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Abstract

We propose novel dynamic multiscale graph neural net-

works (DMGNN) to predict 3D skeleton-based human mo-

tions. The core idea of DMGNN is to use a multiscale

graph to comprehensively model the internal relations of

a human body for motion feature learning. This multi-

scale graph is adaptive during training and dynamic across

network layers. Based on this graph, we propose a mul-

tiscale graph computational unit (MGCU) to extract fea-

tures at individual scales and fuse features across scales.

The entire model is action-category-agnostic and follows

an encoder-decoder framework. The encoder consists of

a sequence of MGCUs to learn motion features. The de-

coder uses a proposed graph-based gate recurrent unit to

generate future poses. Extensive experiments show that

the proposed DMGNN outperforms state-of-the-art meth-

ods in both short and long-term predictions on the datasets

of Human 3.6M and CMU Mocap. We further investigate

the learned multiscale graphs for the interpretability. The

codes could be downloaded from https://github.

com/limaosen0/DMGNN .

1. Introduction

3D skeleton-based human motion prediction forecasts

future poses given the past motions based on the human-

body-skeleton. The motion prediction helps machines un-

derstand human behaviors, attracting considerable atten-

tion [9, 20, 32, 5, 12, 2]. The related techniques can be

widely applied to many computer vision and robotics sce-

narios, such as human-computer interaction [24, 23, 17, 13],

autonomous driving [6], and pedestrian tracking [1, 15, 3].

Many methods, including the conventional state-based

methods [25, 44, 38, 37, 36] and deep-network-based meth-

ods [9, 32, 10, 7, 12, 14, 11, 33, 43], have been proposed to

Figure 1. Two learned multiscale graphs on ‘Posing’. We show

strong relations associated with torsos in single scales and across

scales. Two multiscale graphs are dynamic from one MGCUs to

another, capturing local and distant relations, respectively.

achieve promising motion prediction. However, most meth-

ods did not explicitly exploit the relations or constraints be-

tween different body-components, which carry crucial in-

formation for motion prediction. A recent work [31] built

graphs across body-joints for pairwise relation modeling;

however, such a graph was still insufficient to reflect a func-

tional group of body-joints. Another work [43] builds pre-

defined sturctures to aggregate body-joint features to rep-

resent fixed body-parts, while the model only considers

the body physical constraints without exploiting the move-

ment coordination and relations. For example, the action

of ‘Walking’ tends to be understood based on the collabo-

rative movements of abstract arms and legs, rather than the

detailed locations of fingers and toes.

To model more comprehensive relations, we propose a

new representation for a human body: a multiscale graph,

whose nodes are body-components at various scales and

edges are pairwise relations between components. To model

a body at multiple scales, a multiscale graph consists of two

types of sub-graphs: single-scale graphs, connecting body-

components at the same scales, and cross-scale graphs, con-
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Figure 2. The architecture of DMGNN, which uses an encoder-decoder framework for motion prediction. In the encoder, cascaded mul-

tiscale graph computational blocks (MGCU) leverage dynamic muliscale graphs to extract spatio-temporal features. In the decoder, we

propose a graph-based GRU (G-GRU) to predict poses.

necting body-components across two scales; see Figure 1.

The single-scale graphs together provide a pyramid repre-

sentation of a body skeleton. Each cross-scale graph is

a bipartite graph, bridging one single-scale graph to an-

other. For example, an “arm” node in a coarse-scale graph

could connect to “hand” and “elbow“ nodes in a fine-scale

graph. This multiscale graph is initialized by predefined

physical connections and adaptively adjusted in training to

be motion-sensitive. Overall, this multiscale representation

provides a new potentiality to model body relations.

Based on the multiscale graph, we propose a novel

model, called dynamic multiscale graph neural networks

(DMGNN), which is action-category-agnostic and follows

from an encoder-decoder framework to learn motion repre-

sentations for prediction. The encoder contains a cascade

of multiscale graph computational units (MGCU), where

each is associated with a multiscale graph. One MGCU

includes two key components: single-scale graph convo-

lution block (SS-GCB), leveraging single-scale graphs to

exact features at individual scales, and cross-scale fusion

block (CS-FB), inferring cross-scale graphs to convert fea-

tures from one scale to another and enable fusion across

scales. The multiscale graph has adaptive and trainable

inbuilt topology; it is also dynamic because the topology

is changing from one MGCU to another; see the learned

dynamic multiscale graphs in Figure 1. Notably, cross-

scale graphs in CS-FBs are constructed adaptively to in-

put motions, and reflect discriminative motion patterns for

category-agnostic prediction.

As for the decoder, we adopt a graph-based gated re-

current unit (G-GRU) to sequentially produce predictions

given the last estimated poses. The G-GRU utilizes train-

able graphs to further enhance state propagation. We also

use residual connections to stabilize the prediction. To learn

richer motion dynamics, we introduce difference operators

to extract multiple orders of motion differences as the prox-

ies of positions, velocities, and accelerations. The architec-

ture of DMGNN is illustrated in Figure 2.

To verify the superiority of our DMGNN, extensive ex-

periments are conducted on two large-scale datasets: Hu-

man 3.6M [19] and CMU Mocap1. The experimental re-

sults show that our model outperforms most state-of-the-art

works for both short-term and long-term prediction in terms

of both effectiveness and efficiency. The main contributions

of this paper are as follow:

• We propose dynamic multiscale graph neural networks

(DMGNN) to extract deep features at multiple scales

and achieve effective motion prediction;

• We propose two key components: a multiscale graph

computational unit, which leverages a multiscale graph

to extract and fuse features across multiple scales, as

well as a graph-based GRU to enhance state propaga-

tion for pose generation; and

• We conduct extensive experiments to show that the

proposed DMGNN outperforms most state-of-the-art

methods for short and long-term motion prediction on

two large datasets. We further visualize the learned

graphs for interpretability and reasoning.

2. Related Work

Human motion prediction: To forecast motions, some

traditional methods, e.g., hidden Markov models [25],

Gaussian-process [44] and random forests [25], were devel-

oped. Recently, deep networks are playing increasingly cru-

cial roles: some recurrent-network-based models generated

future poses step-by-step [9, 20, 32, 41, 45, 11, 30, 12, 28];

some feed-forward networks [26, 31] tried to reduce er-

ror accumulation for stable prediction; imitation-learning

algorithm was also proposed [42]. However, these meth-

ods rarely considered enough relations from various scales,

which carry comprehensive information for human behav-

iors understanding. In this work, we build dynamic multi-

scale graphs to capture rich multiscale relations and extract

flexible semantics for motion prediction.

Graph deep learning: Graphs, expressing data asso-

ciated with non-grid structures, preserve the dependencies

among internal nodes [46, 40, 39]. Many studies focused

1http://mocap.cs.cmu.edu/
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Figure 3. Three body scales on Human 3.6M. In s1, we consider

20 joints with non-zero exponential maps [18]; In s2 and s3, we

consider 10 and 5 parts, respectively.

on graph representation learning and the relative applica-

tions [29, 8, 22, 16, 46, 35]. Based on fixed graph struc-

tures, previous works explored propagating node features

according to either the graph spectral domain [8, 22] or

the graph vertex domain [16]. Several graph-based mod-

els have been employed for skeleton-based action recogni-

tion [46, 27, 34], motion prediction [31] and 3D pose esti-

mation [47]; Different from any previous works, our model

considers multiscale graphs and corresponding operations.

3. Problem Formulation

Suppose that the historical 3D skeleton-based poses are

X−Th:0 = [X(−Th), . . . ,X(0)]∈ R
M×(Th+1)×Dx and the

future poses are X1:Tf
= [X(1), . . . ,X(Tf )]∈ R

M×Tf×Dx ,

where X(t) ∈ R
M×Dx with M joints and Dx = 3 feature-

dimensions depicts the 3D pose at time t. The goal of mo-

tion prediction is to generate future poses given the past ob-

served ones; mathematically, we need to propose a model

Fpred(·) to predict X̂1:Tf
= Fpred(X−Th:0), where X̂1:Tf

is

the predicted motion close to the target X1:Tf
.

To exploit rich body relations, we represent a body as a

multiscale graph across multiscale body-components. The-

orically, we could use arbitrary number of scales. Based

on human nature, we specifically adopt 3 scales: the body-

joint scale, the low-level-part scale, and the high-level-part

scale. To initialize multiscale body graphs, we merge spa-

tially nearby joints to coarser scales based on human prior;

see Figure 3. With the multiscale graphs, we propose dy-

namic multiscale graph neural networks (DMGNN) to pre-

dict future poses in an end-to-end fashion.

4. Key Components

To construct our dynamic multiscale graph neural net-

works (DMGNN), we consider three basic components:

a multiscale graph computational unit (MGCU), a graph-

based GRU (G-GRU), and a difference operator.

4.1. Multiscale graph computational unit (MGCU)

The functionality of a MGCU is to extract and fuse fea-

tures at multiple scales based on a multiscale graph, which

is trained adaptively and individually. One MGCU includes

Figure 4. An MGCU uses single-scale graph convolution blocks

(SS-CB) cross-scale fusion blocks (CS-FB).

two types of building blocks: single-scale graph convolu-

tion blocks, which leverage single-scale graphs to extract

features at each scale, and cross-scale fusion blocks, which

leverage cross-scale graphs to convert features from one

scale to another and enable effective fusion across scales;

see Figure 4. We now introduce each block in detail.

Single-scale graph convolution block (SS-GCB). To

extract spatio-temporal features at each scale, we propose

a single-scale graph convolution block (SS-GCB). Let the

trainable adjacency matrix of the single-scale graph at scale

s be As ∈ R
Ms×Ms , where Ms is the number of body-

components. As is first initialized by a skeleton graph

whose nodes are body-components and edges are physical

connections, modeling a prior of the physical constraints;

see Figure 3. During training, each element in As is adap-

tively tuned to capture flexible body relations.

Based on the single-scale graph, SS-GCB effectively ex-

tracts deep features through two steps: 1) a graph convolu-

tion extracts spatial features of body-components; and 2) a

temporal convolution extracts temporal features from mo-

tion sequences. Let the input feature at scale s be Xs ∈
R

Ms×Dx , the spatial graph convolution is formulated as

Xs,sp = ReLU(AsXsWs +XsUs) ∈ R
Ms×D′

x , (1)

where Ws,Us ∈ R
Dx×D′

x are trainable parameters.

Through (1), we extract the spatial features from correlated

body-components. As in each SS-GCB is trained individ-

ually and stays fixed during test. To capture motions along

time, we then develop a temporal convolution on the feature

sequences. The single-scale graphs in different SS-GCBs

are dynamic, showing flexible relations. Note that features

extracted at various scales have different dimensionalities

and reflect information with different receptive fields.

Cross-scale fusion block (CS-FB). To enable informa-

tion diffusion across scales, we propose a cross-scale fusion

block (CS-FB) which uses a cross-scale graph to convert

features from one scale to another. A cross-scale graph is

a bipartite graph that corresponds the nodes in one single-

scale graph to the nodes in another single-scale graph. For

example, the features of an “arm” node in the low-level-

part scale s2 can potentially guide the feature learning of a

“hand” node in the body-joint scale s1. We aim to infer this

cross-scale graph adaptively from data. Here we present

CS-FB from s1 to s2 as an example.
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Figure 5. The inference of a cross-scale graph.

We first infer the cross-scale graph with adjacent matrix

As1s2 ∈ [0, 1]Ms2
×Ms1 to model the cross-scale relations.

Let the feature of the ith joint and the kth part along time

be (Xs1):,i,: ∈ R
Ts1

×D′

x and (Xs2):,k,: ∈ R
Ts2

×D′

x , we

vectorize them as ps1,i = vec(convs1,τ ((Xs1):,i,:;µ)) and

ps2,k = vec(convs2,τ ((Xs2):,k,:;µ)) to leverage temporal

information, where τ and µ denote the temporal convolution

kernel size and stride. We infer the edge weight between the

ith joint and kth part (As1s2)k,i through

rs1,i =

Ms1∑

j=1

fs1 ([ps1,i,ps1,j − ps1,i]) (2a)

hs1,i = gs1 ([ps1,i, rs1,i]) (2b)

rs2,k =

Ms2∑

j=1

fs2 ([ps2,k,ps2,j − ps2,k]) (2c)

hs2,k = gs2 ([ps2,k, rs2,k]) (2d)

(As1s2)k,i = softmax(h⊤

s2,k
hs1,i) ∈ [0, 1], (2e)

where fs1(·), gs1(·), fs2(·) and gs2(·) denotes MLPs;

softmax(·) is a softmax operator along the raw of inner

product matrix and [·, ·] is concatenation. (2a) and (2c) ag-

gregate the relative features of all the components to the

ith and the kth components in two scales, which are then

updated by (2b) and (2d); and (2e) obtains adjacent matrix

through inner product and softmax, thus we model the nor-

malized effects from a body in s1 to each component in s2.

The intuition behind this design is to leverage the global

relative information to augment body-component features,

and we use the inner product of two augmented features to

obtain the edge weight. Figure 5 illustrates the inference of

As1s2 . Notably, different from the fixed single-scale graphs

during inference, the cross-scale graphs are efficiently in-

ferred online and adaptive to motion features, which are

flexible to capture distinct patterns for individual inputs.

We next fuse the joint features to the part-scale with

As1s2 . Given the joint features at a certain time stamp

Xs1 ∈ R
Ms1

×D′

x , the part-scale feature is updated as

Xs2 ← As1s2Xs1WF,s1 +Xs2 ∈ R
Ms2

×D′

x ,

where WF,s1 ∈ R
D′

x
×D′

x is trainable. Thus, each body-

part in s2 adaptively absorbs detailed information from the

corresponding joints in s1. The fused Xs2 is fed into the SS-

CB of the next MGCU in s2. In the other way around, we

can define the fusion from s2 to s1 with similar operations.

4.2. Graph­based GRU

The functionality of a graph-based GRU (G-GRU) is to

learn and update hidden states with the guide of a graph.

The key is to use a trainable graph to regularize the states,

which are used to generate future poses. Let AH ∈ R
M×M

be the adjacent matrix of the inbuilt graph, which is ini-

tialized with the skeleton-graph and trained to build adap-

tive edges, and H(0) ∈ R
M×Dh be the initial state of G-

GRU. At time t > 0, G-GRU takes two inputs: the initial

state, H(t), and the online 3D skeleton-based information,

I(t) ∈ R
M×d. Then, G-GRU(I(t),H(t)) works as

r(t) = σ(rin(I
(t)) + rhid(AHH

(t)WH)),

u(t) = σ(uin(I
(t)) + uhid(AHH

(t)WH)),

c(t) = tanh(cin(I
(t)) + r(t) ⊙ chid(AHH

(t)WH)),

H(t+1) = u(t) ⊙H(t) + (1− u(t))⊙ c(t),

where rin(·), rhid(·), uin(·), uhid(·), cin(·) and chid(·)
are trainable linear mappings; WH denotes the trainable

weights. For each G-GRU cell, it applies a graph convo-

lution on the hidden states for information propagation and

produces the state for next frame.

4.3. Difference operator

The motion states like velocity and acceleration carry

important dynamics. To use them, we propose a differ-

ence operator to compute high-order differences of input

sequences, guiding the model to learn richer dynamics. At

time t, the 0-order difference is ∆0X(t) = X(t) ∈ R
M×Dx ,

and the β-order difference (β > 0) of the pose, ∆βX(t),

is ∆βX(t) = ∆β−1X(t) − ∆β−1X(t−1). We use zero

paddings after computing the differences to handle bound-

ary conditions. Overall, the difference operator works as

diffβ(X
(t)) =

[
∆0X(t) · · · ∆βX(t)

]
.

Here we consider β = 2. The three elements reflects posi-

tions, velocities, and accelerations.

5. DMGNN Framework

Here we present the architecture of our DMGNN, which

contains a multiscale graph-based encoder and a recurrent

graph-based decoder for motion prediction.

5.1. Encoder

Capturing semantics from observed motions, the encoder

aims to provide the decoder with motion states for predic-

tion. In the encoder, for each motion sample, we first con-

catenate its 0, 1, 2-order of differences as input. And we

initialize 3 body scales by averaging joint clusters in s1 to

spatially corresponding components in coarser scales. For
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example, we average two “right hand” joints in s1 to the

“right arm” part in s2. We then use a cascade of MGCUs

to extract spatio-temporal features. Note that the multi-

scale graph associated with each MGCU is trained individ-

ually, thus the graph topology can be dynamically chang-

ing from one MGCU to another. To finally combine the

three scales for comprehensive semantics, the output fea-

tures are weighted summed. Since the numbers of body-

components are different across scales, we broadcast the

coarser components to match their spatially corresponding

joints. Let the broadcast output features of the three scale

be Hs1 ,Hs2 ,Hs3 ∈ R
T ′

×M×Dh , the summed feature is

H = Hs1 + λ(Hs2 +Hs3), (3)

where λ is a hyper-parameter to balance different scales.

We next use a temporal average pooling to remove the time

dimension of H and obtain H ∈ R
M×Dh , which aggregates

historical information as the initial state of the decoder.

5.2. Decoder

The decoder aims to predict future poses sequentially.

The core of the decoder is the proposed graph-based GRU

(G-GRU), which further propagates motion states for se-

quence regression. We first use the difference operator to

extract three orders of differences as motion priors, and then

feed them into G-GRU to update the hidden state. We next

generate future pose displacement with an output function.

Finally, we add the displacements to the input pose to pre-

dict the next frame. At frame t, the decoder works as

X̂(t+1) = X̂(t) + fpred

(
G-GRU

(
diff2(X̂

(t)),H(t)
))

,

where fpred(·) represents an output function, implemented

by MLPs. The initial state H(0) = H, which is the final

output of encoder.

5.3. Loss function

To train our DMGNN, we consider the ℓ1 loss. Let the

nth sample of predictions be (X̂1:Tf
)n ∈ R

Tf×M×Dx and

the corresponding ground truth be (X1:Tf
)n. For N training

samples, the loss function is

Lpred =
1

N

N∑

n=1

∥∥∥(X1:Tf
)n − (X̂1:Tf

)n

∥∥∥
1
,

where ||·||1 denotes the ℓ1 norm. ℓ1 loss gives sufficient gra-

dients to joints with small losses to promote even more pre-

cise prediction; ℓ1 loss also gives stable gradients to joints

with large losses, alleviating gradient explosion. In our ex-

periments, ℓ1 loss leads to more precise predictions than ℓ2
loss. All the weights in the proposed DMGNN are trained

end-to-end with the stochastic gradient descent [4].

6. Experiments

6.1. Datasets and experimental setup

Human 3.6m (H3.6M). H3.6M dataset [19] has 7 sub-

jects performing 15 different classes of actions. There are

32 joints in each subject, and we transform the joint posi-

tions into the exponential maps and only use the joints with

non-zero values (20 joints remain). Along the time axis,

we downsample all sequences by two. Following previous

paradigms [32], the models are trained on 6 subjects and

tested on the specific clips of the 5th subject.

CMU motion capture (CMU Mocap). CMU Mocap

consists of 5 general classes of actions: ‘human interaction’,

‘interaction with environment’, ‘locomotion’, ‘physical ac-

tivities & sports’, and ‘situations & scenarios’, where each

subject has 38 joints and we preserve 26 joints with non-

zero exponential maps. Be consistent with [26], we select

8 detailed actions: ‘basketball’, ‘basketball signal’, ‘direct-

ing traffic’, ‘jumping’, ‘running’, ‘soccer’, ‘walking’ and

‘washing window’. We evaluate our model with the same

approach as we do for H3.6M.

Model configuration. We implement DMGNN with Py-

Torch 1.0 on one RTX-2080Ti GPU. We set 3 scales, which

contains body-joints, 10 and 5 body-components for both

datasets. We use 4 cascaded MGCUs, whose feature di-

mensions are 32, 64, 128 and 256, respectively. In the first

two MGCUs, we use both SS-GCBs and CS-FBs to extract

spatio-temporal features and fuse cross-scale features; In

the last two MGCUs, we only use SS-GCBs. In the decoder,

the dimension of the G-GRU is 256, and we use a two-layer

MLP for pose output. In training, we set the batch size 32
and clip the gradients to a maximum ℓ2-norm of 0.5; we

use Adam optimizer [21] with learning rate 0.0001. All the

hyper-parameters are selected with validation sets.

Baseline methods. We compare the proposed DMGNN

with many recent works, which learned motion patterns

from pose vectors, e.g. Res-sup. [32], CSM [26], TP-

RNN [7], AGED [12], and Imit-L [42], or separated bod-

ies e.g. Skel-TNet [14], and Traj-GCN [31]. We repro-

duce, Res-sup., CSM and Traj-GCN based on their released

codes. We also employ a naive baseline, ZeroV [32], which

sets all predictions to be the last observed pose at t = 0.

6.2. Comparison to state­of­the­art methods

To validate the proposed DMGNN, we show the predic-

tion performance for both short-term and long-term motion

prediction on Human 3.6M (H3.6M) and CMU Mocap. We

quantitatively evaluate various methods by the mean angle

error (MAE) between the generated motions and ground-

truths in angle space. We also illustrate the predicted sam-

ples for qualitative evaluation.

Short-term motion prediction. Short-term motion pre-

diction aims to predict the future poses within 500 millisec-
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Table 1. Mean angle errors (MAE) of different methods for short-term prediction on 4 representative actions of H3.6M. We also present

different DMGNN variants, including using fixed graphs in SS-GCB (fixed As), no graph in GRU (no G-GRU), and only one scale (single).

The complete DMGNN outperform others methods at most time stamp.
Motion Walking Eating Smoking Discussion

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

ZeroV [32] 0.39 0.68 0.99 1.15 0.27 0.48 0.73 0.86 0.26 0.48 0.97 0.95 0.31 0.67 0.94 1.04

Res-sup. [32] 0.27 0.46 0.67 0.75 0.23 0.37 0.59 0.73 0.32 0.59 1.01 1.10 0.30 0.67 0.98 1.06

CSM [26] 0.33 0.54 0.68 0.73 0.22 0.36 0.58 0.71 0.26 0.49 0.96 0.92 0.32 0.67 0.94 1.01

TP-RNN [7] 0.25 0.41 0.58 0.65 0.20 0.33 0.53 0.67 0.26 0.47 0.88 0.90 0.30 0.66 0.96 1.04

AGED [12] 0.21 0.35 0.55 0.64 0.18 0.28 0.50 0.63 0.27 0.43 0.81 0.83 0.26 0.56 0.77 0.84

Skel-TNet [14] 0.31 0.50 0.69 0.76 0.20 0.31 0.53 0.69 0.25 0.50 0.93 0.89 0.30 0.64 0.89 0.98

Imit-L [42] 0.21 0.34 0.53 0.59 0.17 0.30 0.52 0.65 0.23 0.44 0.87 0.85 0.23 0.56 0.82 0.91

Traj-GCN [31] 0.18 0.32 0.49 0.56 0.17 0.31 0.52 0.62 0.22 0.41 0.84 0.79 0.20 0.51 0.79 0.86

DMGNN (fixed As) 0.20 0.35 0.54 0.63 0.20 0.34 0.53 0.66 0.23 0.41 0.86 0.83 0.26 0.65 0.92 1.02

DMGNN (no G-GRU) 0.22 0.33 0.53 0.61 0.19 0.32 0.53 0.66 0.23 0.42 0.87 0.82 0.27 0.65 0.90 0.98

DMGNN (S = 1) 0.20 0.33 0.54 0.60 0.18 0.31 0.52 0.62 0.22 0.41 0.83 0.80 0.25 0.64 0.95 1.00

DMGNN 0.18 0.31 0.49 0.58 0.17 0.30 0.49 0.59 0.21 0.39 0.81 0.77 0.26 0.65 0.92 0.99

Table 2. MAEs of different methods for short-term motion prediction on other 11 actions of H3.6M.
Motion Directions Greeting Phoning Posing Purchases Sitting

millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res-sup [32] 0.41 0.64 0.80 0.92 0.57 0.83 1.45 1.60 0.59 1.06 1.45 1.60 0.45 0.85 1.34 1.56 0.58 0.79 1.08 1.15 0.41 0.68 1.12 1.33

CSM [26] 0.39 0.60 0.80 0.91 0.51 0.82 1.21 1.38 0.59 1.13 1.51 1.65 0.29 0.60 1.12 1.37 0.63 0.91 1.19 1.29 0.39 0.61 1.02 1.18

Traj-GCN [31] 0.26 0.45 0.70 0.79 0.35 0.61 0.96 1.13 0.53 1.02 1.32 1.45 0.23 0.54 1.26 1.38 0.42 0.66 1.04 1.12 0.29 0.45 0.82 0.97

DMGNN 0.25 0.44 0.65 0.71 0.36 0.61 0.94 1.12 0.52 0.97 1.29 1.43 0.20 0.46 1.06 1.34 0.41 0.61 1.05 1.14 0.26 0.42 0.76 0.97

Motion Sitting Down Taking Photo Waiting Walking Dog Walking Together Average

millisecond 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

Res-sup. [32] 0.47 0.88 1.37 1.54 0.28 0.57 0.90 1.02 0.32 0.63 1.07 1.26 0.52 0.89 1.25 1.40 0.27 0.53 0.74 0.79 0.40 0.69 1.04 1.18

CSM [26] 0.41 0.78 1.16 1.31 0.23 0.49 0.88 1.06 0.30 0.62 1.09 1.30 0.59 1.00 1.32 1.44 0.27 0.52 0.71 0.74 0.38 0.68 1.01 1.13

Traj-GCN [31] 0.30 0.63 0.89 1.01 0.15 0.36 0.59 0.72 0.23 0.50 0.92 1.15 0.46 0.80 1.12 1.30 0.15 0.35 0.52 0.57 0.27 0.53 0.85 0.96

DMGNN 0.32 0.65 0.93 1.05 0.15 0.34 0.58 0.71 0.22 0.49 0.88 1.10 0.42 0.72 1.16 1.34 0.15 0.33 0.50 0.57 0.27 0.52 0.83 0.95

Table 3. MAEs of different methods for long-term prediction on

the 4 representative actions of H3.6M dataset.
Motion Walking Eating Smoking Discussion Average

milliseconds 560 1k 560 1k 560 1k 560 1k 560 1k

ZeroV [32] 1.35 1.32 1.04 1.38 1.02 1.69 1.41 1.96 1.21 1.59

Res-sup. [32] 0.93 1.03 0.95 1.08 1.25 1.50 1.43 1.69 1.14 1.33

CSM [26] 0.98 0.92 1.01 1.24 0.97 1.62 1.56 1.86 1.13 1.41

AGED [12] 0.78 0.91 0.86 0.93 1.06 1.21 1.25 1.30 0.99 1.09

Skel-TNet [14] 0.94 0.92 0.97 1.23 0.99 1.59 1.51 1.82 1.10 1.39

Imit-L [42] 0.67 0.69 0.79 1.13 0.95 1.63 1.34 1.81 0.94 1.32

Traj-GCN [31] 0.65 0.67 0.76 1.12 0.87 1.57 1.33 1.70 0.90 1.27

DMGNN 0.66 0.75 0.74 1.14 0.83 1.52 1.33 1.45 0.89 1.21

onds. We compare DMGNN to state-of-the-art methods

for predicting poses in 400 milliseconds on H3.6M dataset.

We first test 4 representative actions: ‘Walking’, ‘Eating’,

‘Smoking’ and ‘Discussion’. Table 1 shows MAEs of

DMGNN and some baselines. We also present the perfor-

mance of several variants of DMGNN: we use fixed body-

graphs in SS-GCBs (fixed As); the common GRU with-

out a graph (no G-GRU); or only the joint-scale (S = 1)

bodies. We see that, i) the complete DMGNN obtain the

most precise prediction among all the variants; ii) compared

to baselines, DMGNN has the lowest prediction MAEs on

‘Eating’ and ‘Smoking’, and obtains competitive results on

‘Walking’ and ‘Discussion’. Table 2 compares the proposed

DMGNN with some recent baselines on the remaining 11
actions in H3.6M. We see that DMGNN achieves the best

performance in most actions (also for average MAEs).

Long-term motion prediction. Long-term motion pre-

diction aims to predict the poses over 500 milliseconds,

which is challenging due to the action variation and non-

linearity movements. Table 3 presents the MAEs of various

models for predicting 4 actions and average MAEs across

the 4 actions in the future 560 ms and 1000 ms on H3.6M

dataset. We see that DMGNN outperforms the competitors

on actions ‘Eating’, and ‘Discussion’ at 560 ms, and obtains

competitive performances on other cases.

We also train our DMGNN for short-term and long-term

prediction on 8 classes of actions in CMU Mocap dataset.

Table 4 shows the MAEs across the future 1000 ms. We see

that DMGNN significantly outperforms the state-of-the-art

methods on actions ‘Basketball’, ‘Basketball Signal’, ‘Run-

ning’ and ‘Walking’ and obtains competitive performance

on the other actions.

Predicted sample visualization. We compare the syn-

thesized samples of DMGNN to those of Res-sup., CSM

and Traj-GCN on H3.6M. Figure 6 illustrates the future

poses of ‘Taking Photo’ in 1000 ms with the frame inter-

val of 80 ms. Comparing to baselines, we see that DMGNN

completes the action accurately and reasonably, providing

significantly better predictions. Res-sup. has large disconti-

nuity between the last observed pose the first predicted one

(red box); CSM and Traj-GCN have large errors after the

280th ms (blue box); three baselines give large posture er-

rors in long-term (yellow box). We show more prediction
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Table 4. Comparisons of MAEs between our model and the state-of-the-art methods on the 8 actions of CMU Mocap dataset. We evaluate

the model and present the MAEs at both short and long-term prediction time stamps.
Motion Basketball Basketball Signal Directing Traffic Jumping

milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Res-sup. [32] 0.49 0.77 1.26 1.45 1.77 0.42 0.76 1.33 1.54 2.17 0.31 0.58 0.94 1.10 2.06 0.57 0.86 1.76 2.03 2.42

CSM [26] 0.36 0.62 1.07 1.17 1.95 0.33 0.62 1.05 1.23 1.98 0.26 0.58 0.91 1.04 2.08 0.38 0.60 1.36 1.58 2.05

Traj-GCN [31] 0.33 0.52 0.89 1.06 1.71 0.11 0.20 0.41 0.53 1.00 0.15 0.32 0.52 0.60 2.00 0.31 0.49 1.23 1.39 1.80

DMGNN 0.30 0.46 0.89 1.11 1.66 0.10 0.17 0.31 0.41 1.26 0.15 0.30 0.57 0.72 1.98 0.37 0.65 1.49 1.71 1.79

Motion Running Soccer Walking Washing Window

milliseconds 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

Res-sup. [32] 0.32 0.48 0.65 0.74 1.00 0.29 0.50 0.87 0.98 1.73 0.35 0.45 0.59 0.64 0.88 0.31 0.47 0.74 0.93 1.37

CSM [26] 0.28 0.43 0.54 0.57 0.69 0.28 0.48 0.79 0.90 1.58 0.35 0.44 0.46 0.51 0.77 0.30 0.47 0.79 1.00 1.39

Traj-GCN [31] 0.33 0.55 0.73 0.74 0.95 0.18 0.29 0.61 0.71 1.40 0.33 0.45 0.49 0.53 0.61 0.22 0.33 0.57 0.75 1.20

DMGNN 0.19 0.31 0.47 0.49 0.64 0.22 0.32 0.79 0.91 1.54 0.30 0.34 0.38 0.43 0.60 0.20 0.27 0.62 0.81 1.09

Res-sup.

400 time (ms)200 400 800

CSM

Traj-GCN

DMGNN

GT

Figure 6. Qualitative comparison on the action ‘Taking Photo’ of

H3.6M for both short and long-term prediction.

Table 5. Average time cost comparison between DMGCNN with

the latest models on H3.6M dataset.
Model Time cost (ms)

milisecond 400 1000

TP-RNN [7] 48.96 127.41

Skel-TNet [14] 33.29 98.17

Traj-GCN [31] 71.43 144.93

DMGNN 29.18 86.04

images and videos in Appendix.

Effectiveness and efficiency test. We compare the run-

ning time costs of DMGNN to several latest models. Table 5

presents the running time of different methods for short and

long-term motion prediction on H3.6M dataset. We see that

DMGNN achieves the shortest running time while generat-

ing future poses over both 400 or 1000 ms, compared with

the other competitors [32, 26, 31]. DMGNN takes only

29.18 ms to generate motions in 400 ms, indicating that

DMGNN with multiscale graphs has efficient operations.

6.3. Ablation study

We now investigate some crucial elements of DMGNN.

Effects of multiple scales. To verify the proposed multi-

scale representation, we employ various scales in DMGNN

for 3D skeleton-based motion prediction. Besides the three

scales in our model, we introduce additional two scales: s4,

which represents a body as Ms4 = 3 parts: left limbs, right

limbs and torso, and s5, which contains Ms5 = 2 parts: up-

per body and lower body; see illustrations of s4 and s5 in

Appendix. Table 6 presents the MAEs with various scales.

We see that, when we combine s1, s2 and s3, lowest predic-

Table 6. Average MAEs of DMGNN with different scales for

short-term prediction at different time stamps.
Node numbers Ms MAEs

Scales 20 10 5 3 2 80 160 320 400

1 ✓ 0.29 0.55 0.87 1.00

1, 2 ✓ ✓ 0.27 0.53 0.85 0.97

1, 2, 3 ✓ ✓ ✓ 0.27 0.52 0.83 0.95

1, 3 ✓ ✓ 0.28 0.53 0.84 0.92

1, 2, 3, 4 ✓ ✓ ✓ ✓ 0.28 0.54 0.87 0.98

1, 4 ✓ ✓ 0.28 0.54 0.86 0.97

1, 2, 3, 5 ✓ ✓ ✓ ✓ 0.28 0.55 0.86 0.99

1, 5 ✓ ✓ 0.29 0.55 0.87 1.00

Table 7. MAEs and running times of DMGNN with different num-

bers of MGCUs for short and long-term prediction on H3.6M.
MAE at different time stamps (ms) running time (ms)

MGCUs 80 160 320 400 560 1000 400 1000

1 0.30 0.56 0.87 1.02 1.25 1.52 27.42 83.01

2 0.29 0.53 0.85 0.99 1.20 1.52 27.89 83.95

3 0.27 0.54 0.83 0.95 1.18 1.49 28.34 84.89

4 0.27 0.52 0.83 0.95 1.16 1.48 29.18 86.04

5 0.28 0.55 0.83 0.96 1.17 1.51 30.37 88.39

6 0.29 0.54 0.84 0.98 1.19 1.54 31.55 91.15

Table 8. Average MAEs of DMGNN with different numbers of

CS-FBs and feature aggregators over 400 ms on H3.6M.
Average MAE across 400 ms

CS-FB numbers 1 2 3 0

without relative 0.623 0.622 0.618
0.630

with relative 0.618 0.613 0.616

tion error is achieved. Notably, using two scales (s1, s2 or

s1, s3) is significant better than using only s1; but involving

too abstract scales (s4 or s5) tends to hurt prediction.

Effects of the number of MGCUs. To validate the ef-

fects of multiple MGCUs in the encoder, we tune the num-

bers of MGCUs from 1 to 6 and show the prediction errors

and running time costs for short and long-term prediction

on H3.6M, which are presented in Table 7. We see that,

when we adopt 1 to 4 MGCUs, the prediction MAEs fall

and time costs rise continuously; when we use 5 or 6 MG-

CUs, the prediction errors are stably low, but the time costs

rise higher. Therefore, we select to use 4 MGCUs, resulting

in precise prediction and high running efficiency.

Effects of CS-FBs. Here, we evaluate 1) the effective-

ness of using relative features during cross-scale graph in-

ference in CS-FBs; 2) different numbers of CS-FBs in a
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Table 9. Average MAEs for different orders of motion differences.
MAE at different time stamps (ms)

Difference Order 80 160 320 400

β = 0 0.34 0.60 0.86 1.01

β = 0, 1 0.28 0.54 0.83 0.97

β = 0, 1, 2 0.27 0.52 0.83 0.95

Figure 7. Average MAEs of DMGNN variants with different final

fusion coefficient λ for short-term motion prediction.

sequence of 4 MGCUs. For 0 CS-FB, the model only fuses

all scales at the end of the encoder. Table 8 presents the

average MAEs with different CS-FBs and relative-feature

mechanisms across 400 ms on H3.6M. We see that 1) using

relative features leads to lower MAEs, validating the effec-

tiveness of such augmented features; 2) 2 CS-FBs leads to

the best prediction performance. The intuition is that 0 or 1

CS-FB fuse insufficiently and 3 CS-FBs tend to fuse redun-

dant information to confuse the model.

Effect of λ in final fusion. The hyper-parameter λ in the

final fusion (3) balances the influence between joint-scale

and more abstract scales. Figure 7 illustrates the average

MAE with different body scales and CS-FBs for short-term

prediction on H3.6M. We see that the performance reach

its best when we use 3 scales, 2 hierarchical CS-FBs and

λ = 0.6, even though it is robust to the change of λ.

Effect of high-order motion differences. We study the

effects of various orders of motion differences fed into the

encoder and decoder of our model. We evaluate DMGNN

with combinations of 0, 1, 2-orders of pose differences. Ta-

ble 9 presents the MAEs of DMGNN with various input dif-

ferences for short-term motion prediction. We see that the

proposed DMGNN obtains the lowest MAEs when it adopts

the 0, 1, 2-orders of motion differences. This indicates that

high-order differences improve the prediction performance

significantly.

6.4. Analysis of category­agnostic property

Here we validate that DMGNN can learn discriminative

motion features for category-agnostic prediction.

We first visualize the learned cross-scale graphs for dif-

ferent actions to test the discriminative power. Figure 8

shows the graphs in two CS-FBs on ‘Walking’ and ‘Direc-

Figure 8. The learned dynamic cross-scale graphs on two CS-FBs

for two actions: ‘Walking’ and ‘Directions’ in H3.6M.

Table 10. Classification accuracies on cross-scale graphs and mo-

tion features of DMGNN and other methods on H3.6M.
Methods On CS-FB 1 On CS-FB 2 On H Res-sup. [32] TP-RNN [7]

Accuracy 28.6% 40.1% 45.7% 22.6% 24.4%

tions’ in H3.6M. For each action, we show some strong

relations from detailed scales to the right arms in coarse

scales. We see that i) for each action, the CS-FBs capture

diverse ranges of a human body: the graph in the first CS-

FB focuses on nearby body-components; the second CS-FB

captures more global and action-related effects; i.e. hands

and feet affects arms during walking; and ii) the cross-scale

graphs are different for various actions, especially in the

second CS-FB, capturing distinct patterns.

We next conduct action classification on the intermedi-

ate representations to test the discriminative power. We

isolatedly train a two-layer MLP to classify each dynamic

cross-scale graph. We also classify the outputs from the en-

coders of DMGNN, Res-sup. (class-aware) and TP-RNN

(class-agnostic). Table 10 presents the average classifica-

tion accuracies on 15 categories of actions. We see that

the cross-scale graph in the second CS-FB is more informa-

tive than the one in the first CS-FB for action recognition.

Comparing to baselines, DMGNN obtains the highest the

classification accuracies on encoder representation, indicat-

ing that DMGNN captures discriminative information for

class-agnostic prediction.

7. Conclusion

We build dynamic mutiscale graphs to represent a hu-

man body and propose dynamic multiscale graph neural

networks (DMGNN) with an encoder-decoder framework

for 3D skeleton-based human motion prediction. In the

encoder, We develop multiscale graph computational units

(MGCU) to extract features; in the decoder, we develop a

graph-based GRU (G-GRU) for pose generation. The re-

sults show that the proposed model outperforms most state-

of-the-art methods for both short and long-trem prediction

in terms of both effectiveness and efficiency.
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[8] Michaël Defferrard, Xavier Bresson, and Pierre Van-

dergheynst. Convolutional neural networks on graphs with

fast localized spectral filtering. In Advances in Neural In-

formation Processing Systems (NeurIPS), pages 3844–3852,

December 2016.

[9] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Ji-

tendra Malik. Recurrent network models for human dynam-

ics. In The IEEE International Conference on Computer Vi-

sion (ICCV), pages 4346–4354, December 2015.

[10] Partha Ghosh, Jie Song, Emre Aksan, and Otmar Hilliges.

Learning human motion models for long-term predictions.

CoRR, abs/1704.02827, 2017.

[11] Anand Gopalakrishnan, Ankur Mali, Dan Kifer, Lee Giles,

and Alexander Ororbia. A neural temporal model for human

motion prediction. In The IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pages 12116–12125,

June 2019.

[12] Liangyan Gui, Yuxiong Wang, Xiaodan Liang, and Jose

Moura. Adversarial geometry-aware human motion pre-

diction. In The European Conference on Computer Vision

(ECCV), pages 786–803, September 2018.

[13] Liangyan Gui, Kevin Zhang, Yuxiong Wang, Xiaodan Liang,

Jose Moura, and Manuela Veloso. Teaching robots to predict

human motion. In IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), October 2018.

[14] Xiao Guo and Jongmoo Choi. Human motion prediction

via learning local structure representations and temporal de-

pendencies. In AAAI Conference on Artificial Intelligence,

February 2019.

[15] Ankur Gupta, Julieta Martinez, James Little, and Robert

Woodham. 3d pose from motion for cross-view action recog-

nition via non-linear circulant temporal encoding. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 2061–2068, June 2014.

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive

representation learning on large graphs. In Advances in Neu-

ral Information Processing Systems (NeurIPS), pages 1024–

1034, December 2017.

[17] Dean Huang and Kris Kitani. Action-reaction: Forecasting

the dynamics of human interaction. In The European Con-

ference on Computer Vision (ECCV), pages 489–504, July

2014.

[18] Du Huynh. Metrics for 3d rotations: Comparison and analy-

sis. Journal of Mathematical Imaging and Vision, 35(2):155–

164, October 2009.

[19] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian

Sminchisescu. Human3.6m: Large scale datasets and predic-

tive methods for 3d human sensing in natural environments.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (TPAMI), 36(7):1325–1339, July 2014.

[20] Ashesh Jain, Amir Zamir, Silvio Savarese, and Ashutosh

Saxena. Structural-rnn: Deep learning on spatio-temporal

graphs. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 5308–5317, June 2016.

[21] Diederik Kingma and Jimmylei Ba. Adam: A method

for stochastic optimization. In International Conference on

Learning Representations (ICLR), pages 1–15, May 2015.

[22] Thomas Kipf and Max Welling. Semi-supervised classifi-

cation with graph convolutional networks. In International

Conference on Learning Representations (ICLR), pages 1–

14, April 2017.

[23] Hema Koppula and Ashutosh Saxena. Learning spatio-

temporal structure from rgb-d videos for human activity de-

tection and anticipation. In International Conference on Ma-

chine Learning (ICML), pages 792–800, June 2013.

[24] Hema Koppula and Ashutosh Saxena. Anticipating human

activities using object affordances for reactive robotic re-

sponse. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 38(1):14–29, January 2016.

[25] Andreas Lehrmann, Peter Gehler, and Sebastian Nowozin.

Efficient nonlinear markov models for human motion. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 1314–1321, June 2014.

[26] Chen Li, Zhen Zhang, Wee Sun Lee, and Gim Hee Lee. Con-

volutional sequence to sequence model for human dynamics.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 5226–5234, June 2018.

[27] Maosen Li, Siheng Chen, Xu Chen, Ya Zhang, Yanfeng

Wang, and Qi Tian. Actional-structural graph convolutional

networks for skeleton-based action recognition. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 3595–3603, June 2019.

222



[28] Maosen Li, Siheng Chen, Xu Chen, Ya Zhang, Yanfeng

Wang, and Qi Tian. Symbiotic graph neural networks for

3d skeleton-based human action recognition and motion pre-

diction. CoRR, abs/1910.02212, 2019.

[29] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard

Zemel. Gated graph sequence neural networks. In Inter-

national Conference on Learning Representations (ICLR),

pages 1–20, May 2016.

[30] Zhenguang Liu, Shuang Wu, Shuyuan Jin, Qi Liu, Shijian

Lu, Roger Zimmermann, and Li Cheng. Towards natural and

accurate future motion prediction of humans and animals.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 10004–10012, June 2019.

[31] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong

Li. Learning trajectory dependencies for human motion pre-

diction. In The IEEE International Conference on Computer

Vision (ICCV), October 2019.

[32] Julieta Martinez, Michael Black, and Javier Romero. On

human motion prediction using recurrent neural networks.

In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 4674–4683, July 2017.

[33] Dario Pavllo, David Grangier, and Michael Auli. Quater-

net: A quaternion-based recurrent model for human motion.

In British Machine Vision Converence (BMVC), pages 1–14,

September 2018.

[34] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu.

Skeleton-based action recognition with directed graph neural

networks. In The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 7912–7921, June 2019.

[35] Chenyang Si, Ya Jing, Wei Wang, Liang Wang, and Tieniu

Tan. Skeleton-based action recognition with spatial reason-

ing and temporal stack learning. In The European Confer-

ence on Computer Vision (ECCV), pages 103–118, Septem-

ber 2018.

[36] Ilya Sutskever, Geoffrey Hinton, and Graham Taylor. The re-

current temporal restricted boltzmann machine. In Advances

in Neural Information Processing Systems (NeurIPS), pages

1601–1608, December 2009.

[37] Graham Taylor and Geoffrey Hinton. Factored conditional

restricted Boltzmann machines for modeling motion style.

In International Conference on Machine Learning (ICML),

pages 1025–1032, June 2009.

[38] Graham Taylor, Geoffrey Hinton, and Sam Roweis. Model-

ing human motion using binary latent variables. In Advances

in Neural Information Processing Systems (NeurIPS), pages

1345–1352, December 2007.

[39] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Learn-

ing localized generative models for 3d point clouds via graph

convolution. In International Conference on Learning Rep-

resentations (ICLR), pages 1–15, May 2019.

[40] Nitika Verma, Edmond Boyer, and Jakob Verbeek. Feast-

net: Feature-steered graph convolutions for 3d shape analy-

sis. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2598–2606, June 2018.

[41] Jacob Walker, Kenneth Marino, Abhinav Gupta, and Mar-

tial Hebert. The pose knows: Video forecasting by generat-

ing pose futures. In The IEEE International Conference on

Computer Vision (ICCV), pages 3332–3341, October 2017.

[42] Borui Wang, Ehsan Adeli, Hsukuang Chiu, Dean Huang, and

JuanCarlos Niebles. Imitation learning for human pose pre-

diction. In The IEEE International Conference on Computer

Vision (ICCV), October 2019.

[43] He Wang, Edmond Ho, Hubert Shum, and Zhanxing Zhu.

Spatio-temporal manifold learning for human motions via

long-horizon modeling. IEEE Transactions on Visualization

and Computer Graphics (TVCG), PP(99), August 2019.

[44] Jack Wang, Aaron Hertzmann, and David Fleet. Gaussian

process dynamical models. In Advances in Neural Informa-

tion Processing Systems (NeurIPS), pages 1441–1448, De-

cember 2006.

[45] Tianfan Xue, Jiajun Wu, Katherine Bouman, and Bill Free-

man. Visual dynamics: Probabilistic future frame synthesis

via cross convolutional networks. In Advances in Neural In-

formation Processing Systems (NeurIPS), pages 91–99. De-

cember 2016.

[46] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-

ral graph convolutional networks for skeleton-based action

recognition. In AAAI Conference on Artificial Intelligence

(AAAI), pages 7444–7452, February 2018.

[47] Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, and Dim-

itris N. Metaxas. Semantic graph convolutional networks for

3d human pose regression. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 3425–

3435, June 2019.

223


