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Abstract

Visual localization is critical to many applications in

computer vision and robotics. To address single-image RGB

localization, state-of-the-art feature-based methods match

local descriptors between a query image and a pre-built 3D

model. Recently, deep neural networks have been exploited

to regress the mapping between raw pixels and 3D coordi-

nates in the scene, and thus the matching is implicitly per-

formed by the forward pass through the network. However,

in a large and ambiguous environment, learning such a re-

gression task directly can be difficult for a single network.

In this work, we present a new hierarchical scene coordi-

nate network to predict pixel scene coordinates in a coarse-

to-fine manner from a single RGB image. The network con-

sists of a series of output layers, each of them conditioned

on the previous ones. The final output layer predicts the

3D coordinates and the others produce progressively finer

discrete location labels. The proposed method outperforms

the baseline regression-only network and allows us to train

compact models which scale robustly to large environments.

It sets a new state-of-the-art for single-image RGB localiza-

tion performance on the 7-Scenes, 12-Scenes, Cambridge

Landmarks datasets, and three combined scenes. More-

over, for large-scale outdoor localization on the Aachen

Day-Night dataset, we present a hybrid approach which

outperforms existing scene coordinate regression methods,

and reduces significantly the performance gap w.r.t. explicit

feature matching methods.1

1. Introduction

Visual localization aims at estimating precise six degree-

of-freedom (6-DoF) camera pose with respect to a known

environment. It is a fundamental component of many intel-

ligent autonomous systems and applications in computer vi-

sion and robotics, e.g., augmented reality, autonomous driv-

ing, or camera-based indoor localization for personal as-

*Work done while JV was at INRIA.
1Code and materials available at https://aaltovision.

github.io/hscnet.

sistants. Commonly used visual localization methods rely

on matching local visual descriptors [42, 43]. Correspon-

dences are typically established between 2D interest points

in the query and 3D points in the pre-built structure-from-

motion model [48, 49] with nearest neighbor search, and the

6-DoF camera pose of the query can then be computed from

the correspondences.

Instead of explicitly establishing 2D-3D correspon-

dences via matching descriptors, scene coordinate regres-

sion methods directly regress 3D scene coordinates from an

image [3, 5, 8, 50]. In this way, correspondences between

2D points in the image and 3D points in the scene can be

obtained densely without feature detection and description,

and explicit matching. In addition, no descriptor database

is required at test time since the model weights encode

the scene representation implicitly. It was experimentally

shown that recent CNN-based scene coordinate regression

methods achieve better localization performance on small-

scale datasets compared to the state-of-the-art feature-based

methods [5]. The high accuracy and the compact represen-

tation of a dense scene model make scene coordinate re-

gression approach an interesting alternative to the classic

feature-based approach.

However, most existing scene coordinate regression

methods can only be adopted on small-scale scenes. Typ-

ically, scene coordinate regression networks are designed to

have a limited receptive field [3, 5], i.e. only a small local

image patch is considered for each scene coordinate pre-

diction. This allows the network to generalize well from

limited training data, since local patch appearance is more

stable w.r.t. viewpoint change. On the other hand, a lim-

ited receptive field size can lead to ambiguous patterns in

the scene, especially in large-scale environments, caused by

visual similarity between local image patches. Due to these

ambiguities, it is harder for the network to accurately model

the regression problem, resulting in inferior performance at

test time. Using larger receptive field sizes, up to the full

image, to regress the coordinates can mitigate the issues

caused by ambiguities. This, however, has been shown to

be prone to overfitting the larger input patterns in the case

of limited training data, even if data augmentation alleviates
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Figure 1. Overview of our single-image RGB localization approach based on hierarchical scene coordinate prediction, here using 3 levels.

this problem to some extent [27].

In contrast, in this work, we overcome the ambiguities

due to small receptive fields by conditioning on discrete lo-

cation labels around each pixel. During training, the labels

are obtained by a coarse quantization of the ground-truth 3D

coordinates. At test time, the location labels for each pixel

are obtained using dense classification networks, which can

more easily deal with the location ambiguity since they

are trained using the cross-entropy classification loss which

permits a multi-modal prediction in 3D space. Our model

allows for several classification layers, using progressively

finer location labels, obtained through hierarchical cluster-

ing of the ground-truth 3D point cloud data. Our hierarchi-

cal coarse-to-fine architecture is implemented using condi-

tioning layers that are related to the FiLM architecture [36],

resulting in a compact model. See Fig. 1 for a schematic

overview of our approach.

We validate our approach by comparing it to a

regression-only network, which lacks the hierarchical

coarse-to-fine structure. We present results on three datasets

used in previous works: 7-Scenes [50], 12-Scenes [56],

and Cambridge Landmarks [24]. Our approach shows con-

sistently better performance and achieves state-of-the-art

results for single-image RGB localization. Moreover, by

compiling the 7-Scenes and 12-Scenes datasets into single

large scenes, and using the Aachen Day-Night dataset [44,

46], we show that our approach scales more robustly to

larger environments.

In summary, our contributions are as follows:

• We introduce a new hierarchical coarse-to-fine con-

ditioning architecture for scene coordinate prediction,

which improves the performance and scalability over a

baseline regression-only network.

• We show that our novel approach achieves state-of-the-

art results for single-image RGB localization on three

benchmark datasets and it allows us to train single

compact models which scale robustly to large scenes.

• For large-scale outdoor localization, we present a hy-

brid approach built upon our network, which reduces

significantly the gap to feature-based methods.

2. Related Work

Visual localization. Visual localization aims at predict-

ing 6-DoF camera pose for a given query image. To ob-

tain precise 6-DoF camera pose, visual localization meth-

ods are typically structure-based, i.e. they rely on 2D-3D

correspondences between 2D image positions and 3D scene

coordinates. With the established 2D-3D correspondences,

a RANSAC [20] optimization scheme is responsible for

producing the final pose estimation. The correspondences

are typically obtained by matching local features such as

SIFT [29], and many matching and filtering techniques have

been proposed, which enable efficient and robust city-scale

localization [15, 25, 34, 43, 52, 54].

Image retrieval can also be used for visual localiza-

tion [1]. The pose of the query image can be directly ap-

proximated by the most similar retrieved database image.

Since compact image-level descriptors are used for match-

ing, image retrieval methods can scale to very large envi-

ronments. The retrieval methods can be combined with

structure-based methods [40, 41, 45, 53, 60] or relative pose

estimation [2, 18, 26] to predict precise poses. Typically,

the retrieval step helps restrict the search space, leading to

faster and more accurate localization.

In recent years, learning-based localization approaches

have been explored. One popular direction is to replace the

entire localization pipeline with a single neural network.

PoseNet [24] and its variants [9, 22, 23, 31, 58] directly

regress the camera pose from a query image. Recently,

however, it was demonstrated that direct pose regression

yields results more similar to pose approximation via im-

age retrieval than to accurate pose estimation via 3D struc-

ture [47]. Therefore, these methods are still outperformed

by structure-based methods. By fusing estimated pose in-

formation from the previous frame, [37, 55] achieve better
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performance, but require sequences of images rather than

single images.

Scene coordinate regression. Instead of learning the en-

tire pipeline, scene coordinate regression methods learn the

first stage of the pipeline in the structure-based approaches.

Namely, either a random forest [4, 13, 14, 21, 30, 32, 33, 50,

57] or a neural network [3, 5, 6, 7, 8, 10, 11, 12, 27, 28, 30]

is trained to directly predict 3D scene coordinates for the

pixels and thus the 2D-3D correspondences are established.

These methods do not explicitly rely on feature detection,

description and matching, and are able to provide corre-

spondences densely. They are more accurate than tradi-

tional feature-based methods at small and medium scale,

but usually do not scale well to larger scenes [5, 6]. In order

to generalize well to novel viewpoints, these methods typi-

cally rely on only local image patches to produce the scene

coordinate predictions. However, this may introduce am-

biguities due to similar local appearances, especially when

the scale of the scene is large. To resolve local appearance

ambiguities, we introduce element-wise conditioning lay-

ers to modulate the intermediate feature maps of the net-

work using coarse discrete location information. We show

this leads to better localization performance, and we can ro-

bustly scale to larger environments.

Joint classification-regression. Joint classification-

regression frameworks have been proved effective in solv-

ing various vision tasks. For example, [38, 39] proposed

a classification-regression approach for human pose esti-

mation from single images. In [4], a joint classification-

regression forest is trained to predict scene identifiers and

scene coordinates. In [59], a CNN is used to detect and seg-

ment a predefined set of planar Objects-of-Interest (OOIs),

and then, to regress dense matches to their reference im-

ages. In [10], scene coordinate regression is formulated as

two separate tasks of object instance recognition and local

coordinate regression. In [6], multiple scene coordinate re-

gression networks are trained as a mixture of experts along

with a gating network which assesses the relevance of each

expert for a given input, and the final pose estimate is ob-

tained using a novel RANSAC framework, i.e., Expert Sam-

ple Consensus (ESAC). In contrast to existing approaches,

in our work, we use spatially dense discrete location labels

defined for all pixels, and propose FiLM-like [36] condi-

tioning layers to propagate information in the hierarchy. We

show that our novel framework allows us to achieve high lo-

calization accuracy with one single compact model.

3. Hierarchical Scene Coordinate Prediction

We now describe our coarse-to-fine hierarchical scene

coordinate prediction approach. Note that we address

single-image RGB localization, as in e.g. [5, 6, 7, 28], rather

than using RGB-D images [12, 13, 14, 21, 33, 50, 57], or

image sequences [37, 55].

Hierarchical joint learning framework. To define hier-

archical discrete location labels, we hierarchically partition

the ground-truth 3D point cloud data. This step can be done,

e.g., with k-means. In this way, in addition to the ground-

truth 3D scene coordinates, each pixel in a training image

is also associated with a number of labels, from coarse to

fine, obtained at different levels of the clustering hierarchy.

Then, for each level, our network has a corresponding clas-

sification layer which for all pixels predicts the discrete lo-

cation labels at that level. Besides the classification layers,

we include a final regression layer to predict the continuous

3D scene coordinates for the pixels, generating putative 2D-

3D matches. To propagate the coarse location information

to inform the predictions at finer levels, we introduce con-

ditioning layers before each classification/regression layer.

Note that we condition on the ground truth label maps dur-

ing training, and condition on the predicted label maps at

test time.

Since the predictions in each classification layer are con-

ditioned on all preceding label maps, at each particular clas-

sification layer, it suffices to predict the label branch at that

level. For example, for a three-level classification hierarchy,

with branching factor k, we classify across only k labels at

each level. Similar to [10], instead of directly regressing

the absolute coordinates, we regress the relative positions

to the cluster centers in 3D space at the finest level. This

accelerates convergence of network training [10]. Note that

this hierarchical scene coordinate learning framework also

allows a classification-only variant. That is, if we have fine

enough location labels before the regression layer, we can

simply use the cluster centers as the scene coordinates pre-

dictions without performing a final regression step.

We design the network to be global-to-local, which

means that finer output layers have smaller receptive fields

in the input image. This allows the network to use more

global information at coarser levels, while conditioning on

location labels to disambiguate the local appearances at

finer levels. Note that at test time, the receptive fields of

the finer output layers are also large, as they depend on the

discrete location labels which are predicted from the input

at test time, rather than fixed as during training.

Conditioning layers. To make use of the discrete loca-

tion label information predicted by the network at coarser

levels, these predictions should be fed back to the finer

levels. Inspired by the Feature-wise Linear Modulation

(FiLM) conditioning method [36], we introduce condition-

ing layers just before each of the output layers. A condi-

tioning parameter generator takes the predicted label map

ℓ as input, outputs a set of scaling and shifting parameters

γ(ℓ) and β(ℓ), and these parameters are fed into the con-

ditioning layer to apply linear transformation to the input

feature map. Unlike FiLM layers, however, which perform
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Figure 2. Left: Architecture of our hierarchical scene coordinate network (3-level). Right: Architecture of the conditioning layer.

the same channel-wise modulation across the entire feature

map, our conditioning layers perform a linear modulation

per spatial position, i.e., element-wise multiplication and

addition as shown in Fig. 2 (right). Therefore, instead of

vectors, the output parameters γ(ℓ) and β(ℓ) from a gener-

ator are feature maps of the same (height, width, channel)

dimensions as the input feature map of the corresponding

conditioning layer. More formally, given the input feature

map x, the scaling and shifting parameters γ(ℓ) and β(ℓ),
the linear modulation can be written as:

f(x, ℓ) = γ(ℓ)⊙ x+ β(ℓ), (1)

where ⊙ denotes the Hadamard product. In addition, the

generators consist of only 1×1 convolutional layers so that

each pixel is conditioned on its own location labels. We use

an ELU non-linearity [16] after the feature modulation.

Network architecture. In our main experiments we use 3-

level hierarchy for all the datasets, i.e. our network has two

classification output layers and one regression output layer.

The overall architecture of this network is shown in Fig. 2

(left). The first classification branch predicts the coarse lo-

cation labels, and the second one predicts the fine labels.

We use strided convolution, upconvolution and dilated con-

volution for the two classification branches to enlarge the

size of the receptive field, while preserving the output res-

olution. All the layers after the conditioning layers have

kernel size of 1×1 such that the label conditioning is ap-

plied locally. More details on the architecture are provided

in the supplementary material.

Loss function. Our network predicts location labels and

regresses scene coordinates at the same time. Therefore, we

need both a regression loss and a classification loss during

training. For the regression task, we minimize the Euclidean

distance between predicted scene coordinates ŷ and ground

truth scene coordinates y,

Lr =
∑

i

‖yi − ŷi‖2, (2)

where i ranges over the pixels in the image. For the classi-

fication task, we use cross-entropy loss at each level, i.e.

Lj
c = −

∑

i

(

ℓ
j

i

)⊤

log ℓ̂ji , (3)

where ℓ
j

i denotes the one-hot coding of the ground-truth la-

bel of pixel i at level j, and ℓ̂
j

i denotes the vector of pre-

dicted label probabilities for the same pixel, and the loga-

rithm is applied element-wise. In the case of 3-level hierar-

chy, the final loss function is given by

L = w1L
1

c + w2L
2

c + w3Lr, (4)

where w1, w2, w3 are weights for the loss terms. We found

that the accuracy of the final regression prediction is crucial

to localization performance, and thus a large value should

be set for the regression loss. Details on the weights and

training procedure are provided in the supplementary mate-

rial. Note that, as mentioned before, our hierarchical joint

learning framework also allows a classification-only vari-

ant, by using a finer label hierarchy.

4. Experimental Evaluation

In this section, we present our experimental setup and

evaluation results on standard visual localization datasets.

4.1. Datasets and Experimental Setup

We use four standard benchmark datasets for our exper-

iments. The 7-Scenes (7S) [50] dataset is a widely used

RGB-D dataset that contains seven indoor scenes. RGB-D

image sequences of the scenes are recorded by a KinectV1.

Ground truth poses and dense 3D models are also provided.

12-Scenes (12S) [56] is another indoor RGB-D dataset. It

is composed of twelve rooms captured with a Structure.io

depth sensor and an iPad color camera, and ground truth

poses are provided along with the RGB-D images. The

recorded environments are significantly larger than those

11986



7-Scenes DSAC++ [5] AS [43] Inloc [53] Regression-only Ours 12-Scenes DSAC++ [5] Regression-only Ours
—— Acc. Med. Err. Acc. Med. Err. Acc. Med. Err. Acc. Med. Err. Acc. Med. Err. —— Acc. Med. Err. Acc. Med. Err. Acc. Med. Err.
Chess 97.1 0.02, 0.5 - 0.04, 2.0 - 0.03, 1.1 95.4 0.02, 0.7 97.5 0.02, 0.7 Kitchen-1 100 - 100 0.008, 0.4 100 0.008, 0.4
Fire 89.6 0.02, 0.9 - 0.03, 1.5 - 0.03, 1.1 94.9 0.02, 0.9 96.7 0.02, 0.9 Living-1 100 - 100 0.011, 0.4 100 0.011, 0.4
Heads 92.4 0.01, 0.8 - 0.02, 1.5 - 0.02, 1.2 97.1 0.01, 0.8 100 0.01, 0.9 Bed 99.5 - 100 0.013, 0.6 100 0.009, 0.4
Office 86.6 0.03, 0.7 - 0.09, 3.6 - 0.03, 1.1 81.4 0.03, 0.9 86.5 0.03, 0.8 Kitchen-2 99.5 - 100 0.008, 0.4 100 0.007, 0.3
Pumpkin 59.0 0.04, 1.1 - 0.08, 3.1 - 0.05, 1.6 58.0 0.04, 1.1 59.9 0.04, 1.0 Living-2 100 - 100 0.014, 0.6 100 0.010, 0.4
Kitchen 66.6 0.04, 1.1 - 0.07, 3.4 - 0.04, 1.3 56.5 0.05, 1.4 65.5 0.04, 1.2 Luke 95.5 - 93.8 0.020, 0.9 96.3 0.012, 0.5
Stairs 29.3 0.09, 2.6 - 0.03, 2.2 - 0.09, 2.5 68.1 0.04, 1.0 87.5 0.03, 0.8 Gates 362 100 - 100 0.011, 0.5 100 0.010, 0.4
Average 74.4 0.04, 1.1 - 0.05, 2.5 - 0.04, 1.4 78.8 0.03, 1.0 84.8 0.03, 0.9 Gates 381 96.8 - 98.8 0.016, 0.7 99.1 0.012, 0.6
Complete 76.1 - - 74.7 80.5 Lounge 95.1 - 99.4 0.015, 0.5 100 0.014, 0.5
Cambridge DSAC++ [5] AS [43] NG-RANSAC [7] Regression-only Ours Manolis 96.4 - 97.2 0.014, 0.7 100 0.011, 0.5
Great Court 0.40, 0.2 - 0.35, - 1.25, 0.6 0.28, 0.2 Floor5a 83.7 - 97.0 0.016, 0.7 98.8 0.012, 0.5
K. College 0.18, 0.3 0.42, 0.6 0.13, - 0.21, 0.3 0.18, 0.3 Floor 5b 95.0 - 93.3 0.019, 0.6 97.3 0.015, 0.5
Old Hospital 0.20, 0.3 0.44, 1.0 0.22, - 0.21, 0.3 0.19, 0.3 Average 96.8 - 98.3 0.014, 0.6 99.3 0.011, 0.5
Shop Facade 0.06, 0.3 0.12, 0.4 0.06, - 0.06, 0.3 0.06, 0.3 Complete 96.4 97.9 99.1
St M. Church 0.13, 0.4 0.19, 0.5 0.10, - 0.16, 0.5 0.09, 0.3
Average 0.19, 0.3 0.29, 0.6 0.17, - 0.38, 0.4 0.16, 0.3

Table 1. The median errors (m, ◦) for 7-Scenes, 12-Scenes and Cambridge, and the percentages of accurately localized test images (error

< 5 cm, 5
◦) for 7-Scenes and 12-Scenes. “Complete” refers to the percentage among all test images of all scenes.

in 7-Scenes. Cambridge Landmarks [24] is an outdoor

RGB visual localization dataset. It consists of RGB images

of six scenes captured using a Google LG Nexus 5 smart-

phone. Ground truth poses and sparse 3D reconstructions

generated with structure from motion are also provided. In

addition to these three datasets, we synthesize three large-

scale indoor scenes based on 7-Scenes and 12-Scenes by

placing all seven, twelve or nineteen individual scenes, into

a single coordinate system similar to [6]. These large inte-

grated datasets are denoted by i7-Scenes (i7S), i12-Scenes

(i12S), i19-Scenes (i19S), respectively. Finally, we evalu-

ate our method on the Aachen Day-Night dataset [44, 46]

which is very challenging for scene coordinate regression

methods due to the scale and sparsity of the 3D model. In

addition, it contains a set of challenging night time queries,

but there is no night time training data. In the following, we

present the main setup for experiments on all the datasets

except Aachen. See supplementary for details on Aachen.

Ground truth scene coordinates can be either obtained

from the known poses and depth maps or rendered using

a 3D model. To generate the ground truth location labels,

we run hierarchical k-means clustering on dense point cloud

models. For all the individual scenes used in the main ex-

periments, unless stated otherwise, we use two-level hier-

archical k-means with the branching factor set to 25 for

both levels. For the three combined scenes, i7-Scenes, i12-

Scenes, and i19-Scenes, we simply combine the label trees

at the first level. That is, e.g., for the i7-Scenes, there are

175 branches in total at the first level.

We use the same VGG-style [51] architecture as

DSAC++ [5] as the base regression network for our method,

except we use ELU activation [16] instead of ReLU [35].

This is because we found that the plain regression net-

work is easier to train with ReLU, while our network which

has the additional conditioning layers and classification

branches works better with ELU. The regression layer, the

second and first classification layer have a receptive field

size of 73×73, 185×185, and 409×409 pixels, respectively,

in the input image. To show the advantage of the proposed

architecture, we also evaluate the localization performance

of the same regression-only network used in DSAC++ [5],

but here trained with the Euclidean loss term only. Note that

in [5], two additional training steps are proposed and the en-

tire localization pipeline is optimized end-to-end, which can

further improve the accuracy. Potentially, our network can

also benefit from the DSAC++ framework, but it is beyond

the scope of the current paper. Unless specified otherwise,

we perform affine data augmentation with additive bright-

ness changes during training. We also report the results

obtained without data augmentation in Sec. 4.4. For pose

estimation, we follow [5], and use the same PnP-RANSAC

algorithm with the same hyperparameter settings. Further

details about the architecture, training and other settings can

be found in the supplementary material.

4.2. Results on 7­Scenes, 12­Scenes and Cambridge

To evaluate our hierarchical joint learning architecture,

we first compare it with the state-of-the-art methods as

well as a regression-only baseline on the 7-Scenes, the 12-

Scenes, and the Cambridge Landmarks datasets. For the

Cambridge Landmarks, we report median pose accuracy as

in the previous works. Following [5, 7, 28], we do not in-

clude the Street scene, since the dense 3D reconstruction

of this scene has rather poor quality that hampers perfor-

mance. For the 7-Scenes and the 12-Scenes, we also re-

port the percentage of the test images with error below 5

cm and 5◦, which is used as the main evaluation metric for

both datasets and gives more information about the local-

ization performance. Scene coordinate regression methods

are currently the best performing single-image RGB meth-

ods on these three small/medium scale datasets [5, 7]. We

also compare to a state-of-the-art feature-based method, i.e.

Active Search [43] and an indoor localization method which

exploits dense correspondences [53]. Note that, in general,

methods that exploit additional depth information [12, 13]

or sequences of images [37, 55] can provide better local-

ization performance. However, the additional required in-

formation also restricts the scenarios in which they can be

applied. We do not compare to those methods in this work,

since they are not directly comparable to our results pro-
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Figure 3. Average pose accuracy on the combined scenes. Results

for ESAC taken from [6]. Our method consistently outperforms

the regression-only baseline by a large margin and achieves better

performance compared to ESAC.

duced in the single-image RGB localization setting.

The results are reported in Table 1. Numbers for the

competing methods are taken from the corresponding pa-

pers. Overall, our approach yields excellent results. Com-

pared to the regression-only baseline, our approach pro-

vides consistently better localization performance on all the

scenes across the three datasets. During training, we also

observed consistently lower regression training error com-

pared to the regression-only baseline, underlining the abil-

ity of the discrete location labels to disambiguate the lo-

cal appearances. Our approach also achieves overall bet-

ter results compared to the current state-of-the-art methods

DSAC++ [5] on all three datasets, and NG-RANSAC [7] on

the Cambridge Landmarks (the latter does not report results

on the 7-Scenes and 12-Scenes datasets).

In Table 1 we trained our networks and the regression-

only baseline with data augmentation, while DSAC++ and

NG-RANSAC did not use data augmentation. In Sec. 4.4,

we show that even without data augmentation, our method

still achieves comparable or better performance compared

to DSAC++ and NG-RANSAC. Moreover, in DSAC++ and

NG-RANSAC, more advanced training steps and RANSAC

schemes are proposed to improve the accuracy of the plain

regression network and to optimize the entire pipeline,

while in this work we focus on the scene coordinate network

itself and we show that improvements on this single com-

ponent can already improve the localization performance

beyond the state-of-the-art. Note that DSAC++ and NG-

RANSAC are complementary to our approach, and their

combination could be explored in future work.

4.3. Results on Combined Scenes

The individual scenes from the previous datasets all have

very limited physical extent. As in [6], to go beyond such

small environments, we use the combined scenes, i.e. the

i7-Scenes, i12-Scenes, and the i19-Scenes, as described in

Sec. 4.1. We mainly compare to the regression-only base-

Reg-only Ours Ours capacity- ESAC (i7S) [6] ESAC (i12S) [6] ESAC (i19S) [6]

104MB 165MB 73MB 7×28MB 12×28MB 19×28MB

Table 2. Model size comparison. Our method can scale robustly to

large environments with a compact model.

line and ESAC [6] on the three combined scenes. To the

best of our knowledge, ESAC is currently the only scene

coordinate regression method that scales well to the com-

bined scenes. The results are reported in Fig. 3.

We see that the localization performance of the re-

gression baseline (Reg-only) decreases dramatically when

trained on the combined scenes compared to trained and

tested on each of the scenes individually, c.f . Table 1.

Its performance drops more drastically as the scene grows

larger. Our method is much more robust to the increase

in the environment size, and significantly outperforms the

baseline. This underlines the importance of our hierarchi-

cal learning framework when the environment is large and

potentially contains more ambiguities. Our method also

outperforms ESAC which uses an ensemble of networks,

where each network specializes in a local part of the envi-

ronment [6]. ESAC requires to train and store multiple net-

works, whereas our approach requires only a single model.

Note that for ESAC the authors did not use data augmen-

tation. When we train our method without data augmenta-

tion (Ours w/o aug), we still outperform ESAC on i7-Scenes

and i12-Scenes, and obtain a slightly lower but comparable

accuracy on i19-Scenes (87.9% vs. 88.1%). Note that ESAC

and our approach are complementary, and their combination

could be explored in future work.

4.4. Detailed Analysis

Network capacity. Compared to the regression-only base-

line, our network has extra layers for the conditioning gen-

erators and classification branches, and thus has an in-

creased number of parameters. Therefore, for fair compar-

ison, we add more channels to the regression-only baseline

to compensate the increased number of parameters in our

model. On 7-Scenes, the average accuracy of the regression

baseline increased from 78.8% to 80.4%. On the combined

scenes, as shown in Fig. 3, we observe larger improvement

in performance (denoted by Reg-only capacity+ in Fig. 3).

However, even with increased capacity, the regression-only

baseline still lags far behind our method, especially on the

combined scenes.

We also experimented with reducing the size of the back-

bone regression network, which accounts for most of the

model parameters. We add more conditioning layers early

in the network, while using less shared layers between the

regression and classification branches. We denote the re-

sulting network by Ours capacity-, see supplementary for

details. In Table 2, we compare the model size of our net-

work to the regression baseline and ESAC on the combined
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7-Scenes 12-Scenes Cambridge

Reg-only w/o aug 70.9% 97.5% 0.38m, 0.4°
Ours w/o aug 75.5% 99.4% 0.18m, 0.3°
DSAC++ [5] 74.4% 96.8% 0.19m, 0.3°
NG-RANSAC [7] - - 0.17m, -

Table 3. Average pose accuracy/median error on the 7-Scenes, 12-

Scenes and Cambridge datasets of our method and the regression-

only baseline without data augmentation.

scenes. We see in Fig. 3 and Table 2 that this allows us

to reduce our model size by more than a factor of two,

while incurring a loss in accuracy below one percentage

point. Compared to ESAC on the i19-Scenes dataset, our

compressed model is more than seven times more compact.

Note that since we perform regression locally, the k-means

cluster centers also need to be stored. Since for each indi-

vidual scene there are only 625 clusters, the storage space

needed for the cluster centers is negligible (< 1MB).

Using global information. Using global information

directly to regress scene coordinates has been explored

in [27]. However, even with data augmentation, large in-

put patterns remain sensitive to viewpoint changes, leading

to inferior performance at test time compared to using local

patches [5]. We validate this by using the same regression

network, but now with dilated convolution such that the re-

ceptive field size is much larger (409×409). We find that

in general directly using global context helps the training

loss decrease faster. This might have a positive effect on

complex scenes (39.3% with dilated convolution vs. 37.9%
without it on i7-Scenes). For less demanding scenes, how-

ever, the network usually gives worse results (59.2% vs.

78.8% on 7-Scenes) due to decreased viewpoint invariance.

Meanwhile, our network is able to use the global informa-

tion in a more robust way, i.e., indirectly through discrete

location labels.

We also created two variants of our network with small

(73×73) and large (409×409) receptive field across all lev-

els, denoted by Ours rf- and Ours rf+ respectively in Fig. 3.

As expected, increasing the receptive field size at all levels

harms the performance, as shown in Fig. 3. Interestingly,

the model with small receptive field even performs sightly

better on the combined scenes. This indicates that the local

ambiguities can be handled well by the hierarchical coarse-

to-fine conditioning mechanism.

Data augmentation. We apply affine transformations to

the images with additive brightness changes as data aug-

mentation during training. In general, this improves the

generalization capability of the network and makes it more

robust to lighting and viewpoint changes. According to Ta-

ble 1, Table 3 and Fig. 3, data augmentation consistently

improves the localization performance of our method, ex-

cept on the 12-Scenes dataset; in 12S, the training and test

trajectories are close, and there are no significant viewpoint

changes between training and test frames [13]. Data aug-

7S
9×9 49×49 10×100×100 10×100×100×100 625 25×25

82.9% 85.0% 85.9% 85.5% 85.3% 84.8%

i7S
63×9 343×49 70×100×100 70×100×100×100 7×25×25 175×25
80.6% 83.7% 83.0% 82.1% 83.0% 83.3%

Table 4. Average pose accuracy obtained with different hier-

archy settings. The models with 4-level label hierarchy are

classification-only, i.e. the final regression layer is omitted.

mentation, however, can also increase the appearance am-

biguity of the training data and make the network training

more difficult. This happens to the baseline regression-only

network: Although data augmentation helps it on the small-

scale scenes, on the Cambridge and the combined scenes,

data augmentation has no positive effects and even harms

the performance. Note that without data augmentation, our

method still provides results that are better than or on par

with the state-of-the-arts, see Table 3 and Fig. 3.

Conditioning mechanism. By formulating the scene

regression task as a coarse-to-fine joint classification-

regression task can help break the complexity of the orig-

inal regression problem to some extent, even without the

proposed conditioning mechanism. To show this experi-

mentally, we trained a variant of our network without the

conditioning mechanism, i.e. we removed all the condi-

tioning generators and layers, thus no coarse location in-

formation is fed to influence the network activations at the

finer levels. We did preserve the coarse-to-fine joint learn-

ing, and still use the predicted location labels to determine

the k-means cluster w.r.t. which the local regression co-

ordinates are predicted. We denote this model variant by

Ours w/o cond. In contrast to the regression-only baseline,

the regression part still learns to perform local regression by

predicting the offsets with respect to the cluster centers of

the finest classification hierarchy. As shown in Fig. 3, this

variant outperforms the regression-only baseline, and sig-

nificant performance gain can be observed on the combined

scenes. However, compared to our full architecture, it still

falls far behind, especially on the largest i19-Scenes. This

illustrates that the proposed conditioning mechanism plays

a crucial role in our hierarchical coarse-to-fine scene coor-

dinate learning framework, and the significantly improved

performance compared to the regression-only baseline is

not achievable without it.

Hierarchy and partition granularity. In Table 4 we re-

port results obtained on the 7-Scenes and i7-Scenes datasets

using label hierarchies of different depth and width. The re-

sults show that the performance of our approach is robust

w.r.t. the choice of these hyperparameters, and only for the

smallest 2-level label hierarchies that we tested we observed

a significant drop in performance. Note that for the default

setting (25×25), the results on 7-Scenes reported in Table 1

and 4 are the best across 10 runs of the randomly initialized

k-means (mean = 84.3%, SD = 0.4%). How to optimally

partition the scene could be explored in future work.
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Figure 4. Illustration of our method with sparse local features and

global image retrieval used in the Aachen dataset experiments.

4.5. Outdoor Aachen Localization Results

The Aachen dataset is a challenging outdoor large-scale

dataset, which is particularly difficult for scene coordinate

regression methods duo to the lack of dense model, the city-

scale environment, and the night time queries. To the best

of our knowledge, ESAC is the only existing method of this

kind which gives reasonable results on this dataset.

We present a hybrid approach built upon our network for

the challenging dataset. To resolve the sparsity of the train-

ing data, in [6], a re-projection error [5, 28] is optimized

densely, which is not applicable to our method. Therefore,

we resort to sparse local features [17, 19], such that during

both training and test, our network only takes in a list of

sparse features as input rather than a dense RGB image. To

use image-level contextual information, we adopt an image

retrieval technique. In addition to the location labels, every

output layer including the first one is also conditioned on an

image ID. During training, it is the ID of the training im-

age. At test time, it is the ID of a retrieved image. We use

SuperPoint [17] as the local feature, and NetVLAD [1] for

global image retrieval. The results in Table 5 show that for

the Aachen dataset the classification-only variant performs

better, although it is not always the case, see Table 4. We

use a 4-level classification-only network, and at the finest

level, each cluster contains only one single 3D point. We

use the retrieved database image also to perform a simple

pre-RANSAC filtering step. Since the predictions are con-

ditioned on the image ID, a prediction that is not visible

in the corresponding image is likely to be a false match.

Therefore, we filter out the predictions that are not visible

in the corresponding retrieved image before the RANSAC

stage. As shown in Table 5, this further improves the per-

formance. Since the top-1 image can be a false positive,

we run the pipeline for all the top-10 images, and select the

prediction with the largest number of inliers. See the sup-

plementary material for more details.

This approach significantly outperforms ESAC, and its

performance is comparable to Active Search. However,

Method
Aachen Day Aachen Night

0.25m, 2° / 0.5m, 5° / 5m, 10° 0.5m, 2° / 1m, 5° / 5m, 10°

AS [43] 57.3% / 83.7% / 96.6% 19.4% / 30.6% / 43.9%
HL SP+NV [40] 80.5% / 87.4% / 94.2% 42.9% / 62.2% / 76.5%
ESAC (50 experts) [6] 42.6% / 59.6% / 75.5% 3.1% / 9.2% / 11.2%
Ours top-10 w/ filt 71.1% / 81.9% / 91.7% 32.7% / 43.9% / 65.3%

Ours top-10 w/ filt w/o aug 65.5% / 77.3% / 88.8% 22.4% / 38.8% / 54.1%
Ours top-1 w/ filt 64.0% / 76.1% / 85.4% 18.4% / 32.7% / 53.1%
Ours top-1 58.3% / 66.4% / 80.2% 13.3% / 21.4% / 32.7%
Ours w/o retreived ID 50.6% / 56.3% / 70.1% 7.1% / 11.2% / 19.4%
Ours top-1 (4-level cls-reg) 47.8% / 61.8% / 79.9% 10.2% / 21.4% / 35.7%
Ours top-1 (3-level cls-reg) 20.9% / 42.2% / 76.9% 3.1% / 14.3% / 32.7%

Table 5. Accuracy on the Aachen dataset. Unless stated otherwise,

we use a 4-level classification-only network for our method.

compared to the hierarchical localization method of [40]

which also uses SuperPoint and NetVLAD, our method

still falls behind. Nevertheless, our method requires no

database of local descriptors and the model size of our hi-

erarchical network is 179MB, while in [40], a local de-

scriptor database of 4GB is used. Our results reduce the

gap between scene coordinate learning approaches and the

state-of-the-art feature-based methods on this dataset, and

we expect our method to perform better if a dense model

is available. An advantage of the scene coordinate learn-

ing methods is that the model size does not grow linearly

with the number of points in the scene model. This allows

these methods to implicitly and efficiently store a dense de-

scriptor point cloud in the network, and to produce dense

matches at test time, which often leads to better pose esti-

mation than sparse matches [53].

5. Conclusion

We have proposed a novel hierarchical coarse-to-fine

scene coordinate learning approach, enabled by a FiLM-

like conditioning mechanism, for visual localization. Our

network has several levels of output layers with each of

them conditioned on the outputs of the previous ones. Pro-

gressively finer localization labels are predicted with clas-

sification branches. The scene coordinate predictions can

be obtained through a final regression layer or using the

cluster centers at the finest level. The results show that

the hierarchical scene coordinate network leads to more ac-

curate camera re-localization performance than the previ-

ous regression-only approaches, achieving state-of-the-art

results for single-image RGB localization on three bench-

mark datasets. Moreover, our novel architecture allows us

to train compact models which scale robustly to large en-

vironments, achieving state-of-the-art on three combined

scenes. Finally, we show a hybrid approach that further nar-

rows the gap to the state-of-the-art feature-based methods

for challenging large-scale outdoor localization.
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