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Abstract

Intuitively, unfamiliarity should lead to lack of confi-

dence. In reality, current algorithms often make highly con-

fident yet wrong predictions when faced with relevant but

unfamiliar examples. A classifier we trained to recognize

gender is 12 times more likely to be wrong with a 99% con-

fident prediction if presented with a subject from a different

age group than those seen during training. In this paper,

we compare and evaluate several methods to improve con-

fidence estimates for unfamiliar and familiar samples. We

propose a testing methodology of splitting unfamiliar and

familiar samples by attribute (age, breed, subcategory) or

sampling (similar datasets collected by different people at

different times). We evaluate methods including confidence

calibration, ensembles, distillation, and a Bayesian model

and use several metrics to analyze label, likelihood, and

calibration error. While all methods reduce over-confident

errors, the ensemble of calibrated models performs best

overall, and T-scaling performs best among the approaches

with fastest inference.

1. Introduction

In research, the i.i.d. assumption, that train and test sets

are sampled from the same distribution, is convenient and

easily satisfied. In practice, the training and test samples

often come from different distributions, as developers often

have access to a less diverse set of images than future sam-

ples observed by the deployed system. For example, the

face images gathered by a company’s employees may not

have the racial or age diversity of the world’s population.

Scholars that study the impact of AI on society consider dif-

ferently distributed samples to be a major risk [49]: “This

is one form of epistemic uncertainty that is quite relevant to

safety because training on a dataset from a different distri-

bution can cause much harm.” Indeed, high profile failures,

such as a person being labeled as a gorilla [54] or a car driv-

ing through a tractor trailer [52], are due at least in part to

failure to provide good confidence estimates for unfamiliar
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Figure 1. Deep networks often make highly confident mistakes

when samples are drawn from outside the distribution observed

during training. Examples shown have ages (top), breeds (mid-

dle), or species (bottom) that are not observed during training and

are misclassified by a deep network model with high confidence.

This paper investigates the problem of overconfidence for unfamil-

iar samples and evaluates several potential methods for improving

reliability of prediction confidences.

data.

In this paper, our goal is to compare and evaluate sev-

eral methods for improving confidence estimates for famil-

iar and unfamiliar samples. We consider familiar samples

to be drawn from the same distribution as the training, as

is typically done when creating training and test sets for re-

search. We term unfamiliar samples as drawn from a dif-

ferent but still applicable distribution. For example, for cat

vs. dog classification, an image of a dog from a breed seen

during training is familiar, while an image from a breed not

seen during training is unfamiliar. We are not concerned

with non-applicable “out of domain” images such as an im-
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age of a pizza for cat vs. dog classification.

We propose familiar/unfamiliar splits for four image

classification datasets and evaluate by measuring accuracy

of predicted labels and confidences. One would expect that

classifiers would be less accurate and less confident for un-

familiar samples. Our experiments confirm that deep net-

work classifiers have lower prediction accuracy on unfa-

miliar samples but also show that wildly confident wrong

predictions occur much more often, due to higher calibra-

tion error. A simple explanation is that classifiers minimize

a loss based on P (y|x), for label y and input features x,

which is unregulated and unstable wherever P (x) ∼ 0 in

training. Empirical support for this explanation comes from

Novak et al. [34] who show that neural networks are more

robust to perturbations of inputs near the manifold of the

training data. We examine the effectiveness of calibration

(we use temperature scaling [12]) for improving confidence

estimates and the potential for further improvement using

uncertainty-sensitive training [21], ensembles, and scaling

based on novelty scores. Since calibrated ensembles per-

form best but are most computationally expensive, we also

investigate distilling the ensemble from a mix of supervised

and unsupervised data.

Our paper’s key contributions are: (1) highlight the

problem of overconfident errors in practical settings where

test data may be sampled differently than training; (2) pro-

pose a methodology to evaluate performance on unfamil-

iar and familiar samples; (3) demonstrate the importance

of confidence calibration and compare several approaches

to improve confidence predictions, including new ideas for

incorporating novelty prediction and mixed supervision dis-

tillation.

2. Related Work

Unreliability of prediction for unfamiliar samples:

Lakshminarayanan et al. [23] show that networks are un-

reliable when tested on semantically unrelated or out-of-

domain samples, such as applying object classification to

images of digits. They also show that a using the Brier

score [4] (squared error of 1 minus confidence in true label)

as a loss and training an ensemble of classifier improves

confidence calibration and reduces overconfident errors on

out-of-domain samples. Ovadia et al. [35], in independent

work concurrent to ours, also find that ensembles are most

effective for skewed and out-of-domain samples, evaluat-

ing with Brier score, negative log likelihood of predictions,

and expected calibration error (ECE). Our inclusion of Brier

score and ECE is inspired by these methods. Our paper dif-

fers from these in the consideration of natural (not artifi-

cially distorted) samples from unfamiliar but semantically

valid distributions, which is a common practical scenario

when, for example, developers and users have access to dif-

ferent data. Roos et al. [42] distinguish between i.i.d. gener-

alization error and off-training-set error and provide bounds

based on repetition of input features. Extending their analy-

sis to high dimensional continuous features is a worthwhile

area of further study.

Methods to address epistemic uncertainty: When

faced with unfamiliar samples, a model suffers from epis-

temic uncertainty, the uncertainty due to incomplete knowl-

edge. Related works reduce this uncertainty by averaging

over several models, with the intuition that different mod-

els will disagree and thus appropriately reduce certainty for

parts of the feature distribution that are not well represented

by the training set. Bayesian approaches [1, 2, 16] esti-

mate a distribution of network parameters and produce a

Bayesian estimate for likelihood. These methods are usu-

ally very computationally intensive [23], limiting their prac-

tical application. Gal and Ghahramani [9] propose MC-

dropout as a discrete approximation of Bayesian networks,

using dropout for a Monte-Carlo sample of likelihood esti-

mates. Follow-up work by Kendall and Gal [21] proposes

to estimate both aleatoric and epistemic uncertainties to in-

crease the performance and quality of uncertainty. Laksh-

minarayanan et al. [23] propose a simpler method to av-

erage over predictions from multiple models with an en-

semble of deep networks, an approach further validated by

Ovadia et al. [35]. Multi-head deep networks [24, 31] em-

ulate ensembles and are shown to outperform MC-dropout.

Hafner et al. [13] propose a loss that encourages high uncer-

tainty on training samples whose features are permuted or

perturbed by noise. Our work differs primarily in its investi-

gation of unfamiliar samples that are differently distributed

from training but still have one of the target labels. Concur-

rent work by Mukhoti et al. [33] proposes combining focal

loss with T-scaling. We evaluate T-scaling calibration [12],

Kendall and Gal [21], ensembles, and a proposed novelty-

sensitive T-scaling approach.

Calibration methods aim to improve confidence esti-

mates, by learning a mapping from prediction scores to a

well-calibrated probability. We use T-scaling, short for tem-

perature scaling, in which the logit score of a classifier is di-

vided by a scalar T as a special case of Platt calibration [38].

In a broad evaluation of calibration methods, Guo et al. [12]

found T-scaling to be the simplest and most effective. Note

that T-scaling has no effect on the rank-order of predictions,

so it affects only the Brier error, negative log likelihood,

and expected calibration error, not label error. Calibration

parameters are fit to the validation set which is i.i.d. with

training. Thus, calibration does not explicitly deal with un-

familiar samples, but our experiments show that calibration

is an essential part of the solution for producing accurate

confidence estimates on both familiar and unfamiliar sam-

ples.

Distillation [17] regresses the confidence predictions of

a network to match those of another model, such as a larger

network or ensemble. Radosavovic et al. [41] obtain soft

labels on transformed unlabeled data and use them to dis-
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till for unsupervised learning. Li and Hoiem [27] extend

models to new tasks without retaining old task data, using

the new-task examples as unsupervised examples for the old

tasks with a distillation loss. Distillation has also been used

to reduce sensitivity to adversarial examples that are similar

to training examples [36]. We investigate whether distilling

an ensemble into a single model can preserve the benefits

of the ensemble on familiar and unfamiliar data, when us-

ing the training set and an additional unsupervised dataset

to distill.

Other: The remainder of this section describes works

and problem domains that are less directly related. Domain

adaptation (e.g., [40]) aims to train on a source domain

and improve performance on a slightly different target do-

main, either through unsupervised data or a small amount

of supervised data in the target domain. Domain general-

ization [32, 26, 45] aims to build models that generalize

well on a previously unspecified domain, whose distribution

can be different from all training domains. These models

generally build a domain-invariant feature space [32] or a

domain-invariant model [45], or factor models into domain-

invariant and domain-specific parts [26]. Attribute-based

approaches, such as Farhadi et al. [7], attempt to learn fea-

tures or attributes that are more likely to be consistent be-

tween familiar and unfamiliar samples. These methods re-

quire multiple training domains to learn invariant represen-

tations, with the intent to improve robustness to variations

in the target domain. One-shot learning (e.g. [50]) and zero-

shot learning (e.g. [53]) aim to build a classifier through one

sample or only metadata of the class. Many methods more

broadly attempt to improve generalization, such as data aug-

mentation or jittering [39], dropout [46], batch normaliza-

tion [20], and weight decay. Hoffer et al. [18] propose bet-

ter hyperparameter selection strategies for better generaliza-

tion. Bagging [3], ensembles, and other model averaging

techniques are also used prior to deep learning.

Other methods aim to reduce confident errors by detect-

ing failure [8, 10, 55, 51, 44], for example by looking at

how close samples are to decision boundaries or estimat-

ing whether a test sample comes from the same distribution

as training [5, 25, 28, 48, 22]. Typically, the motivation of

these methods is to avoid making any prediction on suspect

samples, while the goal of our work is to understand and im-

prove performance of classifier predictions on both familiar

and unfamiliar samples that have applicable labels.

3. Problem Setup and Methods

In many commercial settings, the developers of an algo-

rithm have access to data that may be limited by geography,

demographics, or challenges of sampling in diverse envi-

ronments, while the intended users, in aggregate, have much

broader access. For example, developers of a face attribute

classification algorithm may undersample children, elderly,

or Inuits, due to their own demographics. Someone training

a plant recognition algorithm may have difficulty collecting

samples of species not locally native. A recognizer of con-

struction equipment may be applied to vehicle models that

came out after release of the classification model. To study

and improve the robustness of classifiers in these settings

we explore:

• How to organize data to simulate the familiar and un-

familiar test sets (Sec. 3.1)

• How to evaluate the quality of predictions (Sec. 3.2)

• What methods are good candidates to improve predic-

tion quality on unfamiliar samples (Sec. 3.3)

3.1. Datasets and Familiar/Unfamiliar Split

We choose four classification tasks for evaluation, de-

tailed below and shown in Figure 2. For each of the first

three tasks, a dataset is first split into “familiar” and “un-

familiar” subsets according to an attribute or subcategory,

simulating the case of training data not containing the full

diversity of potential inputs. In the fourth task (object pres-

ence classification), two similar datasets are used for the

same object categories, simulating similar sources but sam-

pled at different times. The “familiar” samples (xF , yF ) ∼
F are further split into training Ftr, validation Fvl, and test

Fts sets, while the “unfamiliar” samples (xU , yU ) ∼ U are

used only for testing. The inputs xF and xU may occupy

different portions of the feature space, with little to no over-

lap, but where they do overlap P (y|x) is the same for F and

U . No sample from U is ever used in pre-training, training,

or validation (parameter selection). In some cases, we use a

dataset’s standard validation set for testing (and not param-

eter tuning) so that we can compute additional metrics, as

ground truth is not publicly available for some test sets.

Gender recognition: The extended Labeled Faces in the

Wild (LFW+) dataset [14] with 15,699 faces is used. Sam-

ples are split into familiar F and unfamiliar U based on age

annotations provided by Han et al. [15], with familiar ages

18-59 years and unfamiliar ages outside that range. The

dataset comes with five preset folds; we use the first two for

training, the third fold for validation, and the last two for

testing.

Cat vs. dog recognition: Using the Pets dataset [37], the

first 20 dog breeds and first 9 cat breeds are familiar, and

the other 5 dog and 3 cat breeds are unfamiliar. The stan-

dard train/test splits are used (with training samples from U
excluded).

Animal categorization: Four animal superclasses (mam-

mals, birds, herptiles, and fishes) are derived from Ima-

geNet [43], and different subclasses are used for familiar

and unfamiliar sets. After sorting object classes within each

superclass by their indices, the first half of classes are famil-

iar F , and the second half are unfamiliar U . The data is also

subsampled, so there are 800 training and 200 validation
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Animal Categorization (Birds, Herptiles, etc.): Familiar Animal Categorization: Unfamiliar (New Species)

Cats and Dogs: Familiar Cats and Dogs: Unfamiliar (New Breeds)

Gender Recognition: Familiar (18-59 years) Gender Recognition: Unfamiliar (under 18, over 59)

Object Presence: Familiar (VOC from Flickr) Object Presence: Unfamiliar (COCO from Flickr)

Figure 2. Familiar and unfamiliar samples from each dataset. To study how classifier performance varies with novelty, we create splits

of unfamiliar and familiar samples that are task-relevant, where the split is defined by age, breed, species, or date of sampling. The first

three represent cases where the training distribution does not fully cover the test cases. The last represents a case of the minimal novelty

achievable without independently sampling from the same image set.

examples drawn from the ImageNet training set per super-

class, and 400 examples drawn from the ImageNet valida-

tion set for each of the unfamiliar and familiar test sets.

Object presence classification: The PASCAL VOC 2012

dataset [6] is used as familiar, with the similar 20 classes

in MS COCO [29] used as unfamiliar. tvmonitor is

mapped to tv. Test samples are drawn from the VOC PAS-

CAL and MS COCO validation sets. The familiar and un-

familiar samples in this task are more similar to each other

since they vary, not by attribute or subclass, but by when

and by whom the images were collected.

3.2. Evaluation Metrics

We use several error metrics to assess the quality of clas-

sifier predictions. We denote Pm(yi|xi) as the assigned

confidence in the correct label for the ith of N samples by

a model m. In all metrics, lower is better.

NLL: Negative log likelihood (NLL)
1
N

∑

i − logPm(yi|xi) is a natural measure of predic-

tion quality and commonly used as a loss for training

classification models (often called “cross-entropy”), as

it corresponds to the joint probability of predictions on

independently drawn samples. The main drawback is

that NLL is unbounded as confidence in the correct class

approaches 0. To help remedy this, we clip the softmax

probability estimates to [0.001, 0.999] for all models before

computing NLL.

Brier: The Brier score [4] measures the root mean
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Figure 3. Prediction quality metrics: plot of error vs. confidence

in correct label for 0-1 classification. NLL (negative log like-

lihood) strongly penalizes confidently wrong predictions, while

Brier error penalties are constrained. Label error does not assess

confidence beyond which label is most likely.

squared difference between one and the confidence in the

correct label:
(

1
N

∑

i(1− Pm(yi|xi))
2
)1/2

. Similar to

NLL, Brier is smallest when the correct label is predicted

with high confidence, but the penalty for highly confident

errors is bounded at 1, avoiding too much emphasis on a

few large errors. We use RMS (root mean squared) instead

of mean squared, as in the original, because we find it easier

to interpret, and we call it “Brier error”, since it should be
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minimized.

Label Error: Label error is measured as the percent

of incorrect most likely labels, or 1 minus average preci-

sion. We use percent incorrect for all tasks except object

presence classification, for which we use mean average pre-

cision, in accordance with community norms for reporting

performance on these tasks.

ECE: Expected calibration error (ECE) measures

whether the classifier “knows what it knows”. Fol-

lowing the notation of [12], ECE is computed as
∑J

j=1
|Bj |
N |acc(Bj )−conf(Bj )| where Bj is a set of predic-

tions binned by confidence quantile, acc(Bj ) is the average

accuracy of the Bj , and conf(Bj ) is the average confidence

in the most likely label. We use 10 quantiles for binning.

E99: E99 is the error rate among the subset of samples

that have at least 99% confidence in any label. If the clas-

sifier is well-calibrated, E99 should be less than 1%. We

created E99 to directly measure a model’s tendency to gen-

erate highly confident errors.

3.3. Compared Methods

Deep network classifiers are often overconfident, even

on familiar samples [12]. On unfamiliar samples, the pre-

dictions are less accurate and even more overconfident, as

our experiments show. We consider several tools to improve

predictions: calibration, novelty detection, ensembles, and

loss functions that account for uncertainty. Some methods

provide better confidence calibration, while others (e.g. en-

sembles and Bayesian models) can also provide more con-

fidently accurate predictions.

T-scaling: Calibration aims to improve confidence es-

timates so that a classifier’s expected accuracy matches its

confidence. Among these, we use the temperature-scaling

method described in Guo et al. [12]. At test time, all soft-

max logits are divided by temperature T . With T > 1, pre-

diction confidence is decreased. T is a single parameter set

to minimize NLL on the validation set. We then use this T

on a network retrained on both training and validation sets.

Novelty-weighted scaling: We also consider novelty-

weighted scaling, with the intuition that confidence should

be lower for novel (i.e. unfamiliar) samples than for those

well represented in training. We use the ODIN [28] model-

free novelty detector. Since the novelty scores novelty(x)
often have a small range, we normalize them by linearly

scaling the 5th and 95th percentile on training data to be 0

and 1 and clipping values outside [0, 1]. We then modify

temperature scaling to set T (x) = T0 + T1 · novelty(x),
with T0 and T1 set by grid search on the validation set, so

that temperature depends on novelty.

Ensemble methods consider both model parameter and

data uncertainty by averaging over predictions. In areas

of the feature space that are not well represented by train-

ing data, members of the ensemble may vary in their pre-

dictions, reducing confidence appropriately. In our ex-

periments, members of the ensemble are trained with all

training samples and differ due to varying initialization

and stochastic optimization. We found this simple aver-

aging approach to outperform bagging and bootstrapping.

In prediction, the member confidences in a label yi are

averaged to yield the ensemble confidence: Pm(yi|xi) =
1
M

∑M
j Pmj

(yi|xi), where M is the number of ensembles.

M = 10 in our experiments.

Distillation: Our experiments show the ensemble is

highly effective, but it is also M times more expensive for

inference. We, thus, consider whether we can retain most

of the benefit of the ensemble at lower compute cost us-

ing distillation [17]. After training the ensemble, the dis-

tilled model is trained by minimizing a weighted distilla-

tion loss (minimizing temperature-scaled cross-entropy of

the ensemble’s soft predictions with the distilled model’s

predictions) and a classification loss:

L =
1

|Ftr|

∑

(xF ,yF )∈Ftr

(

λclsLcls(yF , fdis(xF ))+

Ldis(fens(xF ), fdis(xF ))

)

(1)

where Lcls is the classification loss over the distilled

model’s soft predictions fdis(xF ), Ldis is the distillation

loss over the soft predictions of the distilled model and en-

semble fdis(xF ), and λcls is a weighting to balance classi-

fication and distillation losses (λcls = 0.5, as recommended

in [17]).

G-distillation: Under the standard distillation, the dis-

tilled model is guided to make similar predictions to the en-

semble for the familiar distribution F , but its predictions

are still unconstrained for unfamiliar samples, potentially

losing the benefit of the ensemble’s averaging for samples

from U . Therefore, we propose G-distillation, a generalized

distillation where the distillation loss is also computed over

samples from an unsupervised distribution G. In our ex-

periments, we choose G to be related to the task, but make

sure there is no overlap between specific examples in G and

Fts or U . We use the following unsupervised datasets for

G in our experiments: Gender, CelebA [30]; Broad animal,

COCO [29]; Cat-dog, ILSVRC12 [43]; and Object pres-

ence, Places365-standard [56]. The images from G are dis-

joint with the datasets used to draw F and U for each re-

spective task.

Bayesian model: Finally, we consider the Bayesian

method of Kendall et al. [21], which accounts for uncer-

tainty in model parameters (epistemic) and observations

(aleatoric). To account for model parameter uncertainty,

multiple predictions are made with Monte Carlo Dropout,

and predictions are averaged. In this way, dropout is used to

simulate an ensemble within a single network. In our imple-

mentation, we apply dropout to the second-to-last network

layer with a rate of 0.2. Observation uncertainty is modeled
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with a training loss that includes a prediction of logit vari-

ance. The logits can then be sampled based on both dropout

and logit variance, and samples are averaged to produce the

final confidence. See [21] for details.

4. Experiments

When comparing these methods, we aim to answer the

following experimental questions:

• Do T-scaling calibration parameters learned from F
also improve confidence estimates on U?

• Does novelty-weighted scaling outperform the data ag-

nostic T-scaling?

• Do ensembles learned on F also improve predictions

on U?

• Is distillation able to preserve ensemble performance

on F and U?

• Does adding the unsupervised set for distillation in G-

distillation lead to better preservation?

• Does the Bayesian model that is specifically designed

to manage model and observational uncertainty outper-

form more general alternatives?

(Spoiler alert: answers in order are yes, no, yes, no, yes,

partially.)

4.1. Training and Testing Details

Training: For all experiments we use PyTorch with

a ResNet-18 architecture and Adam gradient descent op-

timization with a momentum of 0.9. We initialize the fi-

nal layer of our pre-trained network using Glorot initializa-

tion [11]. We perform hyper-parameter tuning for the learn-

ing rate and the number of epochs using a manual search

on a validation split of the training data. When the perfor-

mance on validation plateaus, we reduce the learning rate

by a factor of 10 and run 1/3 as many additional epochs as

completed up to that point. After fitting hyperparameters

on the validation data, the models are retrained using both

train and val sets. For data augmentation, we use a random

crop and mirroring similar to Inception [47]. Places365-

standard [56] dataset is used to pretrain the network, and

the network is fine tuned separately for each task. When

training G-distillation, we sample the image from G to be

roughly 1
4 the size of Ftr. We also verified that using a

different architecture (DenseNet161 [19]) yields the same

experimental conclusions.

Testing: At test time we evaluate on the center crop of

the image. Due to the relatively high variance of NLL on

Uts, we run our experiments 10 times to ensure statistical

significance (unpaired two-tail t-test with p=0.95 on model

performance), but we run the ensemble method only once

(variance estimated using ensemble member performance

variance). Our 10 runs of the distillation methods use the

same ensemble run.

NLL Brier Label Error ECE

Gender fam. unf. fam. unf. fam. unf. fam. unf.

Baseline 0.083 0.542 0.147 0.352 0.028 0.147 0.013 0.109

T-scaling 12% 26% 2% 4% 0% 0% 73% 20%

Ensemble 24% 33% 10% 6% 22% 0% 36% 29%

Distill 8% 33% 3% 4% 3% -7% 41% 21%

G-distill 13% 38% 5% 6% 9% -5% 31% 31%

Bayesian 17% 26% 5% 4% 6% 0% 77% 19%

Cat vs. Dog

Baseline 0.053 0.423 0.112 0.290 0.016 0.095 0.010 0.078

T-scaling 23% 30% 4% 5% 0% 0% 64% 23%

Ensemble 40% 46% 17% 12% 22% 8% 79% 46%

Distill -13% 22% -9% 1% -18% -4% 55% 26%

G-distill -18% 27% -14% 1% -33% -8% 41% 31%

Bayesian 17% 26% 3% 5% 0% 3% 42% 21%

Animals

Baseline 0.326 1.128 0.199 0.341 0.104 0.291 0.048 0.187

T-scaling 13% 23% 3% 5% 0% 0% 75% 37%

Ensemble 22% 32% 9% 8% 11% 6% 50% 57%

Distill 7% 24% 1% 5% -1% 0% 66% 45%

G-distill 14% 26% 5% 7% 7% 2% 56% 49%

Bayesian 16% 24% 5% 5% 4% 1% 74% 39%

Objects

Baseline 0.086 0.128 0.154 0.186 0.195 0.455 0.005 0.010

T-scaling 0% 0% 0% 0% 0% 0% 2% 2%

Ensemble 4% 4% 2% 2% 6% 3% 3% 7%

Distill -1% 5% 0% 2% 1% 0% -31% 10%

G-distill -2% 5% -1% 2% -2% -1% -41% 7%

Bayesian 0% 0% 0% 0% 0% 0% 3% 1%

Table 1. Performance of baseline (single model) for several

metrics and percent reduction in error for other methods.

All methods except baseline use T-scaling calibration. “T-

scaling” is a single calibrated model.

4.2. Results

Our main table of results is shown in Table 1. The base-

line is a single uncalibrated ResNet-18 network. The oth-

ers correspond to the methods described in Sec. 3. For the

baseline, we show the absolute error, and for the other meth-

ods, we show the percent reduction in error compared to the

baseline (e.g. a drop from 0.10 to 0.09 is a 10% reduction)

to facilitate comparison. The complete table with absolute

error is included in the supplemental material. All methods

except baseline use calibration.

Familiar vs. Unfamiliar Performance: Looking at

baseline performance in Table 1, we see much higher error

rates for unfamiliar samples, compared to familiar, for all

tasks. The label error and calibration error are both higher,

leading to much higher NLL and Brier error. This means

the baseline classifier is less accurate and has poor abil-

ity to detect its own inaccuracy on unfamiliar samples —

it does not know what it does not know. For example, in

gender recognition, the label error increases from 2.8% for

unfamiliar to 14.7%; the calibration error ECE increases

from 0.013 to 0.109; and the NLL increases from 0.083 to

0.542. Figure 4 underscores the prevalence of confident er-
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Figure 4. Classifiers are much more prone to confident errors when

faced with unfamiliar samples. T-scaling calibration, among other

methods, reduces the overconfidence, with ensembles of calibrated

models providing consistent further improvement.

NLL Brier ECE

Gender fam. unf. fam. unf. fam. unf.

Single 0.083 0.542 0.148 0.352 0.013 0.109

Sin. T-scale 0.073 0.400 0.145 0.338 0.004 0.087

Ensemble 0.062 0.455 0.130 0.344 0.003 0.093

Ens. T-scale 0.063 0.363 0.130 0.333 0.009 0.077

Cat vs. Dog

Single 0.053 0.423 0.110 0.290 0.010 0.078

Sin. T-scale 0.041 0.295 0.105 0.276 0.004 0.060

Ensemble 0.033 0.286 0.095 0.263 0.002 0.055

Ens. T-scale 0.032 0.229 0.095 0.255 0.002 0.042

Animals

Single 0.326 1.128 0.200 0.341 0.048 0.187

Single T-scale 0.284 0.866 0.195 0.324 0.012 0.118

Ensemble 0.256 0.930 0.182 0.322 0.022 0.138

Ens. T-scale 0.254 0.772 0.182 0.311 0.024 0.080

Table 2. T-scaling calibration effectively reduces likelihood

error (NLL, Brier) and calibration error (ECE) for many

models across tasks for familiar and unfamiliar samples.

Without calibration, using an ensemble reduces these er-

rors, but an ensemble of calibrated models (“Ens. T-scale”)

performs best. Applying T-scaling to an ensemble of uncal-

ibrated classifiers, and creating an ensemble of calibrated

classifiers produces nearly identical results.

rors, which are several times more common for unfamiliar

samples than familiar.

The differences between unfamiliar and familiar for ob-

ject presence classification are substantial but smaller than

other tasks, as expected, since VOC (familiar) and COCO

(unfamiliar) images were both sampled from Flickr using

similar methodologies [29]. The larger differences in mean

AP (label error) may be due to lower frequency for a given

object category in COCO.

Importance of calibration: Table 2 compares perfor-

mance of the baseline and ensemble methods, both with-

out and with T-scale calibration. Calibrated single mod-

els outperform uncalibrated models, and ensembles of cali-

brated models outperform ensembles of uncalibrated mod-

els. For example, in cat vs. dog recognition, the baseline

NLL drops from 0.423 to 0.295, a 30% reduction; and the

ensemble NLL drops from 0.286 to 0.229, a 20% reduction.

Though not shown, a calibrated ensemble of uncalibrated

models performs very similarly to an ensemble of calibrated

models. For the object presence task, there is little effect

of calibration because the classifier trained on the training

samples was already well-calibrated for the familiar vali-

dation samples. We also found calibration to improve the

Bayesian method [21]. Calibration has little effect for distil-

lation and G-distillation, likely because distillation’s fitting

to soft labels makes it less confident. For those methods,

we used calibration only when T >= 1, as setting T < 1
always made classifiers more over-confident. In Table 1,

“T-scaling” refers to the T-scaled baseline, and T-scaling is

used for all other non-baseline methods as well.

Given the benefits of T-scaling, we expected that

novelty-weighted scaling, in which samples predicted to

be unfamiliar have a greater temperature (reducing confi-

dence more), would further improve results. However, we

found the novelty weight T1 was usually set to zero in val-

idation, and, in any case, the novelty-weighted scaling per-

formed similarly to T-scaling. The problem could be that

the validation set does not have enough novelty to determine

the correct weights. If we “cheat” and use samples drawn

from the unfamiliar distribution to set the two weights T0

and T1, the method performs quite well. For example,

when tuning parameters on a mix of familiar and unfamiliar

samples for Gender recognition, novelty-weighted scaling

performed best with 0.297 NLL compared to 0.328 for T-

scaling and 0.313 for ensemble of calibrated classifiers that

are tuned on the same data.

In Figure 5, we plot calibration curves of single

networks, ensembles, distillation, G-distillation, and the

Bayesian method with varying T . These curves allow us

to peek at the best possible performance, if we were able to

tune calibration parameters on unfamiliar and familiar test

data. These curves allow a clearer view of which methods

perform best. They also show that calibration on the fa-

miliar samples (‘X’ marks) leads to lower T values than is

optimal for the unfamiliar samples. Generally, increasing

T further would reduce likelihood error for unfamiliar sam-

ples without much adverse impact on likelihood error for

familiar samples. On the object presence task (curve not

shown), all models are well-calibrated (without T-scaling)

for both unfamiliar and familiar categories.

Comparison of methods: Finally, considering Table 1,

we see that the ensemble of T-scaled models dominates,

consistently achieving the lowest label error, calibration er-

ror, NLL, and Brier error. The downside of the ensemble is

higher training and inference computational cost, 10x in our

2692



0.0 0.1 0.2 0.3 0.4

familiar NLL

0.3

0.4

0.5

0.6

u
n
fa
m
il
ia
r
N
L
L

baseline

ensemble

distill

G-distill

Bayesian

(a) Gender recognition

0.0 0.1 0.2 0.3

familiar NLL

0.20

0.25

0.30

0.35

0.40

u
n
fa
m
il
ia
r
N
L
L

baseline

ensemble

distill

G-distill

Bayesian

(b) Cats vs. Dogs

0.2 0.4 0.6 0.8

familiar NLL

0.7

0.8

0.9

1.0

1.1

u
n
fa
m
il
ia
r
N
L
L

baseline

ensemble

distill

G-distill

Bayesian

(c) Animal Categorization

Figure 5. Familiar and unfamiliar NLL error while varying the T calibration parameter. Triangles mark the uncalibrated models; ‘X’ marks

models calibrated on the validation set. Circles mark T = 2, with each rightward dot increasing by 0.25. Without calibration, classifiers are

often overconfident even for familiar samples, so calibration reduces confidence to improve NLL for familiar and unfamiliar. Ensembles

dominate the other methods, always achieving lower NLL for some T .

case since we test with an ensemble of 10 classifiers. Dis-

tillation and G-distillation offered hope of preserving some

of the gains of ensembles without the cost, and we expected

the performance of G-distillation at least to fall between T-

scaling and the ensemble. However, while G-distillation,

which uses unsupervised samples to better mimic ensem-

ble behavior in the broader feature domain, slightly outper-

forms distillation, neither method consistently outperforms

T-scaling — no pain, no gain.

The method of Kendall et al. [21], which we call

“Bayesian”, performs second best to the ensemble, with

small reductions in label error and comparable calibra-

tion improvements to all methods except ensemble. The

Bayesian method also requires generating multiple predic-

tions via MC-Dropout at test time, so also incurs significant

additional computational cost.

The supplemental material compares prediction entropy

to label cross-entropy (NLL), showing that calibration elim-

inates overconfidence for familiar samples but calibrated

ensembles further reduce overconfidence on unfamiliar

samples by increasing prediction uncertainty and improv-

ing accuracy.

4.3. Findings

We summarize our findings:

• Unfamiliar samples lead to much higher calibration er-

ror and label error, which can make their behavior un-

reliable in applications for which inputs are sampled

differently in training and deployment.

• T-scaling is effective in reducing likelihood and cali-

bration error on familiar and unfamiliar samples.

• The simple ensemble, when applied to T-scaled mod-

els, is the best method overall, reducing all types of

error for both unfamiliar and familiar samples. The

method of Kendall et al. [21] is the only other tested

method to consistently reduce labeling error.

• T-scaling, distillation, and G-distillation all perform

much better than the baseline.

Our recommendation: developers of any application that

relies on prediction confidences (e.g. deciding whether to

return a label, or to sound an alarm) should calibrate their

models or, better yet, use calibrated ensembles. Ensem-

bles achieve higher accuracy and better calibration, but at

additional computational expense. We suspect that ensem-

bles of shallower networks may outperform single deeper

networks with similar computation costs, though we leave

confirmation to future work. Tuning calibration on a val-

idation set that is i.i.d with training leads to overestimates

of confidence for unfamiliar samples, so to minimize likeli-

hood error for both unfamiliar and familiar samples, it may

be best to obtain a small differently-sampled validation set.

5. Conclusion

We show that modern deep network classifiers are prone

to overconfident errors, especially for unfamiliar but valid

samples. We show that ensembles of T-scaled models are

best able to reduce all kinds of prediction error. Our work is

complementary to recent works on calibration of i.i.d. data

(e.g., Guo et al. [12]) and artificially distorted data [35].

More work is needed to improve prediction reliability with

a single model in the unfamiliar setting and to consolidate

learnings from the multiple recent studies of calibration

and generalization. Data augmentation and representation

learning are other important ways to improve generaliza-

tion, and it would be interesting to evaluate their effect on

prediction for both familiar and unfamiliar samples.
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