
GP-NAS: Gaussian Process based Neural Architecture Search

Zhihang Li2∗, Teng Xi3,5∗, Jiankang Deng4, Gang Zhang3, Shengzhao Wen3, Ran He1†

1NLPR & CEBSIT, CAS 2NLPR & AIR, CAS
3Department of Computer Vision Technology (VIS), Baidu Inc. 4Imperial College London

5Department of Computer Science and Technology, Tsinghua University.

Email: {zhihang.li, rhe}@nlpr.ia.ac.cn, j.deng16@imperial.ac.uk

{xiteng01, zhanggang03, wenshengzhao}@baidu.com, xiteng@mail.tsinghua.edu.cn

Abstract

Neural architecture search (NAS) advances beyond the

state-of-the-art in various computer vision tasks by au-

tomating the designs of deep neural networks. In this paper,

we aim to address three important questions in NAS: (1)

How to measure the correlation between architectures and

their performances? (2) How to evaluate the correlation

between different architectures? (3) How to learn these cor-

relations with a small number of samples? To this end, we

first model these correlations from a Bayesian perspective.

Specifically, by introducing a novel Gaussian Process based

NAS (GP-NAS) method, the correlations are modeled by

the kernel function and mean function. The kernel function

is also learnable to enable adaptive modeling for complex

correlations in different search spaces. Furthermore, by in-

corporating a mutual information based sampling method,

we can theoretically ensure the high-performance architec-

ture with only a small set of samples. After addressing

these problems, training GP-NAS once enables direct per-

formance prediction of any architecture in different scenar-

ios and may obtain efficient networks for different deploy-

ment platforms. Extensive experiments on both image clas-

sification and face recognition tasks verify the effectiveness

of our algorithm.

1. Introduction

NAS targets on automating the design of deep neural

networks. It has promoted remarkable progress in various

tasks, including image classification [55, 31, 38, 53, 16, 45],

object detection [19] and semantic segmentation [29, 34,

51]. However, conventional early NAS methods that are

based on reinforcement learning (RL) [55] and evolution-

∗Equal contribution. This work was done when the first author was an

intern at Department of Computer Vision Technology (VIS), Baidu Inc.
†corresponding author

ary algorithm (EA) [38] are often computationally intensive

and just search a specified architecture each time for a tar-

get task. Many recent works focus on accelerating NAS by

weight sharing [35, 5, 52, 13] and achieve great improve-

ments. But the relationship between the performance and

the neural architecture is not clear enough and they may

lead to the well known performance inconsistency prob-

lem between the supernet model and the fully trained stand

alone model. In addition, they require repeated sampling

to obtain efficient networks for different tasks and hardware

platforms.

We aim to learn a performance predictor with high effi-

cacy and identify efficient model with high performance for

different platforms without repeated search process. This

performance predictor would have the following proper-

ties: (1) It may model the correlation between architec-

tures and the corresponding performances. As such, it can

infer performance of any deep model (without retraining)

in a given search space. (2) The predictor may be learned

with a small set of samples. The training process will thus

be computationally efficient. (3) It may measure the cor-

relation between different architectures such that architec-

tures with similar performances can be easily found. It can

also provide some insights about what micro- or macro-

architectures would be beneficial for learning.

To this end, we propose a theoretical modeling frame-

work for NAS. Specifically, we model the distribution of

performances conditioned on given architectures by a Gaus-

sian Process (GP). Under this framework, the correlation

between performances and architectures can be modeled by

a mean function in the GP. The correlation between dif-

ferent architectures is measured by the kernel functions as

well. Moreover, the kernel function is learnable to measure

complex correlations in different search spaces. In order to

speed up the search process in our proposed method , we

further propose an efficient mutual information based sam-

pling method. This sampling method intuitively enlarges

the distance between obtained samples. We theoretically

111933

prove that only with a small set of samples, we can obtain a

universal performance predictor for given search space with

high accuracy.

The GP-NAS can be solved in an alternating estimation

manner which recursively updates the posterior distribution

of learnable hyperparameters and enables us to approach the

optimal distribution of performances conditioned on given

architectures. This further ensures a good transferable prop-

erty of our GP-NAS framework. For example, we exper-

imentally validate that after updating the hyperparameters

on CIFAR-10 dataset, we can use them as a prior knowledge

of the learning problem on ImageNet dataset. The prior

knowledge enables the distribution of hyperparameters to

be quickly adapt to the new problem with fewer samples.

In addition, GP-NAS framework is orthogonal to current

NAS methods. Except directly sampling architectures from

a search space and training them to obtain the performances,

our GP-NAS method can work with existing differentiable

architecture search methods and one-shot methods. GP-

NAS disentangles the training and search process in these

scenarios. Therefore, GP-NAS can ensure efficient deploy-

ment of effective deep models for different tasks and differ-

ent platforms without retraining and re-search process.

In conclusion, our contributions are four-fold:

• We propose a theoretical framework that can infer per-

formance of any architectures in a given search space

and yield efficient deep models for different tasks and

platforms without retraining.

• As far as we know, this is the first time that distribu-

tion of performances conditioned on architectures is

modeled by Gaussian Process, in which the correla-

tion between performances and architectures and the

correlation between different architectures are explic-

itly modeled.

• We suggest an efficient sampling method that provably

ensures that our GP-NAS can be learned with only a

small set of samples.

• Experiments demonstrate that the network architecture

searched by GP-NAS achieves competitive results on

CIFAR-10 and ImageNet with a high efficiency. The

proposed sampling strategy may accelerate the learn-

ing process by 25 times than random sampling. We

also obtain a competitive performance on face recog-

nition.

2. Related Work

Existing NAS methods can be roughly classified into

three categories: RL based methods [54, 2, 1, 53, 43], EA

based methods [31] and GD based methods [33, 32, 46, 10,

9, 15]. The core ideas of these methods are that a sampled

child network is trained on the training set and evaluated

on the validation set, while an agent receives performance

from the child network as a reward and learns to generate

network architectures that are more likely to achieve higher

performance.

Despite the success of the above NAS approaches, most

existing methods need to train a large number of child net-

works from scratch, which is time-consuming and expen-

sive on a large-scale dataset. To accelerate the search pro-

cess, [3, 36] depend on sharing weights strategy where a

single large network is trained with all candidate architec-

tures included. When evaluating each sampling child net-

work, just zero-out some operations is enough without the

need of retraining. Another intuitive method is to reduce

the search space by imposing some constraints. [32, 48]

search for the best cells or blocks rather than the entire net-

work and stack them to construct a full network. In addi-

tion, recent approaches [4, 48] have proposed alternatives

to generate weights of network or predict the performance

directly by a HyperNet [20]. However, training a weight

or performance predictor requires a large number of ground

truth. It is inevitable to spend a lot of time on sampling a

large number of child networks. Thus, an efficient sampling

strategy is greatly needed. Mutual information is a measure

of discrepancy between two distributions, which has been

widely-used in representation learning, e.g. conversational

responses [50], disentangled feature [18, 8, 21], RL [22]

and etc. We introduce mutual information to measure the

information gain of sampling and try to estimate the hyper-

parameters of model with the minimal number of sampled

network architectures.

Bayesian estimation is a global optimization algorithm

to evaluate a black-box function, which has been applied in

machine learning for model selection [25, 42, 26]. Gaus-

sian processes (GP) is a flexible non-parametric framework

for reasoning over functions, which is one of the most

extensively-used methods in Bayesian estimation due to its

flexibility and tractability. To model the distribution of per-

formance under network architecture, we attempt to extend

the GP and design a kernel function specially for NAS.

3. Method

In this section, we first present how to model NAS with

GP in which specially designed kernel function for NAS is

presented. Then, we describe how to embed mutual infor-

mation into GP framework in details. Finally, we derive a

closed form solution for hyperparameters and propose an

alternating estimation algorithm to recursively update the

hyperparameters.

3.1. Modeling of GP­NAS

Gaussian process [37] is an non-parametric framework

to reason over function f defined on a domain X , which

11934

has been widely used as a nonlinear regression technique

for data reconstruction. GP can be completely charac-

terised by its mean µ : X → R and covariance (ker-

nel) function k : X 2 → R. Given t observation samples

Dt = {(xi, yi)}
t
i=1

, the posterior process is still a GP with

mean µt and covariance kt.
Since GP can use observations to predict unobserved

data, we utilize it to infer the performance of any network

architectures based on sampled networks. In the context

of NAS, the domain is defined as the space of network ar-

chitecture S and the function f is the performance of the

network on the validation set after it is trained on the train-

ing set. At time t ∈ T , the observations st are the sam-

pled architectures before time t, and ut are the unobserved

samples, where n = st ∪ ut denotes the universal set of

architecture space. Let xt(s) be the performance of a net-

work architecture s at time t, ∀s ∈ n, ∀t ∈ T . Follow-

ing [28], we encode each neural architecture into a vector

s = [s1, s2, . . . , sk]T , where si ∈ S is the selected opera-

tion in i-th layer. S denotes the universal set of all opera-

tions. Thus, |s| neural architectures have been sampled at

time t and their performances form a vector as follows:

xt(s) =
[

xt(s1), xt(s2), . . . , xt(s|s|)
]T

,

∀t ∈ T , si ∈ s, ∀i ∈ {1, 2, · · · , |s|}, ∀s ⊆ n. (1)

In the GP, the performance of different network architec-

tures are assumed to be jointly Gaussian distributed, there-

fore

[

xt(st)
xt(ut)

]

∼ N (

[

mt(st)
mt(ut)

]

,

[

Kt(st, st) Kt(st,ut)
Kt(ut, st) Kt(ut,ut)

]

),

∀st ⊂ n,ut = n \ st, ∀t ∈ T , (2)

where N (.) is the probability density function of Gaussian

distribution and the covariance matrix Kt(st,ut) is denoted

by:

Kt(st,ut) =










kt(s1, u1) kt(s2, u1) . . . kt(s|st|, u1)
kt(s1, u2) kt(s2, u2) . . . kt(s|st|, u2)

...
...

. . .
...

kt(s1, u|ut|) kt(s2, u|ut|) . . . kt(s|st|, u|ut|)











,

si ∈ st, ∀i ∈ {1, 2, · · · , |st|}, ∀st ⊂ n,ut = n \ st,

uj ∈ ut, ∀j ∈ {1, 2, · · · , |ut|}, ∀t ∈ T , (3)

where the kernel function kt(s, u) describes the covariance

between s and u at t, ∀s, u ∈ n. The mean vectors mt(st)
and mt(ut) in Equation 2 are denoted by:

mt(s) =
[

mt(s1),mt(s2), . . . ,mt(s|s|)
]T

,

∀s ⊂ n, si ∈ s, ∀i ∈ {1, 2, · · · , |s|}, (4)

where mt(s) is the mean performance of the network ar-

chitecture s at t. Because the architecture of a network

has great effect on performance, the mean function mt(s)
should depend on the network architecture s. Note that s
could be a naively encoded network or the embedding of

network by some transforms. Here we take a linear mean

function as an example for concision:

mt(s) = w
T s, ∀s ⊂ n, ∀t ∈ T . (5)

where w = [w1, w2, . . . , w|s|]
T is the hyperparameter to be

estimated.

Intuitively, the kernel function kt(s, u) measures simi-

larity between two networks s, u. When kt(s, u) is large,

the performance of two networks are close. However, it

is non-trivial to define a reasonable distance between two

networks, because each item in a network encoding vector

denotes different types of operations and they are usually

not comparable, such as the number of channels and ker-

nel size. Therefore, we divide operations S into multiple

groups by types:

S =

h
⋃

i=1

Si, (6)

where Si is a type of operations, such as number of channels

or kernel sizes. h is the number of types in the search space.

Then, the customized kernel function kt(s, u) is formulated

as:

kt(s, u) =

n
∑

i=1

(σi
t)

2exp(−(li · (s− u))T ((s− u) · li)),

∀s, u ∈ n, ∀t ∈ T , (7)

Where li is the mask for the i-th type of operations, which

is defined as follows:

li =
[

l1i , l
2

i , . . . , l
k
i

]T
,

k = |s|, lj1i = 1, ∀sj1 ∈ Si, l
j2
i = 0, ∀sj2 /∈ Si,

j1, j2 ∈ {1, 2, · · · , n}. (8)

σi
t in Equation 7 is the hyperparameter to be estimated.

Following the results in [37], the conditional probabil-

ity distribution (or, predictive posterior distribution) of the

unsampled network architectures xt(ut) is given by

pt(xt(ut)|xt(st)) = N (µt(ut|st),Kt(ut|st)),

∀st ⊂ n,ut = n \ st, ∀t ∈ T , (9)

where the conditional mean vector µt(ut|st) and the condi-

tional covariance matrix Kt(ut|st) are as follows:

µt(ut|st) =

mt(ut) +Kt(ut, st)Kt(st, st)
−1(xt(st)−mt(st)),

∀st ⊂ n,ut = n \ st, ∀t ∈ T , (10)

11935

Kt(ut|st) =

Kt(ut,ut)−Kt(ut, st)Kt(st, st)
−1

Kt(st,ut),

∀st ⊂ n,ut = n \ st, ∀t ∈ T . (11)

However, training numerous sampled networks and ob-

taining their performances is very time-consuming. Most

current works [55, 3] focus on reducing the training time of

a single sampled network, such as training for fewer epochs,

searching on a small dataset, learning with fewer blocks or

weight sharing. From a novel perspective, we aim to mini-

mize the sample times. To realize it, we attend to optimize

the sampling strategy from an information theory perspec-

tive. Mutual information is used to measure the mutual de-

pendence between two distributions[18, 8, 21]. At time t,
the sampled network architectures xt(st) and the unsam-

pled architectures xt(ut) are formed as two distributions.

Here we try to make M(xt(st),xt(ut)) approach xt(st) by

maximizing their mutual information. In this way, we can

select a neural architecture which carries high information

gain for each sampling.

Based on Equation 11, M(xt(st),xt(ut)) is obtained

by:

M(xt(st),xt(ut)) =
1

2
log(

|Kt(ut,ut)|

|Kt(ut|st)|
),

∀st ⊂ n,ut = n \ st, ∀t ∈ T , (12)

where |Kt(ut,ut)| and |Kt(ut|st)| denote the determi-

nants of Kt(ut,ut) and Kt(ut|st). Due to the limitation

of space, more details refer to [12].

In summary, we utilize the performance of sampled net-

works to estimate the hyperparameters. Furthermore, we

employ an efficient sampling strategy by using mutual in-

formation. The target hyperparameters to be estimated are

σi
t and w, ∀i ∈ {1, 2, · · · , n}. In the following section, we

will discuss in detail how to estimate these hyperparame-

ters.

3.2. Hyperparameter Estimation of GP­NAS

In this section, we present how to estimate the hyperpa-

rameters of GP-NAS using a minimal number of sampled

network architectures. From the definition of GP-NAS in

Equation 2, we have:

xt(s) = w
T s+ εt(s), ∀s ∈ n, ∀t ∈ T , (13)

where εt(s) is subject to a Gaussian distribution, and

pt(εt(s)) = N (εt(s)|0, kt(s, s)) = N (εt(s)|0,
n
∑

i=1

(σi
t)

2)).

(14)

Then, in matrix form:

xt(s) = Φ(s)w + et(s), ∀s ⊆ n, ∀t ∈ T , (15)

where Φ(s) and et(s) are denoted by:

Φ(s) =
[

s, s ∈ s
]T

, ∀s ⊆ n, (16)

et(s) =
[

εt(s), s ∈ s
]T

, ∀s ⊆ n, ∀t ∈ T . (17)

Let pt(w) be the prior distribution [41] of w, where

pt(w) = N (w|µt
w
,Σt

w
). (18)

In Equation 18, µt
w

is the prior mean vector of w, Σt
w

is

the prior covariance matrix of w before sampling at t.
Then, the probability density function of xt(s) is given

by:

pt(xt(s)|w) = N (xt(s)|w
T s,

n
∑

i=1

(σi
t)

2), ∀s ∈ n, ∀t ∈ T ,

(19)

where σi
t can be recursively estimated ∀i ∈ {1, 2, · · · , n}.

Furthermore, the probability density function of xt(s) is

given by:

pt(xt(s)|w) = N (xt(s)|w
T
s,Kt(s, s)), ∀s ⊆ n, ∀t ∈ T .

(20)

Let σ̂i
t be the estimated hyperparameter, where:

σ̂1

t , σ̂
2

t , · · · , σ̂
n
t = argmax

σ1

t ,σ
2

t ,··· ,σ
n
t

pt(xt(s)|w), ∀s ⊆ n, ∀t ∈ T .

(21)

Let µ̂t
w

and Σ̂t
w

be the posterior mean vector and covari-

ance matrix of w to be updated after sampling at t. Then,

the predicted performance of any network architecture(s) s,

x̂t(s), can be estimated by:

x̂t(s) = Φ(s)µ̂t
w
, ∀s ⊆ n, ∀t ∈ T . (22)

Notably, the posterior mean vector and covariance matrix

of w at tp turn into the prior mean vector and covariance

matrix of w, where tp is the previous sampling time of t.
Following the results by theorem 1, we can recursively up-

date the mean vector of w.

Theorem 1. The posterior mean vector of w after sampling

at t, µ̂t
w

, can be updated as follows:

µ̂t
w
=µt

w
+Φ(s)TΣt

w
(Kt(s, s) + Φ(s)TΣt

w
Φ(s))−1×

(xt(s)− Φ(s)µt
w
), ∀s ⊆ n, ∀t ∈ T . (23)

Proof. Let pt(w|xt(s)) be the posterior distribution [41] of

w,

pt(w|xt(s)) ∝ pt(xt(s)|w)pt(w), ∀s ⊆ n, ∀t ∈ T . (24)

11936

This results in the following log-likelihood function:

L(w, s) , ln pt(xt(s)|w)pt(w)

= −
|s|+ |s|

2
ln 2π −

1

2
ln |Kt(s, s)| −

1

2
ln |Σt

w
|

−
1

2
(w − µt

w
)T (Σt

w
)−1(w − µt

w
)

−
1

2
(xt(s)− Φ(s)w)T (Kt(s, s))

−1(xt(s)− Φ(s)w).

(25)

The posterior mean vector of w, µ̂t
w

, can be calculated

by:

µ̂t
w
= argmax

w

L(w, s), ∀s ⊆ n. (26)

Taking the derivative of log-likelihood function in re-

spect to w leads to:

∂L(w, s)

∂w
=

Φ(s)T (Kt(s, s))
−1(xt(s)− Φ(s)w)− (Σt

w
)−1(w − µt

w
),

∀s ⊆ n, ∀t ∈ T . (27)

By setting Equation (27) to zero, we have:

µ̂t
w
=µt

w
+Φ(s)TΣt

w
(Kt(s, s) + Φ(s)TΣt

w
Φ(s))−1

(xt(s)− Φ(s)µt
w
), ∀s ⊆ n, ∀t ∈ T , (28)

which proves theorem 1.

Theorem 2 shows how we can recursively update the co-

variance matrix of w.

Theorem 2. The posterior covariance matrix of of w, Σ̂t
w

,

can be updated by Equation 29.

Σ̂t
w
= (Φ(s)T (Kt(s, s))

−1Φ(s) + (Σt
w
)−1)−1. (29)

Proof. According to the Bayesian Cramér-Rao bound [47],

the mean square error matrix Σ̂t
w

is bounded from below by

the inverse of the Fisher information matrix J(w), where

Σ̂t
w
= E[(w − µ̂t

w
)(w − µ̂t

w
)T], (30)

and

J(w) = E[−∂2

w
ln pt(xt(s),w)] (31)

where ∂2

w
denotes the second-order differential or Laplacian

operator with respect to w. Then, we have

Σ̂t
w
� J(w)−1. (32)

Furthermore, we have:

J(w) = −E[∂2

w
ln pt(xt(s)|w)pt(w)]

= Φ(s)T (Kt(s, s))
−1Φ(s) + (Σt

w
)−1, (33)

It is worth noting that, in Equation 33, the expectation is

in respect to w.

According to [6], under linear Gaussian condition, µ̂t
w

is a best linear unbiased estimator which can achieve the

Cramér-Rao lower bound J(w).

Thus, we have:

Σ̂t
w
= J(w)−1

= (Φ(s)T (Kt(s, s))
−1Φ(s) + (Σt

w
)−1)−1, (34)

which proves theorem 2.

It is worth noting that, Σ̂t
w

only shows how well we can

estimate w. Theorem 3 below illustrates how well we can

predict the performance of any network architectures.

Theorem 3. The expected mean square error (MSE) ma-

trix between the ground truth and the estimation can be ob-

tained by Equation 35.

E
[

(x̂(s)− xt(s))
T (x̂(s)− xt(s))

]

= Φ(s)Σ̂t
w
Φ(s)T +Kt(s, s), (35)

where ∀s ⊆ n, ∀t ∈ T .

Proof. As mentioned before, w and xt(s) conditioned on

w are Gaussian distributed according to:

pt(w) = N (w|µ̂t
w
, Σ̂t

w
), (36)

pt(xt(s)|w) = N (xt(s)|Φ(s)w, (Kt(s, s)), (37)

where ∀s ⊆ n, ∀t ∈ T .

Then, based on the affine transformation property of

multivariate Gaussian distributions [44], the joint distribu-

tion of w and xt(s) is given by:

pt(w,xt(s)) = N

((

w

xt(s)

) ∣

∣

∣

∣

(

µ̂t
w

Φ(s)µ̂t
w

)

,Σ∗

)

= N

((

w

xt(s)

)
∣

∣

∣

∣

(

µ̂t
w

x̂(s)

)

,Σ∗

)

, (38)

where

Σ∗ =

(

K
∗
t (s, s) + (Σ̂t

w
)−1 −Φ(s)T (Kt(s, s))

−1

−(Kt(s, s))
−1Φ(s) (Kt(s, s))

−1

)−1

=

(

Σ̂t
w

Σ̂t
w
Φ(s)T

Φ(s)Σ̂t
w

Φ(s)Σ̂t
w
Φ(s)T +Kt(s, s)

)

, (39)

11937

Algorithm 1: AEA

Initialize the prior mean vector and covariance matrix of w, µt
w

and Σt
w

.

while Algorithm not converge do
Sampling the best encoded network architecture at t

according to Equation 12.

Train the sampled network st \ stp and obtain the

performance as a reward xt(st \ stp).

Estimate hyperparameters σ̂i
t , according to Equation 21

where w is set to µt
w

.

Set hyperparameters of kernel function in Equation 7 σi
t to

σ̂i
t , ∀i ∈ {1, 2, · · · , n}.

Estimate the posterior mean vector of w, µ̂t
w

, according to

theorem 1.

Estimate the posterior covariance matrix of of w, Σ̂t
w

,

according theorem 2.

Estimate the expected MSE matrix between the ground truth

and the estimation, according to theorem 3.

Updates t to next sampling time and set prior distribution at

t to posterior distribution at tp.

end

where

K
∗
t (s, s) = Φ(s)T (Kt(s, s))

−1Φ(s). (40)

Thus, we have:

E
[

(x̂(s)− xt(s))
T (x̂(s)− xt(s))

]

= Φ(s)Σ̂t
w
Φ(s)T +Kt(s, s),

∀s ⊆ n, ∀t ∈ T , (41)

which proves theorem 3.

Based on analysis above, we propose an alternating es-

timation algorithm (AEA) to estimate the hyperparameters

of GP-NAS. Algorithm 1 shows the pseudocode of AEA.

First, according to Equation 12, we can get the best en-

coded network architecture(s) to be estimated. Then, we

train the sampled network architecture(s) and get perfor-

mance(s). Based on the performance(s), we freeze w to es-

timate hyperparameters σ̂i
t according to Equation 21, ∀i ∈

{1, 2, · · · , n}. Alternatively, we freeze σi
t to estimate µ̂t

w

and Σ̂t
w

according to theorem 1 and theorem 2. Finally,

we estimate the expected mean square error (MSE) matrix

between the ground truth and the estimation according to

theorem 3. If the expected MSE matrix satisfies the setting

threshold, then AEA converges and stops. Otherwise, the

prior distribution at t is updated to the posterior distribution

at tp. Then, the AEA recursively estimates the hyperparam-

eters. Therefore, the final number of sampled architectures

is determined by theorem 3.

4. Experiments

In this section, we conduct experiments on CIFAR-10

[27], ImageNet [39] dataset and face recognition [14] tasks.

First, the proposed GP-NAS searches for the best CNN

architecture on CIFAR-10 for image classification. The

search space and training details are presented. Next, we in-

vestigate the transferability of the best architecture learned

on CIFAR-10 by evaluating it on ImageNet. Then, we anal-

yse the predicted accuracy of GP-NAS. Finally, we search

for the customized network for face recognition task.

4.1. Architecture Evaluation on CIFAR­10

Dataset CIFAR-10 [27] is a standard image classifica-

tion dataset, which consists of 50,000 training images and

10,000 testing images of size 32× 32× 3.

Search space Following [11], our search space is based

on MobileNetV3-large[23]. Specifically, we search the ker-

nel size k ∈ {3, 5, 7}, expansion rate n ∈ {3, 6} of each in-

verted bottleneck block and whether the squeezing and ex-

citation mechanism is enabled or not. In practice, we keep

the same amount of layers and activation functions as Mo-

bileNetV3. Therefore, the search space contains 1214 child

architectures, which is too large to enumerate.

Training During architecture searching, the child net-

work is trained for 10 epochs on the V100 GPU. The learn-

ing rate is 0.1. Half of the training data is hold out for hyper-

parameters estimation. The final network is trained for 300
epochs. We set the learning rate to 0.05 with cosine decay

strategy. We utilize SGD to optimize the network weights

with momentum 0.9 and decay coefficient 3 × 10−4. The

batch size is 128. Data augmentations involve cutout and

mixup.

Evaluation To verify the performance of GP-NAS, we

compare our methods with state-of-the-art NAS methods,

including RL-based methods [55, 1], EA-based methods

[38, 31, 17], GD-based methods [32, 46] and other meth-

ods [30, 4, 35, 48]. Table 1 shows the test error, parame-

ters and search cost of different methods. Although most

NAS methods achieve comparable performances with mod-

erate parameters on the testing set, RL-based and EA-based

methods spend three orders of magnitude more computa-

tion resources (1800 GPU days for NASNet and 3150 GPU

days for AmoebatNet). These results suggest that training

the controller in the RL-Based NAS requires lots of net-

work candidates, which is resource-consuming. Although

some strategies [31, 30] have been proposed to accelerate

their search speeds, the search cost still lags far behind

other methods (225 GPU days for PNAS). Alternatively,

SMASH[4] and GHN[48] reduce the training time of each

child network by training a hypernetwork, which can di-

rectly generate the weights of network or predict the perfor-

mance based on the architecture. In this way, the training

of child networks can be avoided. Therefore, SMASH[4]

finishes neural search in 1.5 GPU days, but the parame-

ters increases to 16M . Meanwhile, weight sharing strat-

egy in ENAS[35] has been put forward where different

11938

Method
Test Error

(%)

Params

(M)

Search Cost

(GPU days)

NASNet-A [55] 2.65 3.3 1800

NASNet-B [55] 3.73 2.6 1800

NASNet-C [55] 3.10 3.59 1800

AmoebaNet-A [38] 3.34 ± 0.06 3.2 3150

AmoebaNet-B [38] 2.55 ± 0.05 2.8 3150

Hierarchical Evo [31] 3.75 ± 0.12 15.7 300

PNAS [30] 3.41 ± 0.09 3.2 225

Macro NAS + Q-Learning [1] 6.92 11.2 100

SMASH [4] 4.03 16.0 1.5

ENAS [35] 2.89 4.6 0.45

DARTS (first order) [32] 2.94 2.9 1.5

DARTS (second order) [32] 2.83 ± 0.06 3.4 4

SNAS (single-level) + mild constraint [46] 2.98 2.9 1.5

GHN Top-Best, 1K (F=32) [48] 2.94 ± 0.07 5.7 0.84

LEMONADE [17] 2.58 13.1 -

ProxylessNAS [5] 2.08 - 4.0

GP-NAS-rdm 3.98 4.2 23

GP-NAS 3.79 3.90 0.9

Table 1. Classification errors of GP-NAS and state-of-the-art image classifiers on CIFAR-10.

Method FLOPs Accuracy

×106 Top 1 Top 5

NASNet-A [55] 564 74.0 91.6

NASNet-B [55] 488 72.8 91.3

NASNet-C [55] 558 72.5 91.0

AmoebaNet-A [38] 555 74.5 92.0

AmoebaNet-B [38] 555 74.0 91.5

AmoebaNet-C [38] 570 75.7 92.4

PNAS [30] 588 74.2 91.9

DARTS (second order) [32] 595 73.1 91.0

SNAS (mild constraint) [46] 522 72.7 90.8

GHN Top-Best, 1K [48] 569 73.0 91.3

ProxylessNAS (GPU) [5] 465 75.1 92.5

GP-NAS 225 73.4 91.3

GP-NAS∗ 225 75.8 92.8

Table 2. Comparison with the state-of-the-art NAS methods on

ImageNet-Mobile.∗ indicates the results trained using larger batch

size and epochs.

child network shares weighs, which is orthogonal to our

work. Differentiable architecture search [32] converts the

discrete search space to continue one and makes full use of

the efficiency of gradient descent. DARTS (first order) can

search a good network within 1.2 GPU days. It is obvious

that most of these methods try to speed neural architecture

search by reducing the training time of each child network.

Different from them, our GP-NAS combines mutual infor-

mation and Bayes estimation to efficiently estimate hyper-

parameter with minimum sampling networks. In this way,

the number of training child network is greatly decreased.

To verify the effectiveness of mutual information in GP-

NAS, we replace the sampling strategy Eq.12 in algorithm

1 with random sampling, called GP-NAS-rdm. Although

GP-NAS-rdm costs about 23 GPU days, it still achieves

3.98% test error with 4.2M parameters. Thus, it is reason-

able to learn the distribution of performance under network

architecture by the specially designed GP. When we adopt

the sampling strategy based on maximizing mutual infor-

mation, our GP-NAS only requires 0.9 GPU days, which is

about 25 times faster than GP-NAS-rdm. Furthermore, GP-

NAS also achieves a comparable performance 3.79% test

error with only 3.9M parameters.

4.2. Transferability of learned Architectures of Im­
ageNet

To validate the effectiveness of GP-NAS, we also eval-

uate it on the ImageNet datasets that contain 1.28 million

training 224 × 224 images. Following [48, 32], the Im-

ageNet mobile setting restricts the model size to be un-

der 600M FLOPS. With the tradeoff between the perfor-

mance and model size, we transfer the network architec-

ture of GP-NAS searched on CIFAR-10 dataset to the Im-

ageNet dataset. The final model is trained for 150 epochs

with batch size 256. The initial learning rate is 0.045 with

cosine decay strategy. We report the top-1 and top-5 ac-

11939

curacy on the validation set. As shown in Table. 2, our

GP-NAS achieves 73.4% and 91.3% accuracy of Top1 and

Top5, which is competitive with other advanced methods.

Meanwhile, the architecture searched by GP-NAS only has

225M FLOPs, which are half of other methods, such as

DARTS and SNAS. When the batch size and epochs in-

crease to 4096 and 360, GP-NAS obtains 75.8% and 92.8%
accuracy of Top1 and Top5.

Figure 1. Predicting vs. True accuracies on CIFAR-10 of different

models.

Figure 2. Final models vs. agent models accuracies on CIFAR-10.

4.3. Predicted Performance Correlation

In this section, we evaluate the predicted performance

of child networks by GP-NAS on CIFAR-10 dataset. Af-

ter finishing the hyperparameters estimation, we randomly

sample child networks and train them following the training

strategy in the search stage. Trained networks are evalu-

ated on the validation set, which is treated as truth accuracy,

while their performance is directly predicted by GP-NAS.

Fig. 1 shows the predicted accuracy and truth accuracy.

We show 50 networks for a clear illustration. It is obvious

that GP-NAS can predict accuracy well. Moreover, we also

fully train the selected models in the stand-alone way. Fig.2

shows the accuracy of stand-alone model vs. agent model.

We observe that the performances of stand-alone and agent

model have a high correlation.

4.4. Architecture Search on Face Recognition

Face Recognition is a fundamental task in computer vi-

sion. To evaluate the generalization of GP-NAS, we search

a neural network structure for this recognition field. Fol-

lowing [7], we search network architectures on CASIA-

Webface dataset and evaluate face verification accuracy on

LFW dataset. Our search space is based on MobileFaceNet

[7] with width multipliers of 0.75. We search expansion

rate n ∈ {2, 4, 6} and whether the squeezing and excitation

mechanism is enabled or not for each block. The search

space contains 615 child networks. Table. 3 shows the

FLOPs, parameters and accuracy of each method. Com-

pared with MobileFaceNet, model searched by GP-NAS

gains higher performance 99.17% with only 151M FLOPs

and 0.83M parameters. When the width multipliers are set

to 0.6, we can search a more compact network.

Method FLOPs Params Acc.

MobileNetV1 [24] - 3.2M 98.63%

MobileNetV2 [40] - 2.1M 98.58%

ShuffleNet(1×,g=3)[49] - 0.83M 98.70%

MobileNetV2-GDConv - 2.1M 98.88%

MobileFaceNet [7] 223M 0.98M 99.15%

GP-NAS 151M 0.83M 99.17%

GP-NAS∗ 130M 0.61M 99.13%

Table 3. Performance comparison among mobile models tested on

LFW. ∗ indicates width multipliers of 0.6.

5. Conclusion

In this paper, we propose the Gaussian Process based

Neural Architecture Search (GP-NAS), a theoretical mod-

eling for NAS. Jointly considering mutual information and

Bayesian estimation, we can estimate the hyperparameters

of GP-NAS with the minimal number of sampled networks,

which significantly accelerates the search speed. We also

propose an alternating estimation algorithm (AEA) to recur-

sively update the hyperparameters. The learned GP-NAS is

capable of inferring the performance of any network archi-

tectures. Finally, we show that GP-NAS achieves a com-

petitive performance on classification and face recognition

tasks.

Acknowledgement: This work is funded by Beijing Nat-

ural Science Foundation (Grants No. JQ18017) and

Shandong Provincial Key Research and Development

Program (Major Scientific and Technological Innovation

Project)(No. 2019JZZY010119).

11940

References

[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh

Raskar. Designing neural network architectures using rein-

forcement learning. In ICLR, 2017. 2, 6, 7

[2] Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V

Le. Neural optimizer search with reinforcement learning.

In ICML, 2017. 2

[3] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay

Vasudevan, and Quoc Le. Understanding and simplifying

one-shot architecture search. In ICML, 2018. 2, 4

[4] Andrew Brock, Theodore Lim, James M Ritchie, and Nick

Weston. Smash: one-shot model architecture search through

hypernetworks. In ICLR, 2018. 2, 6, 7

[5] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. In

ICLR, 2019. 1, 7

[6] James V Candy. Bayesian signal processing: classical, mod-

ern, and particle filtering methods. John Wiley & Sons,

2016. 5

[7] Sheng Chen, Yang Liu, Xiang Gao, and Zhen Han. Mobile-

facenets: Efficient cnns for accurate real-time face verifica-

tion on mobile devices. In CCBR, 2018. 8

[8] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya

Sutskever, and Pieter Abbeel. Infogan: Interpretable rep-

resentation learning by information maximizing generative

adversarial nets. In NeurIPS, 2016. 2, 4

[9] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive dif-

ferentiable architecture search: Bridging the depth gap be-

tween search and evaluation. 2019. 2

[10] Yukang Chen, Gaofeng Meng, Qian Zhang, Shiming Xiang,

Chang Huang, Lisen Mu, and Xinggang Wang. Renas: Re-

inforced evolutionary neural architecture search. In CVPR,

2019. 2

[11] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Moga: Search-

ing beyond mobilenetv3. arXiv preprint arXiv:1908.01314,

2019. 6

[12] Thomas M Cover and Joy A Thomas. Elements of informa-

tion theory. John Wiley & Sons, 2012. 4

[13] Jiequan Cui, Pengguang Chen, Ruiyu Li, Shu Liu, Xiaoyong

Shen, and Jiaya Jia. Fast and practical neural architecture

search. In ICCV, 2019. 1

[14] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos

Zafeiriou. Arcface: Additive angular margin loss for deep

face recognition. In CVPR, 2019. 6

[15] Xuanyi Dong and Yi Yang. One-shot neural architecture

search via self-evaluated template network. In ICCV, 2019.

2

[16] Xuanyi Dong and Yi Yang. Searching for a robust neural

architecture in four gpu hours. In CVPR, 2019. 1

[17] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Ef-

ficient multi-objective neural architecture search via lamar-

ckian evolution. In ICLR, 2019. 6, 7

[18] Shuyang Gao, Greg Ver Steeg, and Aram Galstyan. Vari-

ational information maximization for feature selection. In

NeurIPS, 2016. 2, 4

[19] Golnaz Ghiasi, Tsung-Yi Lin, Ruoming Pang, and Quoc V

Le. Nas-fpn: Learning scalable feature pyramid architecture

for object detection. 2019. 1

[20] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. In

ICLR, 2017. 2

[21] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon,

Karan Grewal, Adam Trischler, and Yoshua Bengio. Learn-

ing deep representations by mutual information estimation

and maximization. In ICLR, 2019. 2, 4

[22] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip

De Turck, and Pieter Abbeel. Vime: Variational information

maximizing exploration. In NeurIPS, 2016. 2

[23] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig

Adam. Searching for mobilenetv3. In ICCV, 2019. 6

[24] Andrew Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. 2017.

8

[25] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.

Sequential model-based optimization for general algorithm

configuration. In LION, 2011. 2

[26] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider,

Barnabas Poczos, and Eric P Xing. Neural architecture

search with bayesian optimisation and optimal transport. In

NeurIPS, 2018. 2

[27] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009. 6

[28] Xin Li, Yiming Zhou, Zheng Pan, and Jiashi Feng. Partial

order pruning: for best speed/accuracy trade-off in neural

architecture search. In CVPR, 2019. 3

[29] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig

Adam, Wei Hua, Alan Yuille, and Li Fei-Fei. Auto-deeplab:

Hierarchical neural architecture search for semantic image

segmentation. 2019. 1

[30] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In ECCV, 2018. 6, 7

[31] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha

Fernando, and Koray Kavukcuoglu. Hierarchical representa-

tions for efficient architecture search. In ICLR, 2018. 1, 2, 6,

7

[32] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:

Differentiable architecture search. In ICLR, 2019. 2, 6, 7

[33] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan

Liu. Neural architecture optimization. In NeurIPS, 2018. 2

[34] Vladimir Nekrasov, Hao Chen, Chunhua Shen, and Ian Reid.

Fast neural architecture search of compact semantic segmen-

tation models via auxiliary cells. In CVPR, 2019. 1

[35] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. 2018. 1, 6, 7

11941

[36] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Faster discovery of neural architectures by search-

ing for paths in a large model. In ICLRW, 2018. 2

[37] Carl E. Rasmussen and Christopher K. I. Williams. Gaus-

sian processes for machine learning. MIT Press, Cambridge,

Mass, 2006;. 2, 3

[38] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In AAAI, 2019. 1, 6, 7

[39] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. IJCV, 2015. 6

[40] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In CVPR, 2018. 8

[41] Simo Särkkä. Bayesian filtering and smoothing. Cambridge

University Press, 2013. 4

[42] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Prac-

tical bayesian optimization of machine learning algorithms.

In NeurIPS, 2012. 2

[43] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In CVPR, 2019. 2

[44] Yung Liang Tong. The multivariate normal distribution.

Springer Science & Business Media, 2012. 5

[45] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

CVPR, 2019. 1

[46] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas:

stochastic neural architecture search. In ICLR, 2019. 2, 6, 7

[47] Dave Zachariah and Petre Stoica. Cramér-rao bound ana-

log of bayes’ rule [lecture notes]. IEEE Signal Processing

Magazine, 2015. 5

[48] Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hy-

pernetworks for neural architecture search. In ICLR, 2019.

2, 6, 7

[49] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. 07 2017. 8

[50] Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan, Xiujun

Li, Chris Brockett, and Bill Dolan. Generating informative

and diverse conversational responses via adversarial infor-

mation maximization. In NeurIPS, 2018. 2

[51] Yiheng Zhang, Zhaofan Qiu, Jingen Liu, Ting Yao, Dong

Liu, and Tao Mei. Customizable architecture search for se-

mantic segmentation. In CVPR, 2019. 1

[52] Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang,

Jianzhuang Liu, and Qi Tian. Multinomial distribution learn-

ing for effective neural architecture search. In ICCV, 2019.

1

[53] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-

Lin Liu. Practical block-wise neural network architecture

generation. In CVPR, 2018. 1, 2

[54] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Neural architecture search with reinforcement learning.

In ICLR, 2017. 2

[55] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In CVPR, 2018. 1, 4, 6, 7

11942

