
Celeb-DF: A Large-scale Challenging Dataset for DeepFake Forensics

Yuezun Li1, Xin Yang1, Pu Sun2, Honggang Qi2 and Siwei Lyu1

1 University at Albany, State University of New York, USA
2 University of Chinese Academy of Sciences, China

Abstract

AI-synthesized face-swapping videos, commonly known

as DeepFakes, is an emerging problem threatening the

trustworthiness of online information. The need to de-

velop and evaluate DeepFake detection algorithms calls for

large-scale datasets. However, current DeepFake datasets

suffer from low visual quality and do not resemble Deep-

Fake videos circulated on the Internet. We present a new

large-scale challenging DeepFake video dataset, Celeb-

DF, which contains 5, 639 high-quality DeepFake videos of

celebrities generated using improved synthesis process. We

conduct a comprehensive evaluation of DeepFake detection

methods and datasets to demonstrate the escalated level of

challenges posed by Celeb-DF.

1. Introduction

A recent twist to the disconcerting problem of online dis-

information is falsified videos created by AI technologies,

in particular, deep neural networks (DNNs). Although fab-

rication and manipulation of digital images and videos are

not new [16], the use of DNNs has made the process to cre-

ate convincing fake videos increasingly easier and faster.

One particular type of DNN-based fake videos, com-

monly known as DeepFakes, has recently drawn much at-

tention. In a DeepFake video, the faces of a target individ-

ual are replaced by the faces of a donor individual synthe-

sized by DNN models, retaining the target’s facial expres-

sions and head poses. Since faces are intrinsically associ-

ated with identity, well-crafted DeepFakes can create illu-

sions of a person’s presence and activities that do not occur

in reality, which can lead to serious political, social, finan-

cial, and legal consequences [11].

With the escalated concerns over the DeepFakes, there is

a surge of interest in developing DeepFakes detection meth-

ods recently [6, 17, 27, 53, 33, 28, 41, 40, 35, 34, 36], with

an upcoming dedicated global DeepFake Detection Chal-

lenge1. The availability of large-scale datasets of DeepFake

1https://deepfakedetectionchallenge.ai.

videos is an enabling factor in the development of DeepFake

detection method. To date, we have the UADFV dataset

[53], the DeepFake-TIMIT dataset (DF-TIMIT) [25], the

FaceForenscics++ dataset (FF-DF) [40]2, the Google Deep-

Fake detection dataset (DFD) [15], and the FaceBook Deep-

Fake detection challenge (DFDC) dataset [14].

However, a closer look at the DeepFake videos in exist-

ing datasets reveals stark contrasts in visual quality to the

actual DeepFake videos circulated on the Internet. Several

common visual artifacts that can be found in these datasets

are highlighted in Fig.1, including low-quality synthesized

faces, visible splicing boundaries, color mismatch, visible

parts of the original face, and inconsistent synthesized face

orientations. These artifacts are likely the result of imper-

fect steps of the synthesis method and the lack of curating

of the synthesized videos before included in the datasets.

Moreover, DeepFake videos with such low visual qualities

can hardly be convincing, and are unlikely to have real im-

pact. Correspondingly, high detection performance on these

dataset may not bear strong relevance when the detection

methods are deployed in the wild.

In this work, we present a new large-scale and chal-

lenging DeepFake video dataset, Celeb-DF3, for the devel-

opment and evaluation of DeepFake detection algorithms.

There are in total 5, 639 DeepFake videos, correspond-

ing more than 2 million frames, in the Celeb-DF dataset.

The real source videos are based on publicly available

YouTube video clips of 59 celebrities of diverse genders,

ages, and ethic groups. The DeepFake videos are generated

using an improved DeepFake synthesis method. As a re-

sult, the overall visual quality of the synthesized DeepFake

videos in Celeb-DF is greatly improved when compared to

existing datasets, with significantly fewer notable visual ar-

tifacts, see Fig.2. Based on the Celeb-DF dataset and other

existing datasets, we conduct an evaluation of current Deep-

Fake detection methods. This is the most comprehensive

performance evaluation of DeepFake detection methods to

2FaceForensics++ contains other types of fake videos. We consider

only the DeepFake videos.
3http://www.cs.albany.edu/˜lsw/

celeb-deepfakeforensics.html.

3207



U
A

D
F

V
D

F
-T

IM
IT

-H
Q

F
F

-D
F

D
F

D
D

F
D

C

Figure 1. Visual artifacts of DeepFake videos in existing datasets.

Note some common types of visual artifacts in these video frames,

including low-quality synthesized faces (row 1 col 1, row 3 col

2, row 5 col 3), visible splicing boundaries (row 3 col 1, row 4

col 2, row 5 col 2), color mismatch (row 5 col 1), visible parts

of the original face (row 1 col 1, row 2 col 1, row 4 col 3), and

inconsistent synthesized face orientations (row 3 col 3). This figure

is best viewed in color.

date. The results show that Celeb-DF is challenging to most

of the existing detection methods, even though many Deep-

Fake detection methods are shown to achieve high, some-

times near perfect, accuracy on previous datasets.

2. Backgrounds

2.1. DeepFake Video Generation

Although in recent years there have been many sophis-

ticated algorithms for generating realistic synthetic face

videos [9, 13, 46, 51, 26, 47, 37, 20, 23, 10, 21, 50], most

of these have not been in mainstream as open-source soft-

ware tools that anyone can use. It is a much simpler method

based on the work of neural image style transfer [29] that

becomes the tool of choice to create DeepFake videos in

scale, with several independent open-source implementa-

tions, e.g., FakeApp [5], DFaker [2], faceswap-GAN

[3], faceswap [4], and DeepFaceLab [1]. We refer to

this method as the basic DeepFake maker, and it is under-

neath many DeepFake videos circulated on the Internet or

in the existing datasets.

The overall pipeline of the basic DeepFake maker is

shown in Fig.3 (left). From an input video, faces of the

target are detected, from which facial landmarks are fur-

ther extracted. The landmarks are used to align the faces

to a standard configuration [22]. The aligned faces are then

cropped and fed to an auto-encoder [24] to synthesize faces

of the donor with the same facial expressions as the original

target’s faces.

The auto-encoder is usually formed by two convolun-

tional neural networks (CNNs), i.e., the encoder and the

decoder. The encoder E converts the input target’s face to

a vector known as the code. To ensure the encoder capture

identity-independent attributes such as facial expressions,

there is one single encoder regardless the identities of the

subjects. On the other hand, each identity has a dedicated

decoder Di, which generates a face of the corresponding

subject from the code. The encoder and decoder are trained

in tandem using uncorresponded face sets of multiple sub-

jects in an unsupervised manner, Fig.3 (right). Specifically,

an encoder-decoder pair is formed alternatively using E and

Di for input face of each subject, and optimize their param-

eters to minimize the reconstruction errors (ℓ1 difference

between the input and reconstructed faces). The parameter

update is performed with the back-propagation until conver-

gence.

The synthesized faces are then warped back to the con-

figuration of the original target’s faces and trimmed with

a mask from the facial landmarks. The last step involves

smoothing the boundaries between the synthesized regions

and the original video frames. The whole process is auto-

matic and runs with little manual intervention.

2.2. DeepFake Detection Methods

Since DeepFakes become a global phenomenon, there

has been an increasing interest in DeepFake detection meth-

ods. Most of the current DeepFake detection methods use

data-driven deep neural networks (DNNs) as backbone.
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Figure 2. Example frames from the Celeb-DF dataset. Left column is the frame of real videos and right five columns are corresponding

DeepFake frames generated using different donor subject.
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Figure 3. Synthesis (left) and training (right) of the basic DeepFake maker algorithm. See texts for more details.

Since synthesized faces are spliced into the original

video frames, state-of-the-art DNN splicing detection meth-

ods, e.g., [54, 55, 30, 8], can be applied. There have

also been algorithms dedicated to the detection of Deep-

Fake videos that fall into three categories. Methods in

the first category are based on inconsistencies exhibited in

the physical/physiological aspects in the DeepFake videos.

The method in work of [27] exploits the observation that

many DeepFake videos lack reasonable eye blinking due

to the use of online portraits as training data, which usu-

ally do not have closed eyes for aesthetic reasons. Incoher-

ent head poses in DeepFake videos are utilized in [53] to
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Dataset
# Real # DeepFake

Release Date
Video Frame Video Frame

UADFV 49 17.3k 49 17.3k 2018.11

DF-TIMIT-LQ
320∗ 34.0k

320 34.0k
2018.12

DF-TIMIT-HQ 320 34.0k

FF-DF 1,000 509.9k 1,000 509.9k 2019.01

DFD 363 315.4k 3,068 2,242.7k 2019.09

DFDC 1,131 488.4k 4,113 1,783.3k 2019.10

Celeb-DF 590 225.4k 5,639 2,116.8k 2019.11

Table 1. Basic information of various DeepFake video datasets. ∗:

the original videos in DF-TIMIT are from Vid-TIMIT dataset.

expose DeepFake videos. In [7], the idiosyncratic behav-

ioral patterns of a particular individual are captured by the

time series of facial landmarks extracted from real videos

are used to spot DeepFake videos. The second category of

DeepFake detection algorithms (e.g., [33, 28]) use signal-

level artifacts introduced during the synthesis process such

as those described in the Introduction. The third category

of DeepFake detection methods (e.g., [6, 17, 35, 36]) are

data-driven, which directly employ various types of DNNs

trained on real and DeepFake videos, not relying on any

specific artifact.

2.3. Existing DeepFake Datasets

DeepFake detection methods require training data and

need to be evaluated. As such, there is an increasing need

for large-scale DeepFake video datasets. Table 1 lists the

current DeepFake datasets.

UADFV: The UADFV dataset [53] contains 49 real

YouTube and 49 DeepFake videos. The DeepFake videos

are generated using the DNN model with FakeAPP [5].

DF-TIMIT: The DeepFake-TIMIT dataset [25] includes

640 DeepFake videos generated with faceswap-GAN [3]

and based on the Vid-TIMIT dataset [43]. The videos are

divided into two equal-sized subsets: DF-TIMIT-LQ and

DF-TIMIT-HQ, with synthesized faces of size 64× 64 and

128× 128 pixels, respectively.

FF-DF: The FaceForensics++ dataset [40] includes a sub-

set of DeepFakes videos, which has 1, 000 real YouTube

videos and the same number of synthetic videos generated

using faceswap [4].

DFD: The Google/Jigsaw DeepFake detection dataset [15]

has 3, 068 DeepFake videos generated based on 363 origi-

nal videos of 28 consented individuals of various genders,

ages and ethnic groups. The details of the synthesis algo-

rithm are not disclosed, but it is likely to be an improved

implementation of the basic DeepFake maker algorithm.

DFDC: The Facebook DeepFake detection challenge

dataset [14] is part of the DeepFake detection challenge,

which has 4, 113 DeepFake videos created based on 1, 131
original videos of 66 consented individuals of various gen-

ders, ages and ethnic groups4. This dataset is created us-

4The full set of DFDC has not been released at the time of CVPR sub-

mission, and information is based on the first round release in [14].

ing two different synthesis algorithms, but the details of the

synthesis algorithm are not disclosed.

Based on release time and synthesis algorithms, we cat-

egorize UADFV, DF-TIMIT, and FF-DF as the first genera-

tion of DeepFake datasets, while DFD, DFDC, and the pro-

posed Celeb-DF datasets are the second generation. In gen-

eral, the second generation datasets improve in both quan-

tity and quality over the first generation.

3. The Celeb-DF Dataset

Although the current DeepFake datasets have sufficient

number of videos, as discussed in the Introduction and

demonstrate in Fig.1, DeepFake videos in these datasets

have various visual artifacts that easily distinguish them

from the real videos. To provide more relevant data to eval-

uate and support the future development DeepFake detec-

tion methods, we construct the Celeb-DF dataset. A com-

parison of the Celeb-DF dataset with other existing Deep-

Fake datasets is summarized in Table 1.

3.1. Basic Information

The Celeb-DF dataset is comprised of 590 real videos

and 5, 639 DeepFake videos (corresponding to over two

million video frames). The average length of all videos is

approximate 13 seconds with the standard frame rate of 30
frame-per-second. The real videos are chosen from publicly

available YouTube videos, corresponding to interviews of

59 celebrities with a diverse distribution in their genders,

ages, and ethnic groups5. 56.8% subjects in the real videos

are male, and 43.2% are female. 8.5% are of age 60 and

above, 30.5% are between 50 - 60, 26.6% are 40s, 28.0%
are 30s, and 6.4% are younger than 30. 5.1% are Asians,

6.8% are African Americans and 88.1% are Caucasians. In

addition, the real videos exhibit large range of changes in

aspects such as the subjects’ face sizes (in pixels), orienta-

tions, lighting conditions, and backgrounds. The DeepFake

videos are generated by swapping faces for each pair of the

59 subjects. The final videos are in MPEG4.0 format.

3.2. Synthesis Method

The DeepFake videos in Celeb-DF are generated using

an improved DeepFake synthesis algorithm, which is key to

the improved visual quality as shown in Fig.2. Specifically,

the basic DeepFake maker algorithm is refined in several

aspects targeting the following specific visual artifacts ob-

served in existing datasets.

Low resolution of synthesized faces: The basic DeepFake

maker algorithm generate low-resolution faces (typically

64× 64 or 128× 128 pixels). We improve the resolution of

5We choose celebrities’ faces as they are more familiar to the viewers

so that any visual artifacts can be more readily identified. Furthermore,

celebrities are anecdotally the main targets of DeepFake videos.
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64 × 64 128 × 128 256 × 256

Figure 4. Comparison of DeepFake frames with different sizes of

the synthesized faces. Note the improved smoothness of the 256×

256 synthesized face, which is used in Celeb-DF. This figure is best

viewed in color.

the synthesized face to 256 × 256 pixels. This is achieved

by using encoder and decoder models with more layers and

increased dimensions. We determine the structure empiri-

cally for a balance between increased training time and bet-

ter synthesis result. The higher resolution of the synthesized

faces are of better visual quality and less affected by resiz-

ing and rotation operations in accommodating the input tar-

get faces, Fig.4.

Color mismatch: Color mismatch between the synthesized

donor’s face with the original target’s face in Celeb-DF

is significantly reduced by training data augmentation and

post processing. Specifically, in each training epoch, we

randomly perturb the colors of the training faces, which

forces the DNNs to synthesize an image containing the

same color pattern with input image. We also apply a color

transfer algorithm [38] between the synthesized donor face

and the input target face. Fig.5 shows an example of syn-

thesized face without (left) and with (right) color correction.

Figure 5. DeepFake frames using synthesized face without (left)

and with (right) color correction. Note the reduced color mis-

match between the synthesized face region and the other part of

the face. Synthesis method with color correction is used to gener-

ate Celeb-DF. This figure is best viewed in color.

Inaccurate face masks: In previous datasets, the face

masks are either rectangular, which may not completely

cover the facial parts in the original video frame, or the

convex hull of landmarks on eyebrow and lower lip, which

Visual parts of 
original face

Boundary 
artifacts

Boundary 
artifacts

Facial landmarks

Interpolated points

(a) (b) (c)

Figure 6. Mask generation in existing datasets (Top two rows) and

Celeb-DF (3rd row). (a) warped synthesized face overlaying the

target’s face. (b) mask generation. (c) final synthesis result.

leaves the boundaries of the mask visible. We improve the

mask generation step for Celeb-DF. We first synthesize a

face with more surrounding context, so as to completely

cover the original facial parts after warping. We then cre-

ate a smoothness mask based on the landmarks on eyebrow

and interpolated points on cheeks and between lower lip and

chin. The difference in mask generation used in existing

datasets and Celeb-DF is highlighted in Fig.6 with an ex-

ample.

Temporal flickering: We reduce temporal flickering of

synthetic faces in the DeepFake videos by incorporating

temporal correlations among the detected face landmarks.

Specifically, the temporal sequence of the face landmarks

are filtered using a Kalman smoothing algorithm to reduce

imprecise variations of landmarks in each frame.

3.3. Visual Quality

The refinements to the synthesis algorithm improve the

visual qualities of the DeepFake videos in the Celeb-DF

dataset, as demonstrated in Fig.2. We would like have a

more quantitative evaluation of the improvement in visual

quality of the DeepFake videos in Celeb-DF and compare

with the previous DeepFake datasets. Ideally, a reference-

free face image quality metric is the best choice for this

purpose. However, unfortunately, to date there is no such

metric that is agreed upon and widely adopted.

Instead, we follow the face in-painting work [45] and use

the Mask-SSIM score [32] as a referenced quantitative met-

ric of visual quality of synthesized DeepFake video frames.

Mask-SSIM corresponds to the SSIM score [52] between

the head regions (including face and hair) of the DeepFake

video frame and the corresponding original video frame,

i.e., the head region of the original target is the reference for

visual quality evaluation. As such, low Mask-SSIM score

may be due to inferior visual quality as well as changes of

the identity from the target to the donor. On the other hand,
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Datasets UADFV
DF-TIMIT

FF-DF DFD DFDC Celeb-DF
LQ HQ

Mask
0.82 0.80 0.80 0.81 0.88 0.84 0.92

-SSIM

Table 2. Average Mask-SSIM scores of different DeepFake

datasets. Computing Mask-SSIM requires exact corresponding

pairs of DeepFake synthesized frames and original video frames,

which is not the case for DFD and DFDC. For these two datasets,

we calculate the Mask-SSIM on videos that we have exact corre-

spondences, i.e., 311 videos in DFD and 2, 025 videos in DFDC.

since we only compare frames from DeepFake videos, the

errors caused by identity changes are biased in a similar

fashion to all compared datasets. Therefore, the numerical

values of Mask-SSIM may not be meaningful to evaluate

the absolute visual quality of the synthesized faces, but the

difference between Mask-SSIM reflects the difference in vi-

sual quality.

The Mask-SSIM score takes value in the range of [0, 1]
with higher value corresponding to better image quality. Ta-

ble 2 shows the average Mask-SSIM scores for all compared

datasets, with Celeb-DF having the highest scores. This

confirms the visual observation that Celeb-DF has improved

visual quality, as shown in Fig.2.

4. Evaluating DeepFake Detection Methods

Using Celeb-DF and other existing DeepFake datasets,

we perform the most comprehensive performance evalua-

tion of DeepFake detection to date, with the largest number

of DeepFake detection methods and datasets considered.

There are two purposes of this evaluation. First, using the

average detection performance as an indicator of the chal-

lenge levels of various DeepFake datasets, we further com-

pare Celeb-DF with existing DeepFake datasets. Further-

more, we survey the performance of the current DeepFake

detection methods on a large diversity of DeepFake videos,

in particular, the high-quality ones in Celeb-DF.

4.1. Compared DeepFake Detection Methods

We consider nine DeepFake detection methods in our

experiments. Because of the need to run each method on

the Celeb-DF dataset, we choose only those that have code

and the corresponding DNN-model publicly available or

obtained from the authors directly.

• Two-stream [54] uses a two-stream CNN to achieve

state-of-the-art performance in general-purpose im-

age forgery detection. The underlying CNN is the

GoogLeNet InceptionV3 model [48] trained on the

SwapMe dataset [54]. We use it as a baseline to com-

pare other dedicated DeepFake detection methods.

• MesoNet [6] is a CNN-based DeepFake detection

method targeting on the mesoscopic properties of im-

ages. The model is trained on unpublished DeepFake

datasets collected by the authors. We evaluate two

variants of MesoNet, namely, Meso4 and MesoIncep-

tion4. Meso4 uses conventional convolutional layers,

while MesoInception4 is based on the more sophisti-

cated Inception modules [49].

• HeadPose [53] detects DeepFake videos using the

inconsistencies in the head poses of the synthesized

videos, based on a SVM model on estimated 3D head

orientations from each video. The SVM model in this

method is trained on the UADFV dataset.

• FWA [28] detects DeepFake videos using a ResNet-50

[19] to expose the face warping artifacts introduced by

the resizing and interpolation operations in the basic

DeepFake maker algorithm. This model is trained on

self-collected face images.

• VA [33] is a recent DeepFake detection method based

on capturing visual artifacts in the eyes, teeth and facial

contours of the synthesized faces. There are two vari-

ants of this method: VA-MLP is based on a multilayer

feedforward neural network classifier, and VA-LogReg

uses a simpler logistic regression model. These mod-

els are trained on unpublished dataset, of which real

images are cropped from CelebA dataset [31] and the

DeepFake videos are from YouTube.

• Xception [40] corresponds to a DeepFake detection

method based on the XceptionNet model [12] trained

on the FaceForensics++ dataset. There are three vari-

ants of Xception, namely, Xception-raw, Xception-

c23 and Xception-c40: Xception-raw are trained on

raw videos, while Xception-c23 and Xception-c40 are

trained on H.264 videos with medium (23) and high

degrees (40) of compression, respectively.

• Multi-task [34] is another recent DeepFake detection

method that uses a CNN model to simultaneously de-

tect manipulated images and segment manipulated ar-

eas as a multi-task learning problem. This model is

trained on the FaceForensics dataset [39].

• Capsule [36] uses capsule structures [42] based on a

VGG19 [44] network as the backbone architecture for

DeepFake classification. This model is trained on the

FaceForensics++ dataset.

• DSP-FWA is a recently further improved method

based on FWA, which includes a spatial pyramid pool-

ing (SPP) module [18] to better handle the variations

in the resolutions of the original target faces. This

method is trained on self-collected face images.

A concise summary of the underlying model, source code,

and training datasets of the DeepFake detection methods

considered in our experiments is given in Table 3.

4.2. Experimental Settings

We evaluate the overall detection performance using the

area under ROC curve (AUC) score at the frame level for

all key frames. There are several reasons for this choice.

First, all compared methods analyze individual frames (usu-
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Methods Model Type Training Dataset Repositories Release Date

Two-stream [54] GoogLeNet InceptionV3 [48] SwapMe [54] Unpublished code provided by the authors 2018.03

MesoNet [6] Designed CNN Unpublished https://github.com/DariusAf/MesoNet 2018.09

HeadPose [53] SVM UADFV [53] https://bitbucket.org/ericyang3721/headpose_forensic/ 2018.11

FWA [28] ResNet-50 [19] Unpublished https://github.com/danmohaha/CVPRW2019_Face_Artifacts 2018.11

VA-MLP [33] Designed CNN
Unpublished https://github.com/FalkoMatern/Exploiting-Visual-Artifacts 2019.01

VA-LogReg [33] Logistic Regression Model

Xception [40] XceptionNet [12] FaceForensics++ [40] https://github.com/ondyari/FaceForensics 2019.01

Multi-task [34] Designed CNN FaceForensics [39] https://github.com/nii-yamagishilab/ClassNSeg 2019.06

Capsule [36] Designed CapsuleNet [42] FaceForensics++ https://github.com/nii-yamagishilab/Capsule-Forensics-v2 2019.10

DSP-FWA SPPNet [18] Unpublished https://github.com/danmohaha/DSP-FWA 2019.11

Table 3. Summary of compared DeepFake detection methods. See texts for more details.

50 60 70 80
Average AUC

UADFV
DF-TIMIT-LQ
DF-TIMIT-HQ

FF-DF
DFD

DFDC
Celeb-DF

80.2
78.0

72.2
82.3

68.2
64.7

56.9

Figure 7. Average AUC performance of all detection methods on

each dataset.

ally key frames of a video) and output a classification score

for each frame. Using frame-level AUC thus avoids differ-

ences caused by different approaches to aggregating frame-

level scores for each video. Second, using frame level AUC

score obviates the necessity of calibrating the classification

outputs of these methods across different datasets. To in-

crease robustness to numerical imprecision, the classifica-

tion scores are rounded to five digits after the decimal point,

i.e., with a precision of 10−5. As the videos are compressed,

we perform evaluations only on the key frames.

we compare performance of each detection method us-

ing the inference code and the published pre-trained mod-

els. This is because most of these methods do not have pub-

lished code for training the machine learning models. As

such, we could not practically re-train these models on all

datasets we considered. We use the default parameters pro-

vided with each compared detection method.

4.3. Results and Analysis

In Table 4 we list individual frame-level AUC scores of

all compared DeepFake detection methods over all datasets

including Celeb-DF, and Fig.9 shows the frame-level ROC

curves of several top detection methods on several datasets.

Comparing different datasets, in Fig.7, we show the av-

erage frame-level AUC scores of all compared detection

methods on each dataset. Celeb-DF is in general the most

challenging to the current detection methods, and their over-

all performance on Celeb-DF is lowest across all datasets.

These results are consistent with the differences in visual

quality. Note many current detection methods predicate on

visual artifacts such as low resolution and color mismatch,

which are improved in synthesis algorithm for the Celeb-

DF dataset. Furthermore, the difficulty level for detection

55 60 65 70 75 80 85 90
Average AUC

Two-stream
Meso4

MesoInception4
HeadPose

FWA
VA-MLP

VA-LogReg
Xception-raw
Xception-c23
Xception-c40

Multi-task
Capsule

DSP-FWA

68.6
75.9

73.0
58.7

82.1
63.7

69.3
63.3

86.4
75.2

60.2
69.4

87.4

Figure 8. Average AUC performance of each detection method on

all evaluated datasets.

is clearly higher for the second generation datasets (DFD,

DFDC, and Celeb-DF, with average AUC scores lower than

70%), while some detection methods achieve near perfect

detection on the first generation datasets (UADFV, DF-

TIMIT, and FF-DF, with average AUC scores around 80%).

In term of individual detection methods, Fig.8 shows the

comparison of average AUC score of each detection method

on all DeepFake datasets. These results show that detec-

tion has also made progress with the most recent DSP-FWA

method achieves the overall top performance (87.4%).

As online videos are usually recompressed to different

formats (MPEG4.0 and H264) and in different qualities dur-

ing the process of uploading and redistribution, it is also

important to evaluate the robustness of detection perfor-

mance with regards to video compression. Table 5 shows

the average frame-level AUC scores of four state-of-the-art

DeepFake detection methods on original MPEG4.0 videos,

and medium (23), and high (40) degrees of H.264 com-

pressed videos of Celeb-DF, respectively. The results show

that the performance of each method is reduced along with

the compression degree increased. In particular, the per-

formance of FWA and DSP-FWA degrades significantly on

recompressed video, while the performance of Xception-

c23 and Xception-c40 is not significantly affected. This is

expected because the latter methods were trained on com-

pressed H.264 videos such that they are more robust in this

setting.
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Methods↓ Datasets→ UADFV [53]
DF-TIMIT [25]

FF-DF [40] DFD [15] DFDC [14] Celeb-DF
LQ HQ

Two-stream [54] 85.1 83.5 73.5 70.1 52.8 61.4 53.8

Meso4 [6] 84.3 87.8 68.4 84.7 76.0 75.3 54.8

MesoInception4 82.1 80.4 62.7 83.0 75.9 73.2 53.6

HeadPose [53] 89.0 55.1 53.2 47.3 56.1 55.9 54.6

FWA [28] 97.4 99.9 93.2 80.1 74.3 72.7 56.9

VA-MLP [33] 70.2 61.4 62.1 66.4 69.1 61.9 55.0

VA-LogReg 54.0 77.0 77.3 78.0 77.2 66.2 55.1

Xception-raw [40] 80.4 56.7 54.0 99.7 53.9 49.9 48.2

Xception-c23 91.2 95.9 94.4 99.7 85.9 72.2 65.3

Xception-c40 83.6 75.8 70.5 95.5 65.8 69.7 65.5

Multi-task [34] 65.8 62.2 55.3 76.3 54.1 53.6 54.3

Capsule [36] 61.3 78.4 74.4 96.6 64.0 53.3 57.5

DSP-FWA 97.7 99.9 99.7 93.0 81.1 75.5 64.6

Table 4. Frame-level AUC scores (%) of various methods on compared datasets. Bold faces correspond to the top performance.

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
FWA

FF-DF (80.1)
DFD (74.3)
DFDC (72.7)
Celeb-DF (56.9)

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
Meso4

FF-DF (84.7)
DFD (76.0)
DFDC (75.3)
Celeb-DF (54.8)

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
MesoInception4

FF-DF (83.0)
DFD (75.9)
DFDC (73.2)
Celeb-DF (53.6)

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
Xception-c23

FF-DF (99.7)
DFD (85.9)
DFDC (72.2)
Celeb-DF (65.3)

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
Xception-c40

FF-DF (95.5)
DFD (65.8)
DFDC (69.7)
Celeb-DF (65.5)

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00
DSP-FWA

FF-DF (93.0)
DFD (81.1)
DFDC (75.5)
Celeb-DF (64.6)

Figure 9. ROC curves of six state-of-the-art detection methods (FWA, Meso4, MesoInception4, Xception-c23, Xception-40 and DSP-FWA)

on four largest datasets (FF-DF, DFD, DFDC and Celeb-DF).

Original c23 c40

FWA 56.9 54.6 52.2

Xception-c23 65.3 65.5 52.5

Xception-c40 65.5 65.4 59.4

DSP-FWA 64.6 57.7 47.2

Table 5. AUC performance of four top detection methods on orig-

inal, medium (23) and high (40) degrees of H.264 compressed

Celeb-DF respectively.

5. Conclusion

We present a new challenging large-scale dataset for the

development and evaluation of DeepFake detection meth-

ods. The Celeb-DF dataset reduces the gap in visual quality

of DeepFake datasets and the actual DeepFake videos cir-

culated online. Based on the Celeb-DF dataset, we perform

a comprehensive performance evaluation of current Deep-

Fake detection methods, and show that there is still much

room for improvement.

For future works, the foremost task is to enlarge the

Celeb-DF dataset and improve the visual quality of the syn-

thesized videos. This entails improving the running effi-

ciency and model structure of the current synthesis algo-

rithm. Furthermore, while the forgers can improve the vi-

sual quality in general, they may also adopt anti-forensic

techniques, which aim to hide traces of DeepFake synthe-

sis on which the detection methods predicate. Anticipating

such counter-measures at the forgers’ disposal, we aim to

incorporate anti-forensic techniques in Celeb-DF.
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[25] Pavel Korshunov and Sébastien Marcel. Deepfakes: a new

threat to face recognition? assessment and detection. arXiv

preprint arXiv:1812.08685, 2018.

[26] Iryna Korshunova, Wenzhe Shi, Joni Dambre, and Lucas

Theis. Fast face-swap using convolutional neural networks.

In ICCV, 2017.

[27] Yuezun Li, Ming-Ching Chang, and Siwei Lyu. In ictu oculi:

Exposing AI generated fake face videos by detecting eye

blinking. In IEEE International Workshop on Information

Forensics and Security (WIFS), 2018.

[28] Yuezun Li and Siwei Lyu. Exposing deepfake videos by de-

tecting face warping artifacts. In IEEE Conference on Com-

puter Vision and Pattern Recognition Workshops (CVPRW),

2019.

[29] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised

image-to-image translation networks. In NeurIPS, 2017.

[30] Yaqi Liu, Qingxiao Guan, Xianfeng Zhao, and Yun Cao. Im-

age forgery localization based on multi-scale convolutional

neural networks. In ACM Workshop on Information Hiding

and Multimedia Security (IHMMSec), 2018.

[31] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In ICCV, 2015.

[32] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuyte-

laars, and Luc Van Gool. Pose guided person image genera-

tion. In NeurIPS, 2017.

[33] Falko Matern, Christian Riess, and Marc Stamminger. Ex-

ploiting visual artifacts to expose deepfakes and face manip-

ulations. In IEEE Winter Applications of Computer Vision

Workshops (WACVW), 2019.

[34] Huy H Nguyen, Fuming Fang, Junichi Yamagishi, and Isao

Echizen. Multi-task learning for detecting and segmenting

manipulated facial images and videos. In IEEE International

Conference on Biometrics: Theory, Applications and Sys-

tems (BTAS), 2019.

[35] Huy H Nguyen, Junichi Yamagishi, and Isao Echizen.

Capsule-forensics: Using capsule networks to detect forged

images and videos. In IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 2019.

[36] Huy H Nguyen, Junichi Yamagishi, and Isao Echizen. Use

of a capsule network to detect fake images and videos. arXiv

preprint arXiv:1910.12467, 2019.

3215



[37] Hai X Pham, Yuting Wang, and Vladimir Pavlovic. Gen-

erative adversarial talking head: Bringing portraits to life

with a weakly supervised neural network. arXiv preprint

arXiv:1803.07716, 2018.

[38] Erik Reinhard, Michael Adhikhmin, Bruce Gooch, and Peter

Shirley. Color transfer between images. IEEE Computer

graphics and applications, 2001.
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