
Enhanced Blind Face Restoration with Multi-Exemplar Images

and Adaptive Spatial Feature Fusion

Xiaoming Li1, Wenyu Li1, Dongwei Ren2, Hongzhi Zhang1, Meng Wang3, Wangmeng Zuo1(�)

1School of Computer Science and Technology, Harbin Institute of Technology, China
2College of Intelligence and Computing, Tianjin University, China

3Hefei University of Technology, China

{csxmli, wmzuo}@hit.edu.cn

Abstract

In many real-world face restoration applications, e.g.,

smartphone photo albums and old films, multiple high-

quality (HQ) images of the same person usually are avail-

able for a given degraded low-quality (LQ) observation.

However, most existing guided face restoration methods

are based on single HQ exemplar image, and are limited

in properly exploiting guidance for improving the gener-

alization ability to unknown degradation process. To ad-

dress these issues, this paper suggests to enhance blind

face restoration performance by utilizing multi-exemplar

images and adaptive fusion of features from guidance and

degraded images. First, given a degraded observation, we

select the optimal guidance based on the weighted affine

distance on landmark sets, where the landmark weights

are learned to make the guidance image optimized to HQ

image reconstruction. Second, moving least-square and

adaptive instance normalization are leveraged for spatial

alignment and illumination translation of guidance image

in the feature space. Finally, for better feature fusion, mul-

tiple adaptive spatial feature fusion (ASFF) layers are in-

troduced to incorporate guidance features in an adaptive

and progressive manner, resulting in our ASFFNet. Ex-

periments show that our ASFFNet performs favorably in

terms of quantitative and qualitative evaluation, and is ef-

fective in generating photo-realistic results on real-world

LQ images. The source code and models are available at

https://github.com/csxmli2016/ASFFNet.

1. Introduction

Visual quality is always one of the high concerns of

human perception and visual understanding, while recent

years have witnessed the rapid progress in the acquisition

and sharing of visual content. On the one hand, driven

by the development of image capturing and display tech-

niques, more and more high-quality (HQ) visual media are

LQ image GFRNet GWAINet OursLQ image GFRNet [24] GWAINet [9] Ours

(a) Restoration results of a real-world LQ image.

Bicubic GFRNet GWAINet OursLQ image GFRNet [24] GWAINet [9] Ours

(b) Restoration result of a frame from an old film.

Figure 1: Comparison of exemplar-based face restoration meth-

ods. Close-up in the bottom right is the selected guidance for each

method. (b) shows the restoration result of a frame from an old

film. An animated figure is shown in our suppl.

currently available. On the other hand, due to the diver-

sity of acquisition devices, the effect of environment and

the motion of objects, low quality (LQ) images and videos

are still ubiquitous and inevitably in most real-world appli-

cations. Image restoration aims at estimating the clean HQ

image from its degraded LQ observation [1, 5, 33], and re-

mains a valuable research topic in computer vision.

In this work, we focus on the task of blind face restora-

tion with multiple HQ exemplar images from the same per-

son. The HQ face images play an important role in many ap-

plications such as entertainment, surveillance and human-

computer interaction, making face restoration highly de-
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sired for versatile vision tasks. Fortunately, benefited from

the ubiquitous acquisition and sharing of face images, it is

very likely that multiple HQ exemplar images of the same

person are available for a given degraded LQ face image.

Meanwhile, the unprecedented success of face recognition

can be exploited to find the HQ exemplar images. For ex-

ample, the face images in smartphone photo album usually

are grouped according to the identities. As for old films, it

is also practically feasible to find several HD exemplar im-

ages for main actors, which can then be utilized to guide

the enhancement of LQ degraded face images in the video

frames. The introduction of multi-exemplar guidance can

greatly alleviate the difficulty of degradation estimation and

image restoration, thereby offering a new perspective for

improving blind face restoration.

Recently, several exemplar-based face restoration meth-

ods [9, 24] have been suggested. However, most existing

methods, e.g., GFRNet [24] and GWAINet [9], are based

on single HQ exemplar image, failing to exploit multiple

HQ exemplar images for improving face restoration. Con-

sequently, performance degradation may occur when the

guidance and degraded images are of very different poses.

Moreover, GFRNet [24] and GWAINet [9] use direct con-

catenation to combine the degraded observation and warped

guidance, which is limited in adapting to various degrada-

tion settings and exhibits poor generalization to real-world

LQ images with unknown degradation process. Fig. 1(a)

shows the restoration results of a real-world degraded im-

age. GFRNet [24] and GWAINet [9] are still inadequate

not only in reconstructing the details of eyelashes and teeth

from the guidance image, but also in removing the noise and

compression artifacts from the degraded observation.

In this paper, we present an ASFFNet to address the

above issues by exploiting the multi-exemplar setting and

properly combining the features from guidance and de-

graded images. First, we investigate the problem of select-

ing the optimal guidance image from multiple HQ exem-

plars. Intuitively, the exemplar with similar pose and ex-

pression is preferred given a degraded observation. Thus,

we formulate the optimal guidance selection as a weighted

least-square (WLS) model defined on landmark sets, where

different weights are assigned to different face parts such

as eyes and mouths. Moreover, the landmark weights are

learned to make the selected guidance image be optimized

for restoration performance.

Second, we further investigate the alignment and fusion

issues for the guidance and degraded images. In [9, 24],

a warping subnet usually is required for spatial alignment.

As for our method, the pose difference can be largely alle-

viated via guidance selection, and we thus can leverage the

moving least-square (MLS) [34] to align the guidance and

degraded images in the feature space. Then, the adaptive

instance normalization (AdaIN) [16] is utilized to translate

the illumination of guidance image. Instead of direct con-

catenation, multiple adaptive spatial feature fusion (ASFF)

blocks are adopted for combining the features from guid-

ance and degraded images in an adaptive and progressive

manner. In each ASFF block, both facial landmarks, guid-

ance and restored features are considered to generate an

attention mask for guiding adaptive feature fusion. When

applying to real-world scenarios, the attention mask is still

effective in finding where to incorporate guidance features,

making our ASFF exhibit good generalization ability to un-

known degradations.

Experiments are conducted to evaluate our ASFFNet on

both synthetic and real-world degraded images. The quan-

titative and qualitative results show that our ASFFNet per-

forms favorably against the state-of-the-art methods [9,24].

As shown in Fig. 1, our ASFFNet exhibits good generaliza-

tion ability to complex and unknown degradation process,

and is effective in generating realistic results on real-world

LQ images. The main contributions of this work include:

• For exploiting multiple exemplar images, we adopt a

WLS model on landmark sets to select the optimal

guidance image, and learn the landmark weights for

optimizing the reconstruction performance.

• For compensating the pose and illumination differ-

ence between guidance and degraded images, MLS

and AdaIN are leveraged to perform spatial alignment

and illumination translation in the feature space.

• For combining the features from guidance and de-

graded images, multiple ASFF blocks are introduced

for adaptive and progressive fusion, resulting in our

ASFFNet.

• Experiments demonstrate the superiority of our

ASFFNet in comparison to state-of-the-arts [9,24], and

also show its potential in handling real-world LQ im-

ages from several practical applications.

2. Related Work

2.1. Deep Single Face Image Restoration

Recent years have witnessed the unprecedented success

of deep CNNs in several face image restoration tasks, e.g.,

deblurring [8, 35, 39, 44] and super-resolution [6, 15, 47]. In

terms of face hallucination, Huang et al. [15] proposed a

wavelet-based CNN model that predicts the wavelet coeffi-

cients for reconstructing the high-resolution results from a

very low resolution face image. Cao et al. [6] suggested a

reinforcement learning based face hallucination method by

specifying the next attended region via recurrent policy net-

work and then recovering it via local enhancement network.

As for blind face deblurring, Chrysos et al. [8] developed a

domain-specific method by exploiting the well-documented

face structure. Xu et al. [39] presented a generative adver-

sarial network (GAN) for face and text deblurring. Shen

et al. [35] incorporated the global semantic face priors for
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better restoring the shape and details of face images. In

general, existing single image restoration methods general-

ize poorly to real-world LQ face images due to the intrinsic

ill-posedness and variety of unknown degradations.

2.2. Exemplar­based Deep Image Restoration

In contrast to single image restoration, the introduc-

tion of exemplar image can largely ameliorate the diffi-

culty of image restoration and usually results in notable per-

formance improvement. In guided depth image enhance-

ment, the color guidance image is assumed to be spatially

aligned with the degraded depth image. And several CNN

methods [14, 17, 25] have been suggested to transfer struc-

tural details from intensity image to enhance depth im-

ages. However, as for blind face restoration, the guidance

and degraded images are usually of different poses. Using

a reference image with similar content, Zhang et al. [46]

adopted a time- and memory-consuming searching scheme

to align high-resolution guidance and low-resolution de-

graded patches in the feature space.

Exemplar-based methods [9, 24] have also been adopted

for blind face restoration, where a warping subnet is usu-

ally adopted to spatially align the guidance and degraded

images. Li et al. [24] presented a GFRNet by incorporat-

ing landmark loss and total variation regularization to train

the warping subnet. Subsequently, Dogan et al. [9] sug-

gested a GWANet which can be learned without requiring

facial landmarks during training. Moreover, GWANet [9]

adopts a feature fusion chain on multiple convolution layers

to combine features from the warped guidance and degraded

images. However, both GFRNet and GWANet are based

on single exemplar image, while multiple HQ exemplar im-

ages are usually available in many real-world applications.

Besides, when applied to real-world degraded images, the

concatenation-based fusion in [9,24] is still limited in trans-

lating the details from guidance to the reconstructed image.

2.3. Adaptive Feature Modulation

GFRNet [24] and GWANet [9] adopt the concatenation-

based fusion, which does not consider the illumination dif-

ference and spatial variation between warped guidance and

degraded images. In arbitrary style transfer, adaptive in-

stance normalization (AdaIN) [16] has been suggested to

translate the content image to the desired style. Perez et

al. [31] suggested a FiLM method to learn feature-wise

affine transformation from conditioning information for

modulating the network’s intermediate features. The feature

modulation in AdaIN [16] and FiLM [31], however, is spa-

tially agnostic and inadequate to translate and fuse warped

guidance features for face restoration.

For spatially adaptive feature modulation, Wang et

al. [36] presented a Spatial Feature Transform (SFT)

method for super-resolution conditioned on segmentation

maps. Besides super-resolution [13, 36], SFT has also

been adopted in other vision tasks such as image manipu-

lation [22] and makeup transfer [18]. In semantic image

synthesis, Park et al. [29] suggested a spatially-adaptive de-

normalization (SPADE) method for modulating the activa-

tions via learning spatial-wise transform. For feature fu-

sion, the gated module [32, 44] has been introduced to esti-

mate a weighted map for combining features from different

sources. In this work, both feature translation and fusion

are considered for improving the restoration performance

and generalization ability of our ASFFNet.

3. Proposed Method

To begin with, blind face restoration with multi-exemplar

images is defined as the task of reconstructing the HQ image

Îh from a degraded face image Id conditioned on a set of

exemplar images {Igk}
K
k=1

. Without loss of generality, we

assume that Îh, Id, and I
g
k are of the same image size 256×

256. When an image is of different size, we simply resize

it to 256× 256 with bicubic sampling. Using the landmark

detector [4], we further present the 68 landmarks for each

image, including Ld, L
g
k ∈ R

2×68 (k = 1, ...,K). Then, the

proposed blind face restoration model can be formulated as,

Î
h = F

(

I
d|Ld

, {Igk , L
g
k}

K
k=1; Θ

)

, (1)

where Id is the input, Ld, {Igk , L
g
k}

K
k=1

are the conditional

variables, Θ denotes the model parameters. Benefited from

the multi-exemplar guidance, the HQ image can be recon-

structed by combining the information from the restoration

of degraded input and the translation of the HQ guidance.

Fig. 2 illustrates the network architecture of the proposed

ASFFNet consisting of guidance selection, feature extrac-

tion, MLS alignment, AdaIN, four ASFF blocks, and re-

construction modules. In particular, we focus on address-

ing three issues, i.e., guidance selection, spatial alignment

and illumination translation, and adaptive feature fusion.

First, a WLS model is presented to select the guidance im-

age from the set of exemplar images. Second, considering

that the pose difference can be largely alleviated after guid-

ance selection, we can leverage the MLS and AdaIN re-

spectively for spatial alignment and illumination translation

of the guidance image in the feature space. Due to the MLS

alignment is differentiable, the feature extraction subnet can

also be end-to-end learnable during training. Finally, mul-

tiple ASFF blocks are incorporated to combine the warped

guidance features with the restored features from degraded

image. In the following, we first describe the methods for

handling these three issues, and then give the learning ob-

jective for training the whole network. For more details of

the network architecture, please refer to the suppl.

3.1. Guidance Selection

For most guided face restoration methods, the perfor-

mance is diminished by the pose and expression difference

between guidance and degraded images. Thus, it is natu-
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Figure 2: Overview of our ASFFNet.

ral to select the optimal guidance image as the one that has

similar pose and expression with the degraded image. For

similarity measuring, we adopt the the weighted affine dis-

tance between landmark sets by solving a weighted least-

square (WLS) model. Taking both pose and expression into

account, different weights are given to landmarks. Then,

the optimal guidance image can be determined by finding

the minimal weighted affine distance,

k∗=argmin
k

{

D2
a(L

d, L
g
k
)=min

A

68
∑

m=1

wm

∥

∥

∥
AL̃

g
k,m

−Ld
m

∥

∥

∥

2
}

, (2)

where Da(L
d, L

g
k) denotes the affine distance, and wm de-

notes the weight for the m-th landmark. Ld
m and L

g
k,m de-

note the m-th landmarks of the degraded image and k-th

guidance image, respectively. In particular, L̃
g
k,m is the ho-

mogeneous representation of L
g
k,m (e.g., a position [x, y]T

in L
g
k,m is defined as [x, y, 1]T in L̃

g
k,m [11]). Given Ld and

L
g
k, the closed-form solution of A can be written as,

A = L
d
WL̃

g T
k (L̃g

kWL̃
g T
k )−1

, (3)

where W = Diag(w) is the diagonal matrix of the land-

mark weight vector w.

To determine the landmark weights, given a degraded

image Id, we enumerate all the exemplar images {Igk}
K
k=1

,

and find the one with the best performance, i.e., I
g
k∗ , in

the forward propagation. Then, we introduce the following

auxiliary loss for updating the landmark weights,

ℓw =
∑

k 6=k∗

max
{

0, 1−
(

D2
a(L

d, L
g
k
)−D2

a(L
d, L

g
k∗ )

)}

. (4)

By substituting the closed-form solution of A into

D2

a(L
d, L

g
k∗), we adopt the back-propagation algorithm to

update w based on ∂ℓw
∂w

. The loss constrains the selected

guidance image to have a relatively smaller affine distance.

For a given test image, the landmark weights are fixed, and

we can simply use Eqn. (2) to select the guidance image.

3.2. MLS Alignment and Illumination Translation

Even though the selected guidance image has similar

pose and expression with the degraded observation, mis-

alignment remains unavoidable and may introduce visual

artifacts to the reconstruction result. In GFRNet [24] and

GWAINet [9], a warping subnet is adopted to spatially align

the guidance and degraded images. However, the warp-

ing subnet is generally difficult to train and may exhibit

poor generalization ability due to the lack of direct supervi-

sion information. Besides, the guidance and degraded im-

ages usually are of different illumination conditions, which

should also be considered before feature fusion. In this

work, we adopt the MLS method for spatial alignment and

AdaIN for illumination translation, which will be described

as follows.

MLS Alignment. Instead of learning warping sub-

net, we suggest to exploit a traditional image deformation

method, i.e., moving least-square (MLS), to align the guid-

ance and degraded images in the feature space. Benefited

from guidance selection, the pose and expression difference

can be largely reduced. Furthermore, due to the differentia-

bility of MLS, the feature extraction subnet can be learnable

during training, making that feature extraction and MLS can

work collaboratively for robust alignment. The experiments

also empirically show that MLS works well in spatial align-

ment of the degraded image and selected guidance image.

Denote by F g and Lg the features and landmarks of the

optimal guidance image, and Ld the landmarks of the de-

graded image. For a given position p = (x, y), we intro-

duce a 68 × 68 position-specific diagonal matrix Wp with

the m-th diagonal element Wp(m,m) = 1

‖p−Ld
m‖2 . Then,

the position-specific affine matrix can be obtained by,

Mp = L
g
WpL̃

d T (L̃d
WpL̃

d T )−1
, (5)

where L̃d is the homogeneous representation of Ld. Let p̂ =
Mpp̃, and N be the 4-nearest neighbors of p̂ = (x̂, ŷ). The

warped feature can be obtained by bilinear interpolation,

F g,w(x, y) =
∑

(x′,y′)∈N

F g(x′, y′)max
(

0, 1−
∣

∣x̂−x′
∣

∣

)

max
(

0, 1−
∣

∣ŷ−y′
∣

∣

)

,

(6)

where (x, y) is a position in the degraded input while (x̂, ŷ)
is the corresponding position in guidance image. We note

that Eqns. (5) and (6) are differentiable. Thus, the feature

extraction can also be end-to-end learnable during training.

AdaIN. For arbitrary style transfer, the AdaIN [16] is
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introduced to translate the content features to the desired

style. Analogously, we treat the illumination as a kind of

style, and use AdaIN to adjust the warped guidance feature

to have similar illumination with the restored feature of de-

graded image. Denote by F d and F g,w the restored features

from the degraded image and the warped guidance features

from the guidance image. The AdaIN can be written as,

F
g,w,a = σ(F d)

(

F g,w − µ(F g,w)

σ(F g,w)

)

+ µ(F d), (7)

where σ(·) and µ(·) denote the mean and standard devia-

tion. With MLS and AdaIN, F g,w,a can thus be aligned

with F d by space and illumination.

3.3. Adaptive Feature Fusion

After MLS alignment and AdaIN, the misalignment and

illumination difference between degraded and guidance im-

ages can be largely reduced. Thus, we further combine

the warped guidance features with the restored features to

reconstruct the HQ image. In GFRNet [24], the guid-

ance and degraded images are concatenated as the input

to the reconstruction subnet. GWAINet [9] also adopts

the concatenation-based fusion but is performed in multiple

feature layers. However, the concatenation-based fusion is

still limited in exploiting the complementarity between the

guidance and degraded images. Thus, we present multiple

adaptive spatial feature fusion (ASFF) blocks for progres-

sively fusing the warped guidance and restored features.

On the one hand, the guidance image generally con-

tains more high-quality facial details and is more reliable

for most face components. On the other hand, considering

that F g,w,a and F d are spatially variant and convey com-

plementary information, they can be combined for better

reconstruction of the HQ image. Considering two exam-

ples: (i) The guidance image generally has a different back-

ground with the degraded image, and thus the restored fea-

tures from degraded image are more reliable for background

region. (ii) When the mouth of guidance is close while that

of degraded image is open, we should reconstruct the teeth

mainly based on restored features instead of warped guid-

ance features. Therefore, we introduce an attention mask

Fm to guide the fusion of F g,w,a and F d. Naturally, the

generation of Fm should consider F g,w,a, F d, and land-

marks. And we adopt a landmark feature extraction subnet

with the output F l. Then, we take F g,w,a, F d and F l as the

input, and exploit a gating module to generate the attention

mask Fm. For efficiency, 1×1 convolution is first applied to

F g,w,a, F d and F l to reduce the feature channels. Finally,

the output of each ASFF block can be written as,

FASFF(F
d, F g,w,a) = (1− Fm) ◦ Fd(F

d) + Fm ◦ Fg(F
g,w,a)

= Fd(F
d) + Fm ◦ (Fg(F

g,w,a)−Fd(F
d)),

(8)

where ◦ denotes the element-wise product. Please refer to

the suppl. for the detailed architectures for the updating of

F d, F g,w,a, F l, as well as the attention mask Fm.

As opposed to the concatenation-based fusion in GFR-

Net [24] and GWAINet [9], the ASFF is a more flexible

fusion method and can be adapted to different degradation

settings and image contents. Analogous to the multi-layer

concatenation in [9], we deploy multiple ASSF blocks to fa-

cilitate progressive fusion. Benefited from the adaptive and

progressive fusion, our ASFFNet can exhibit better gener-

alization ability to real-world LQ face images with complex

and unknown degradation process.

Given the combined feature F c after the ASFF blocks,

we further use a reconstruction subnet which consists of

two pixel shuffle layers with each followed by two resid-

ual blocks. Therefore, the final result can be obtained by,

Î
h = FR (F c; ΘR) , (9)

where ΘR is the parameters of reconstruction subnet.

3.4. Learning Objective

Denote by Îh and I the reconstructed and ground-truth

images. In general, the reconstructed image I is required to

faithfully approximate the ground-truth image I and to be

photo-realistic. Therefore, the objective involves two loss

functions, i.e., reconstruction loss and photo-realistic loss.

The reconstruction loss is introduced to constrain the re-

constructed image to approximate the ground-truth, which

involves two terms. First, the mean square error (MSE) is

adopted to measure the difference between Îh and I ,

ℓMSE =
1

CHW
‖Îh − I‖2, (10)

where C, H and W denote the channel, height and width

of the image. Second, to improve the visual quality of the

reconstructed image, we adopt the perceptual loss [19] de-

fined on the VGGFace [30] feature space. In particular, the

perceptual loss is adopted to constrain the reconstructed im-

age Îh to approximate the ground-truth I in feature space,

ℓperc =

4
∑

u=1

1

CuHuWu

∥

∥

∥
Ψu(Î

h)−Ψu(I)
∥

∥

∥

2

, (11)

where Ψu represents the features from the u-th layer of

pre-trained VGGFace model. In this work, we set u ∈
[1, 2, 3, 4]. The overall reconstruction loss is formulated as:

Lrec = λMSEℓMSE + λpercℓperc, (12)

where λMSE and λperc are the tradeoff parameters.

For photo-realistic reconstruction, we also consider two

terms. First, we adopt the style loss [12], which can be

used as an alternative of adversarial loss and is effective in

generating visually plausible result with fine details [26].

In particular, style loss is defined on the Gram matrix of

feature map for each layer from u ∈ [1, 2, 3, 4],

ℓstyle =
4

∑

u=1

1

CuHuWu

∥

∥

∥
Ψu(Î

h)TΨu(Î
h)−Ψu(I)

TΨu(I)
∥

∥

∥

2
.

(13)
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Second, adversarial loss has also been extensively used

in many image generation and translation tasks as an ef-

fective method to improve visual quality. To stabilize the

discriminator learning, we use SNGAN [28] by introducing

spectral normalization on the weights of each convolution

layer. Furthermore, we adopt the hinge version of adver-

sarial loss to train the discriminator and generator [3, 42],

which can be formulated as,

ℓadv,D = EI∼P (I) [min(0,−1 +D(I))]

+ E
Îh∼P (Îh)

[

min(0,−1−D(Îh))
]

,
(14)

ℓadv,G = −EId∼P (Id)

[

D
(

F
(

Id|Ld, {Ig
k
, L

g
k
}Kk=1; Θ

))]

. (15)

Here, ℓadv,D is used to update the discriminator, while ℓadv,G

is adopted to update the ASFFNet for blind face restoration.

Then, the overall photo-realistic loss can be written as,

Lreal = λstyleℓstyle + λadvℓadv,G, (16)

where λstyle and λadv are the tradeoff parameters.

To sum up, the overall objective function is defined as,

L = Lrec + Lreal. (17)

4. Experiments

The proposed ASFFNet can be used to handle several

usual degradation types, e.g., noise, compression artifact,

blurring and downsampling, and their combinations. For

quantitative evaluation, we use the tasks of ×4 and ×8
super-resolution (SR) in conjunction with noise and blur-

ring as the examples, and compare our ASFFNet with the

state-of-the-art SR (e.g., RCAN [45] and ESRGAN [37]),

blind deblurring (e.g., DeblurGANV2 [21]), face SR (e.g.,

TDAE [41], WaveletSR [15], SCGAN [39], GWAINet [9],

GFRNet [24]) methods. For a fair comparison, we retrain

*ESRGAN, *RCAN, and *SCGAN, and finetune *GFRNet

and *GWAINet using our training data. It is also noted that

TDAE [41] and GWAINet [9] can only handle ×8 SR while

ESRGAN [37] and SCGAN [39] can only handle ×4 SR.

We also give the qualitative results on synthetic and real-

world degraded face images. More visual results are pro-

vided in the suppl.

4.1. Dataset and Experimental Settings

Using the images from VGGFace2 [7], we build a dataset

for face restoration with multi-exemplar guidance images.

The Laplacian gradient is utilized to assess image quality

and remove those with low scores. Then, we detect the 68

facial landmarks using [4], crop and resize the face region

to 256 × 256 based on the convex hull of landmarks. By

grouping the remained images based on the identity, we

build our dataset containing 106,000 groups of face im-

ages, in which each group has 3∼10 HQ exemplar images.

Furthermore, we divide it into a training set of 100,000

groups, a validation set of 4,000 groups, and a testing set

of 2,000 groups. We also note that the training, testing

and validation sets are not overlapped in terms of either

identity and image. For flexible quantitative evaluation,

each test group is required to exactly have 10 exemplar im-

ages. We also build two other testing sets on CelebA [27]

and CASIA-WebFace [40], where each set contains 2,000

groups and each group has 3∼10 HQ exemplar images.

PSNR, SSIM [38] and LPIPS [43] are adopted as the quan-

titative performance metrics.

In order to generate synthetic training and testing data,

we adopt the degradation model adopted in [24],

I
d = ((I ⊗ k) ↓s +nσ)JPEGq

, (18)

where ⊗ denotes the convolution operation, k denotes the

blur kernel, ↓s denotes the ×s bicubic downsampler, nσ

denotes Gaussian noise with the noise level σ, and JPEGq

stands for the JPEG compression with quality factor q. In

particular, we consider two types of blur kernels, i.e., Gaus-

sian blur with ̺ ∈ {1 : 0.1 : 3} and 32 motion blur ker-

nels from [2, 23]. We randomly sample the scale s from

{1 : 0.1 : 8}, the noise level σ from {0 : 1 : 15}, and the

compression quality factor q from {10 : 1 : 60}. Accord-

ing to [24], the degradation model can generate realistic LQ

images for training guided face restoration model.

We adopt the ADAM optimizer [20] to train our

ASFFNet with batch size of 8 and the momentum param-

eters β1 = 0.5 and β2 = 0.999. The initial learning rate is

2 × 10−4 and is decreased by 0.5 when the reconstruction

loss on validation set is non-decreasing. Several common

data augmentation methods, e.g., randomly cropping and

horizontal flipping, are also exploited during training. Chro-

matic transformations, e.g., brightness and contrast [48], are

also used to increase the image diversity. The tradeoff pa-

rameters of loss terms are set as: λMSE = 300, λperc = 5,

λstyle = 1, and λadv = 2. All the experiments are conducted

on a PC equipped with a RTX 2080 Ti GPU and it takes

about 3 days to train an ASFFNet model.

4.2. Ablation Studies

Using the ×4 and ×8 SR tasks on the VGGFace2 testing

set, three kinds of ablation studies are conducted to assess

the effect of multi-exemplar images, ASFF based fusion,

MLS and AdaIN modules.

(1) Multi-exempler images. We randomly select a fixed

number of guidance images from each test group to imple-

ment four variants of our ASFFNet, i.e., Ours (#10), Ours

(#5), Ours (#3), Ours (#1). From Table 1, it can be seen

that better quantitative results are obtained along with the

use of more exemplar images. Moreover, the gain brought

by increasing exemplar images is more obvious for ×8 SR,

indicating that the use of multi-exemplar images is more ef-

fective for difficult task. As shown in Fig. 3, when the num-

ber of exemplar images is inadequate, the selected guidance

image is more likely to have different pose and expression

with the degraded image, and visual artifacts can still be
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Type
×4 ×8

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Ours (#1) 27.99 0.925 0.107 24.19 0.873 0.252

Ours (#3) 28.03 0.928 0.104 24.30 0.879 0.247

Ours (#5) 28.06 0.930 0.103 24.33 0.881 0.238

Ours (#10) 28.07 0.930 0.103 24.34 0.881 0.238

Table 1: Comparisons of ASFFNet on different exemplar numbers.

Input Ours (#1) Ours (#3) Ours (#5) Ours (#10) Ground-truth

Figure 3: Visual comparisons of ASFFNet on different exemplar

numbers. Close-up in the bottom right is the selected guidance.

observed from the reconstruction results. The comparisons

with GFRNet and GWAINet on the same random guidance

are reported in our suppl.

(2) ASFF-based fusion. For evaluating progressive fusion,

we implement several ASFFNet models with different num-

ber of ASFF blocks, Ours (1-ASFF), Ours (2-ASFF), Ours

(4-ASFF), Ours (8-ASFF). For evaluating adaptive feature

fusion, we consider four variants of our ASFFNet, i.e., Ours

(1-Concat) by substituting ASFF with concatenation-based

fusion in Ours (1-ASFF), Ours (4-Concat), Ours (w/o 1-

Atten) by removing the attention mask in Ours (1-ASFF)

and Ours (w/o 4-Atten). From Table 2, our ASFFNet out-

performs Ours (Concat) and Ours (w/o Atten) in terms of

the three quantitative metrics, clearly demonstrating the ef-

fectiveness of adaptive spatial feature fusion. Moreover,

benefited from progressive fusion, better performance can

be achieved by stacking more ASFF blocks, and the per-

formance begin to be saturating when the number of ASFF

blocks is higher than 4. Thus we adopt Ours (4-ASFF) as

the default ASFFNet model. Fig. 4 shows the results by dif-

ferent fusion methods. One can see that Ours (4-ASFF) is

effective in generating sharp result with fine details while

suppressing visual artifacts.

(3) Spatial alignment and illumination translation. We

consider three ASFFNet variants, i.e., Ours (w/o AdaIN) by

removing the AdaIN module, Ours (w/o MLS) by removing

the MLS module, and Ours (Untrain Fg) by initializing the

guidance feature extraction subnet Fg with VGGFace net-

work and then keeping unchanged during training. It can

be seen from Table 2 that both spatial alignment and illumi-

nation translation is beneficial to the reconstruction perfor-

mance. The differentiability of MLS makes Fg be learnable

and also benefits quantitative performance.

4.3. Experiments on Synthetic Datasets

Table 3 lists the quantitative results of ×4 and ×8 SR

on three testing datasets, i.e., VGGFace2, CelebA, and

CASIA-WebFace. As for GFRNet [24] and GWAINet [9],

we adopt three settings to report their results, (i) using the

frontal guidance (i.e., GFRNet and GWAINet), (ii) using

the selected guidance by our method (i.e., †GFRNet and

Type
×4 ×8

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Ours (1-Concat) 27.56 0.913 0.243 23.32 0.863 0.301

Ours (4-Concat) 27.59 0.915 0.212 23.42 0.864 0.294

Ours (w/o 1-Atten) 27.57 0.915 0.167 23.46 0.865 0.279

Ours (w/o 4-Atten) 27.83 0.924 0.139 23.63 0.872 0.249

Ours (1-ASFF) 27.59 0.916 0.141 23.51 0.865 0.251

Ours (2-ASFF) 27.67 0.923 0.124 23.72 0.873 0.248

Ours (4-ASFF) 28.07 0.930 0.103 24.34 0.881 0.238

Ours (8-ASFF) 28.07 0.930 0.103 24.34 0.881 0.237

ASFF (w/o AdaIN) 28.01 0.929 0.112 24.15 0.880 0.240

ASFF (w/o MLS) 26.45 0.903 0.214 23.12 0.854 0.263

ASFF (untrain Fg) 27.58 0.917 0.155 23.47 0.865 0.281

Table 2: Comparisons of different ASFFNet variants.

Input & Guidance Ground-truthOurs (4-Concat) Ours (w/o 4-Atten) Ours (1-ASFF) Ours (2-ASFF) Ours (4-ASFF)

Figure 4: Visual comparison of different feature fusion methods.
†GWAINet), (iii) fine-tuning them using our training data

and testing on our selected guidance (i.e., *GFRNet and

*GWAINet). For both the two tasks (i.e., ×4 and ×8 SR)

and the three datasets, our ASFFNet can achieve the best

quantitative metrics. The results indicate that our ASFFNet

is superior in guided face restoration and the model learned

on VGGFace2 training can be well generalized to other

datasets. Except GFRNet [24] and GWAINet [9], the

other competing methods do not consider guidance im-

age, which may explain their relatively poor performance.

Our ASFFNet also outperforms than GFRNet [24] and

GWAINet [9] on three settings, which may be ascribed to

the effectiveness of adaptive and progressive ASFF blocks.

In terms of running time, our ASFFNet is comparable to

GFRNet [24] (about 31 ms) for a 256×256 image, and can

be 3× faster than GWAINet [9].

Figs. 5 and 6 present the visual comparison with

the competing methods, including *RCAN, *ESRGAN,

WaveletSR [15], SCGAN [39], DeblurGANV2 [21], *GFR-

Net and GWAINet [9]. More results are given in the suppl.

*RCAN and *ESRGAN are suggested for SISR and cannot

perform well even taking both degraded and guidance im-

ages as the input, thereby performing limited on blind face

restoration. SCGAN [39] and WaveletSR [15] can be used

in face deblurring but cannot faithfully recover the real face

structures. By leveraging guidance image, *GFRNet and

GWAINet [9] can well reconstruct HQ face images, but are

limited in retaining small-scale details. In comparison, our

ASFFNet is more effective in reconstructing HQ face im-

ages with more realistic details, especially in the regions

with beard and eyelash.

4.4. Results on Real­world LQ Images

The AdaIN-based illumination translation and ASFF-

based adaptive fusion are also helpful to the generalization

ability of our ASFFNet in handling real-world LQ images.

To illustrate this point, Fig. 7 provides the results of GFR-

Net [24] and our ASFFNet on four real-world LQ images

with unknown degradation process, in which the face sizes
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Methods
VGGFace2 CelebA CASIA-WebFace

× 4 × 8 × 4 × 8 × 4 × 8

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

RCAN [45] 25.50 .896 .282 22.18 .833 .299 27.51 .913 .212 24.14 .876 .249 28.31 .931 .263 26.61 .907 .402

*RCAN 26.29 .902 .224 23.03 .845 .276 27.92 .924 .210 24.54 .880 .244 29.18 .934 .256 26.73 .907 .383

ESRGAN [37] 24.54 .880 .216 - - - 27.18 .910 .180 - - - 28.03 .929 .275 - - -

*ESRGAN 25.34 .892 .177 - - - 27.89 .922 .179 - - - 29.36 .937 .257 - - -

DeblurGANV2 [21] 24.73 .885 .219 21.87 .827 .310 27.39 .912 .206 23.83 .876 .259 29.13 .934 .234 26.58 .906 .393

TDAE [41] - - - 18.38 .768 .392 - - - 18.98 .788 .388 - - - 19.79 .800 .381

WaveletSR [15] 24.33 .879 .234 21.49 .825 .278 26.52 .907 .220 24.02 .875 .230 29.11 .933 .283 25.11 .886 .379

SCGAN [39] 23.80 .877 .147 - - - 26.01 .901 .139 - - - 27.53 .914 .267 - - -

*SCGAN 23.86 .878 .142 - - - 26.12 .903 .135 - - - 27.68 .915 .260 - - -

GWAINet [9] - - - 23.54 .871 .273 - - - 25.37 .897 .219 - - - 27.02 .909 .258
†GWAINet [9] - - - 23.65 .876 .266 - - - 25.56 .900 .212 - - - 27.11 .909 .253

*GWAINet - - - 23.87 .879 .261 - - - 25.77 .901 .210 - - - 27.18 .910 .250

GFRNet [24] 27.49 .910 .130 23.07 .857 .297 28.45 .929 .122 25.12 .893 .241 30.13 .936 .225 26.56 .906 .334
†GFRNet [24] 27.58 .914 .127 23.48 .864 .293 28.69 .932 .116 25.49 .898 .230 30.39 .939 .206 26.83 .908 .322

*GFRNet 27.66 .921 .122 23.85 .879 .263 29.01 .933 .113 25.93 .901 .227 30.80 .941 .181 27.19 .912 .307

Ours 28.07 .930 .103 24.34 .881 .238 29.55 .937 .056 26.39 .905 .185 31.08 .948 .099 27.69 .921 .219

Table 3: Quantitative results on image super-resolution (×4 and ×8). ↑ (↓) represents higher (lower) is better.

Input & Guidance *RCAN *ESRGAN WaveletSR *GFRNetSCGAN Ours Ground-truthInput & Guidance *RCAN *ESRGAN WaveletSR [15] SCGAN [39] *GFRNet Ours Ground-truth

Figure 5: The ×4 SR results by the competing methods. Green and blue boxes are the improvement regions.

Input & Guidance *RCAN DeblurGANV2 WaveletSR *GFRNetGWAINet Ours Ground-truthInput & Guidance *RCAN DeblurGANV2 [21] WaveletSR [15] GWAINet [9] *GFRNet Ours Ground-truth

Figure 6: The ×8 SR results by the competing methods. Best view it by zooming in the screen.

are lower than 80×80. GFRNet [24] generally improves the

visual quality in contrast to the input images. However, ob-

vious artifacts are likely to be introduced in the reconstruc-

tion results, partially due to the poor adaptivity and gener-

alization ability of concatenation-based fusion. In compari-

son, our ASFFNet can reconstruct more texture details with

less artifacts, and exhibits better robustness to complex and

unknown degradation process which is of the great value

in real-world applications. More results on real-world LQ

images can be found in the suppl.

5. Conclusion

This paper presented an enhanced blind face restora-

tion model, i.e., ASFFNet, by addressing three issues,

i.e., multi-exemplar images, spatial alignment and illumi-

nation translation, and adaptive feature fusion. For guid-

ance selection from multiple exemplar images, we adopt a

weighted least-square model on facial landmarks, and sug-

gest a method to learn landmark weights. Moving least-

square and adaptive instance normalization are then used

Input & Guidance GFRNet Ours Input & Guidance GFRNet OursInput & Guidance GFRNet [24] Ours Input & Guidance GFRNet [24] Ours

Figure 7: Visual comparison on real-world LQ images.

for spatial alignment and illumination translation of guid-

ance image in the feature space. And multiple ASFF blocks

are finally deployed for adaptive and progressive fusion of

restored features and guidance features for better HQ im-

age reconstruction. Experiments show that our ASFFNet

performs favorably against the competing methods, and ex-

hibits better visual quality and generalization ability to real-

world LQ images.
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