3 × 3 convolutional layers; ‘Metric’ – metric-based meta-learning approaches for FSL; ‘Gradient’ – gradient-based meta-learning

approaches for FSL.

the label space of test data is restricted to a few novel classes

at each test episode, 2) generalized FSL setting where the

label space of test data is extended to both base classes and

novel classes, and 3) further evaluation including ablation

study and comparison with other margin losses.

4.1. Standard Few­Shot Learning

4.1.1 Datasets and Settings

Under the standard FSL setting [27, 31], we evaluate our ap-

proach on the most popular benchmark, i.e., miniImageNet.

It contains 100 classes randomly selected from ImageNet

[26] and each class contains 600 images with resolution of

84 × 84. Following the widely used setting in prior works

[27, 31], we take 64 classes for training, 16 for validation

and 20 for testing. In the training stage, the 64 training

classes and 16 validation classes are respectively regarded

as base classes and novel classes to decide the model hy-

perparameters. Following the standard setting adopted by

most existing few-shot learning works [3, 8, 27, 29, 31], we

conduct 5-way 1-shot/5-shot classification on the miniIma-

geNet dataset. In 1-shot and 5-shot scenarios, each query

set has 15 images per class, while each support set con-

tains 1 and 5 image(s) per class, respectively. For a training

episode, images in the support sets and query sets are ran-

domly selected from the base class set. In a test episode, im-

ages in the support sets and the query sets are randomly se-

lected from the novel class set. The evaluation metric for the

miniImageNet dataset is defined as the top-1 classification

accuracy on randomly selected 600 test episodes. We test

our task-relevant additive margin loss with two backbone

metric-based meta learning approaches: Prototypical Net-

works [27] and its most recent improvement AM3 (Proto-

typical Networks) [35] which are the state-of-the-art metric-

based meta learning methods for FSL.

4.1.2 Implementation Details

Our feature embedding module mirrors the ResNet12 archi-

tecture used by [20], which consists of four residual blocks.

Each block comprises three stacked 3 × 3 convolutional

layers. Each block is followed by max pooling. We use

the same feature extractor on images in both the support

set and query set. The fully-connected network in the re-

lation module consists of two fully-connected layers, each

followed by a batch normalization layer and a ReLU non-

linearity layer. The word embedding model we used in this

paper is Glove [21].
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Model
Novel All

ns=1 2 5 10 20 ns=1 2 5 10 20

Logistic regression (from [34]) 38.4 51.1 64.8 71.6 76.6 40.8 49.9 64.2 71.9 76.9

Logistic regression w/H (from [9]) 40.7 50.8 62.0 69.3 76.5 52.2 59.4 67.6 72.8 76.9

Prototypical Network [27] (from [34]) 39.3 54.4 66.3 71.2 73.9 49.5 61.0 69.7 72.9 74.6

Matching Networks [31] (from [34]) 43.6 54.0 66.0 72.5 76.9 54.4 61.0 69.0 73.7 76.5

Squared Gradient Magnitude w/H [9] - - - - - 54.3 62.1 71.3 75.8 78.1

Batch Squared Gradient Magnitude [9] - - - - - 49.3 60.5 71.4 75.8 78.5

Prototype Matching Nets [34] 43.3 55.7 68.4 74.0 77.0 55.8 63.1 71.1 75.0 77.1

Prototype Matching Nets w/H [34] 45.8 57.8 69.0 74.3 77.4 57.6 64.7 71.9 75.2 77.5

Dynamic FSL [8] 46.0 57.5 69.2 74.8 78.1 58.2 65.2 72.2 76.5 78.7

Dynamic FSL + TRAML (OURS) 48.1 59.2 70.3 76.4 79.4 59.2 66.2 73.6 77.3 80.2

Table 2. Comparative results for generalized FSL on the ImageNet2012 dataset. The top-5 accuracies (%) on the novel classes and on all

classes are used as the evaluation metrics for this dataset. Methods with “w/ H” use mechanisms that hallucinate extra training examples

for the novel classes.

4.1.3 Experimental Results

Table 1 provides comparative results for FSL on the mini-

ImageNet dataset. We can observe that: 1) our approach

significantly improve the performance of baseline mod-

els (i.e., Prototypical Network [27] and AM3 (Prototypi-

cal Networks [35]). This indicates that the proposed task-

relevant additive margin loss can boost performance of

metric-based meta-learning approaches very effectively. 2)

Our approach clearly outperforms the state-of-the-art FSL

model on both 5-way 1-shot and 5-way 5-shot settings,

thanks to the discriminative feature embedding learned by

the proposed task-relevant additive margin loss.

4.2. Generalized Few­Shot Learning

4.2.1 Dataset and Settings

To further evaluate the effectiveness of our approach, we

test our approach in a more challenging yet practical gener-

alized FSL setting, where the label space of test data is ex-

tended to both base and novel classes. Following [8, 9, 34],

we conduct experiment on the large-scale ImageNet2012

dataset. This benchmark splits the 1000 ImageNet classes

into 389 base classes and 611 novel classes; 193 of the base

classes and 300 of the novel classes are used for cross val-

idation and the remaining 196 base classes and 311 novel

classes are used for the final evaluation (for more details we

refer to [9, 34]).

As in [8], the embedding module we used is ResNet10

network that gets as input images of 224 × 224 resolu-

tion. We compare our model with several generalized FSL

alternatives: Matching Networks [31], Prototypical Net-

works [27], Logistic Regression [34], Batch Squared Gradi-

ent Magnitude [9], Squared Gradient Magnitude With Hal-

lucination [9], Prototype Matching Nets [34], and Dynamic

FSL [8].

We implement our task-relevant additive margin loss on

the state-of-the-art model (i.e., Dynamic FSL [8]). Fol-

lowing [34], we first train the embedding module (i.e.,

ResNet10) by using our task-relevant additive margin loss

with all base classes. Then we extract features for all train-

ing samples with the learned embedding module and save

them to disk. The weight generator in Dynamic FSL [8]

will use these pre-computed features as inputs. Finally, we

train the weight generator by replacing the original classifi-

cation loss with our task-relevant additive margin loss. The

evaluation metric is the top-5 accuracy on the novel classes

and on all classes. We repeat the above experiment 5 times

(sampling each time a different set of training images for

the novel classes) and report the mean accuracy.

4.2.2 Results

Table 2 provides the comparative results of generalized FSL

on the large-scale ImageNet2012 dataset. We can observe

that: 1) our approach achieves the best results on all evalua-

tion metrics. This indicates that, with the discriminative em-

bedding space learned by our task-relevant additive margin

loss, our approach has the strongest generalization ability

under this more challenging setting. 2) Our approach yields

consist performance improvement over the state-of-the-art

generalized FSL model (i.e., Dynamic FSL [8]) on the 1-

shot, 2-shot, 5-shot, 10-shot, and 20-shot settings. This fur-

ther validates the effectiveness of our approach.

4.3. Further Evaluation

4.3.1 Ablation Study on Key Components

We compare our full model with a number of stripped down

versions to evaluate the effectiveness of the key components

of our approach. Specifically, three of such loss are com-

pared, each of which uses the AM3 (Prototypical Networks)

[35] as the baseline model and differs only in which loss

is used to train the model: ‘Original Classification Loss’
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Model
Test Accuracy

5-way 1-shot 5-way 5-shot

Original Classification Loss 65.21 ± 0.49 75.20 ± 0.36

Naive Additive Margin Loss 65.42 ± 0.25 75.48 ± 0.34

Class-Relevant Additive Margin Loss 66.36 ± 0.57 77.21 ± 0.48

Our Full Model 67.10 ± 0.52 79.54 ± 0.60

Table 3. Ablation study for FSL on the miniImageNet dataset un-

der the standard FSL setting. The evaluation metric is the same as

in Table 1.

– model training using the softmax loss provided in [35];

‘Naive Additive Margin Loss’ – model training by the loss

proposed in Section 3.2; ‘Class-Relevant Additive Margin

Loss’ – model training by the loss proposed in Section 3.3.

Table 3 presents the comparative results of the above

losses on the miniImageNet dataset under the standard FSL

setting. It can be observed that: 1) Training metric-based

meta-learning approaches with our adaptive margin loss

leads to significant improvements (see Our Full Model vs.

Original Classification Loss). This provides strong supports

for our main contribution on embedding learning for FSL.

2) The model trained by the proposed naive additive margin

loss shows slight performance improvement over the model

trained by original classification loss. This means that sim-

ply adding a fixed margin into the classification loss has lim-

ited effectiveness in FSL. 3) Thanks to the adaptive margin

produced by the class-relevant margin generator, our class-

relevant margin additive loss is shown to benefit the embed-

ding learning for FSL (see Class-Relevant Additive Margin

Loss vs. Naive Additive Margin Loss). 4) By considering

the semantic context among classes in a meta-training task,

our task-relevant additive margin loss yields better results

than the class-relevant margin loss. Moreover, we observe

that the learned coefficient α in Eq. (3) is positive, which

verifies our intuition that the margin between similar classes

should be larger than the one between dissimilar classes.

4.3.2 Comparison with Other Margin Losses

To validate the effectiveness of the proposed adaptive mar-

gin loss, we compare our approach with two margin losses

which are widely used in face recognition. Each of them

uses the AM3 (Prototypical Networks) [35] as the baseline

model and differs only in which loss is used to train the

model. The two margin losses are: 1) Additive angular mar-

gin loss [4], which add an additive angular margin to the

angle between the weight vector and feature embeddings.

2) Additive cosine margin loss [33], which directly adds a

cosine margin to the target logits. Note that, both of these

two methods add margin penalty to the target logits com-

puted by the dot product between feature embeddings and

weight vectors. This is different from Prototypical Network

Model
Test Accuracy

5-way 1-shot 5-way 5-shot

Additive angular margin loss [4] 66.21±0.46 77.30 ±0.71

Additive cosine margin loss [33] 65.96 ±0.56 76.93 ±0.49

Our Full Model (cosine) 66.92 ± 0.43 79.08 ± 0.52

Our Full Model (euclidean) 67.10 ± 0.52 79.54 ± 0.60

Table 4. Comparative classification accuracies (%) of two other

margin losses on the miniImageNet dataset under the standard FSL

setting. Notations: ‘Our Full Model (cosine)’ – implementing our

task-relevant additive margin loss on AM3 (Prototypical Network)

[35] with cosine distance as metric in the embedding space; ‘Our

Full Model (euclidean)’ – implementing our task-relevant additive

margin loss on AM3 (Prototypical Network) [35] with euclidean

distance as metric in the embedding space.

and its variants, which use the opposite of the euclidean dis-

tances between class representations and feature embedding

as the logits. For fair comparison, we replace the opposite of

euclidean metric used in AM3 (Prototypical Network) [35]

with the cosine distance, and train the AM3 model with our

task-relevant margin loss (the model is denoted by ‘Our Full

Model (cosine)’ in Table 4) .

Table 4 presents the comparative results of the two mar-

gin losses and our losses on the miniImageNet dataset under

the standard FSL setting. We can observe that our method

is shown to be more effective than the two competitors. It

can be expected that, our method is designed for the FSL

problem. That is, our method involves semantic similarity

among classes in meta-training task to learn a more suit-

able margin penalty, compared with a fixed one generated

by [4, 33]. The suitable margin of each pair of classes helps

to learn more discriminative embedding space and thus bet-

ter distinguish samples from different novel classes.

5. Conclusion

In this paper, we propose an adaptive margin principle,

which can effectively enhance the discriminative power of

embedding space for few-shot image recognition. We first

develop a class-relevant additive margin loss which com-

bines the standard classification loss with an adaptive mar-

gin generator based semantic similarity between classes.

Then, by considering the semantic context among classes in

a meta-training task, a task-relevant additive margin loss is

further proposed to learn more discriminiative embbeding

space for FSL. Furthermore, we also extend the proposed

model to the more realistic generalized FSL setting. Ex-

perimental results demonstrate that our method is effective

under both of the two FSL settings.
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