
Improving One-shot NAS by Suppressing the Posterior Fading

Xiang Li∗

Brown University

xiang li 1@brown.edu

Chen Lin∗, Chuming Li, Ming Sun, Wei Wu, Junjie Yan

SenseTime Group Limited

{linchen,lichuming,sunming1,wuwei,yanjunjie}@sensetime.com

Wanli Ouyang

The University of Sydney

wanli.ouyang@sydney.edu.au

Abstract

Neural architecture search (NAS) has demonstrated

much success in automatically designing effective neural

network architectures. To improve the efficiency of NAS,

previous approaches adopt weight sharing method to force

all models share the same set of weights. However, it has

been observed that a model performing better with shared

weights does not necessarily perform better when trained

alone. In this paper, we analyse existing weight sharing

one-shot NAS approaches from a Bayesian point of view

and identify the Posterior Fading problem, which com-

promises the effectiveness of shared weights. To alleviate

this problem, we present a novel approach to guide the

parameter posterior towards its true distribution. More-

over, a hard latency constraint is introduced during the

search so that the desired latency can be achieved. The

resulted method, namely Posterior Convergent NAS (PC-

NAS), achieves state-of-the-art performance under stan-

dard GPU latency constraint on ImageNet.

1. Introduction

Neural network design requires extensive experiments

by human experts. In recent years, there has been a growing

interest in developing algorithmic NAS solutions to auto-

mate the manual process of architecture design [39, 16, 18].

Despite remarkable results [21, 38], early works on NAS

[28, 12] are limited to searching only using proxy or sub-

sampled dataset due to the exorbitant computational cost.

To overcome this difficulty, [3, 27] attempted to improve

search efficiency via sharing weights across models. These

approaches utilize an over-parameterized network (super-

graph) containing every single model, which can be further

divided into two categories.

∗Equal Contribution

The first category is continuous relaxation method [23,

6], which keeps a set of so called architecture parameters

to represent the model, and updates these parameters alter-

natively with supergraph weights. The resulting model is

obtained using the architecture parameters at convergence.

The continuous relaxation method suffers from the rich-get-

richer problem [1], which means that a better-performed

model at the early stage would be trained more frequently

(or have larger learning rates). This introduces bias and in-

stability to the search process.

The other category is referred to as one-shot method

[5, 13, 3, 9], which divides the NAS procedure into a train-

ing stage and a searching stage. In the training stage, the su-

pergraph is optimized along with either dropping out each

operator with certain probability or sampling uniformly

among candidate architectures. In the search stage, a search

algorithm is applied to find the architecture with the highest

validation accuracy with shared weights. The one-shot ap-

proach ensures the fairness among all models by sampling

architecture or dropping out operator uniformly. However,

as identified in [1, 9, 3], the problem of one-shot method

is that the validation accuracy of the model with shared

weights is not predictive to its true performance.

In this paper, we formulate NAS as a Bayesian model se-

lection problem [8]. This formulation is especially helpful

in understanding the one-shot approaches in a theoretical

way, which in turn provides us a guidance to fundamentally

addressing one of the major issues of one-shot approaches.

Specially, we show that shared weights are actually a max-

imum likelihood estimation of a proxy distribution to the

true parameter distribution. Most importantly, we identify

the common issue of weight sharing, which we call Poste-

rior Fading, i.e., as the number of models in the supergraph

increases, the KL-divergence between true parameter poste-

rior and proxy posterior also increases.

To alleviate the Posterior Fading problem, we proposed

a practical approach to guide the convergence of the proxy

13836

distribution towards the true parameter posterior. Specifi-

cally, we divide the training of supergraph into several in-

tervals and maintain a pool of high potential partial models

and progressively update this pool after each interval . At

each training step, a partial model is sampled from the pool

and complemented to a full model, where full model means

an architecture that has full number of layers provided by

the search. To update the partial model pool, we first gener-

ate candidates by extending each partial model and evaluate

their potentials. The top ones among them form the new

pool. The search space is effectively shrunk in the upcom-

ing training interval. Consequently, the parameter posterior

get closer to the desired true posterior during this procedure.

Main contributions of our work is concluded as follows:

• We for the first time analyse one-shot approach from a

theoretical point of view and identify the real problem

of this method, which we call Posterior Fading. This

perspective will provide insights for further study.

• Guided by our Bayesian result, we introduce a novel

NAS algorithm fundamentally different from existing

ones, which guides the proxy distribution to converge

towards the true parameter posterior.

• We benchmark our method’s performance on Ima-

geNet [30] against the existing models and a new

powerful architecture, PC-NAS, is discovered. In

one typical search space [6], our PC-NAS-S attains

76.8% top-1 accuracy, 0.5% higher and 20% faster

than EfficientNet-B0 [33], which is the current state-

of-the-art model in mobile setting. To further demon-

strate the advantage of our method, we test it on a

larger space and our PC-NAS-L boosts the accuracy

to 78.1%.

2. Related work

Early neural architecture search (NAS) [24, 22, 29, 39,

2, 35] methods normally involves reinforcement learning

or neuro-evolution. This type of NAS is typically consid-

ered as an agent-based explore and exploit process, where

an agent (e.g. an evolution mechanism or a recurrent neural

network(RNN)) is introduced to explore a given architec-

ture space with training a network in the inner loop to get an

evaluation for guiding exploration. Such methods are com-

putationally expensive and hard to be used on large-scale

datasets, e.g. ImageNet.

Recent works [27, 4, 23, 6] try to alleviate this compu-

tation cost via modeling NAS as a single training process of

an over-parameterized network that comprises all candidate

models, in which weights of the same operators in different

models are shared. ENAS [27] reduces the computation

cost by orders of magnitude, while requires an RNN agent

and focuses on small-scale datasets (e.g. CIFAR10). One-

shot NAS [5] trains the over-parameterized network along

with dropping out each operator with increasing probabil-

ity. Then it uses the pre-trained over-parameterized network

to evaluate randomly sampled architectures. DARTS [23]

additionally introduces a real-valued architecture parame-

ter for each operator and alternately train operator weights

and architecture parameters by back-propagation. Proxy-

lessNAS [6] binarizes the real-value parameters in DARTS

to save the GPU computation and memory for training the

over-parameterized network. SNAS [37] employs Gumbel

random variables to directly optimize the NAS objective.

[11] develops a differentiable sampler over the search space

to achieve impressive speed.

The paradigm of ProxylessNAS [6] and DARTS [23]

introduce unavoidable bias since operators of models per-

forming well in the beginning will easily get trained more

and normally keep being better than other. But they are not

necessarily superior than others when trained from scratch.

Other relevant works are ASAP [26] and XNAS

[25], which introduce pruning during the training of

over-parameterized networks to improve the efficiency of

NAS. Similar to these approaches, we start with an over-

parameterized network and then reduce the search space to

derive the optimized architecture. Instead of focusing on

the speed-up of training, we further improve the rankings of

models and evaluate operators directly on validation set.

3. Methods

In this section, we first formulate neural architecture

search in a Bayesian manner. Utilizing this setup, we in-

troduce the PC-NAS algorithm and analyse its advantage

comparing to previous approaches. Finally, we discuss the

search algorithm combined with latency constraint.

3.1. A Probabilistic Setup for Model Uncertainty

The Bayesian setup of model comparison simply in-

volves the use of probabilities to represent uncertainty in the

choice of model, along with a consistent application of the

sum and product rules of probability. Suppose we want to

compare a set of K different models M = {m1, ...,mK}.

Here a model refers to a probability distribution over the

observed data D and p(D|θk,mk) describes the probability

density of data D given model mk and its associated pa-

rameters θk. The Bayesian approach proceeds by assigning

a prior probability distribution p(θk|mk) to the parameters

of each model, and a prior probability p(mk) to each model.

In order to ensure fairness among all models, we set the

model prior p(mk) a uniform distribution. Under previous

setting, we can drive

p(mk|D) =
p(D|mk)p(mk)

∑

k p(D|mk)p(mk)
, (1)

13837

where

p(D|mk) =

∫

p(D|θk,mk)p(θk|mk)dθk. (2)

Since p(mk) is uniform, the Maximum Likelihood Esti-

mation (MLE) of mk is just the maximum of (2), which

expresses the preference shown by the data for different

models. It can be inferred that, p(θk|mk) is crucial to the

solution of the model selection. We are interested in at-

taining the model with highest test accuracy in a trained

alone manner, thus the parameter prior is just the posterior

palone(θk|mk,D) which means the distribution of θk when

mk is trained alone on dataset D. Thus we would use the

term true parameter posterior to refer palone(θk|mk,D).

3.2. Network Architecture Selection In a Bayesian
Point of View

We constrain our discussion in the setting which is fre-

quently used in NAS literature for simplicity. As a building

block of our search space, a mixed operator (mixop), de-

noted by O = {O1 . . . , ON}, contains N different choices

of candidate operators Oi for i = 1, . . . N in parallel.

The search space is defined by L mixed operators (lay-

ers) connected sequentially interleaved by downsampling

as in Fig. 1(a). The network architecture (model) m is de-

fined by a vector [o1, o2, ..., oL], ol ∈ O representing the

choice of operator for layer l. The parameter for the op-

erator o at the l-th layer is denoted as θlo. The param-

eters of the supergraph are denoted by θ which includes

{θlo|l ∈ {1, 2, ..., L}, o ∈ O}. In this setting, the param-

eters of each candidate operator are shared among multiple

architectures. The parameters related with a specific model

mk is denoted as θk = θ1,o1 , θ2,o2 , ..., θL,oL , which is a

subset of the parameters of the supergraph θ. Obtaining the

palone(θk|mk,D) or a MLE of it for every model is com-

putationally intractable. Therefore, the one-shot method

trains the supergraph by dropping out each operator [5] or

sampling different architectures [3, 9] and utilize the shared

weights to evaluate single model. In this work, we adopt

the latter training paradigm while the former one could be

easily generalized. Suppose we sample a model mk and

optimize the supergraph with a mini-batch of data based on

the objective function Lalone:

− log palone(θ|mk,D)

∝ Lalone(θ,mk,D)

∝ − log palone(D, θ|mk)− log p(mk)

∝ − log palone(D|θ,mk)− log p(θ|mk),

(3)

where − log p(θ|mk) could be seen as a regularization

term. Thus minimizing this objective equals to making

MLE to palone(θ|mk,D). When training the supergraph, we

sample many models mk, and then train the parameters for

these models, which corresponds to a stochastic approxima-

tion of the following objective function:

Lshare(θ,D) =
1

K

∑

k

Lalone(θ,mk,D). (4)

By taking exponential on both sides of the equation 4, it is

equivalent to adopting a proxy parameter posterior as fol-

lows:

pshare(θ|D) =
1

Z

∏

k

palone(θ|mk,D), (5)

− log pshare(θ|D) = −
∑

k

log palone(θ|mk,D) + logZ,

(6)

where K and Z are normalizing factors. One thing worth

noting is that palone(θ|mk,D) are all independent for dif-

ferent k, since different models have different and indepen-

dent parameter distributions. Then maximizing pshare(θ|D)
is equivalent to minimizing Lshare. For each single layer, its

parameter θl,o is affected by all the remaining layers. By

the intrinsic randomness of our uniform model sampling,

we could further assume that

pshare(θl,o|D) =
∏

k

palone(θl,o|mk,D), (7)

which basically means the distribution of parameter θl,o is

ultimately determined by all its marginal distribution from

sampled architectures.

The KL-divergence between palone(θl,o|mk,D) and

pshare(θl,o|D) follows:

DKL

(

palone(θl,o|mk,D)
∣

∣

∣

∣

∣

∣
pshare(θl,o|D)

)

=

∫

palone(θl,o|mk,D) log
palone(θl,o|mk,D)

pshare(θl,o|D)
dθ

=

∫

palone(θl,o|mk,D) log
palone(θl,o|mk,D)

∏

i palone(θl,o|mi,D)
dθ

=
∑

i 6=k

−

∫

palone(θl,o|mk,D) log palone(θl,o|mi,D)dθ.

(8)

The KL-divergence is just the summation of the cross-

entropy of palone(θl,o|mk,D) and palone(θl,o|mi,D) where

i 6= k. The cross-entropy term is always positive. Increas-

ing the number of architectures would push pshare away from

palone, namely the Posterior Fading. We conclude that non-

predictive problem originates naturally from one-shot su-

pergraph training, as KL-divergence grows with the num-

ber of architectures in the search space and a typical search

space contains huge 1021 architectures. Thus if we effec-

tively reduce the number of architectures in (8) during train-

ing, the KL divergence would decrease. This is the intuition

of our PC-NAS algorithm.

13838

Figure 1. One example of search space(a) and PC-NAS process(b)(c)(d). Each mixed opperator consists of N (=3 in this figure) operators.

However, only one operator in each mixop is invoked at a time for each batch. In (b), partial models 1 and 2 in the pool consist of choices

in mixop 1 and 2. We extend these 2 partial models to the mixop 3. 6 extended candidate models are evaluated and ranked in(c). In (d), the

new pool consists of the top-2 candidate models that are ranked in (c).

Algorithm 1 Potential: Evaluating the Potential of Partial

Candidates

Inputs: G(supergraph), L(num of mixops in G),

m
′(partial candidate), Lat(latency constraint),

S(evaluation number), Dval (validataion set)

Scores = ∅
for i = 1 : S do

m
∗ = expand(m′) randomly expand m

′ to full

depth L
if Latency(m∗) > Lat then

continue dump samples that don’t satisfy the la-

tency constraint

end if

acc = Acc(m∗, Dval) inference m
∗ for one batch

and return its accuracy

Scores.append(acc) save accuracy

end for

Outputs: Average(Scores)

3.3. Posterior Convergent NAS

The naive approach to mitigate the posterior fading prob-

lem is to limit the number of candidate models inside the

supergraph. However, large number of candidates is de-

manded for NAS to discover promising models. Due to

this conflict, we present PC-NAS which adopts progressive

search space shrinking. The resulting algorithm divides the

training of shared weights into L intervals, where L is the

number of mixed operators in the search space. The number

of training epochs of a single interval is denoted as Ti. We

will explain the key components of our method separately.

Partial model pool is a collection of partial models.

At the l-th interval, a single partial model should contain

l− 1 selected operators [o1, o2, ..., ol−1]. The size of partial

model pool is denoted as P . After the l-th interval, each

partial model in the pool will be extended by the N opera-

tors in l-th mixop. Thus there are P×N candidate extended

partial models with length l. These candidate partial mod-

els are evaluated and the top-P among which are used as

the partial model pool for the interval l + 1. An illustrative

exmaple of partial model pool update is in Fig. 1(b)(c)(d).

Candidate evaluation with latency constraint We de-

fine the potential of a partial model to be the expected val-

idation accuracy of the models which contain the partial

model.

Potential(o1, o2, ..., ol) = E
m∈{m|mi=oi,∀i≤l}(Acc(m)).

(9)

where the validation accuracy of model m is denoted by

Acc(m). We estimate this value by uniformly sampling

valid models and computing the average of their valida-

tion accuracy using one mini-batch. We use S to denote

the evaluation number, which is the total number of sam-

pled models. We observe that when S is large enough, the

potential of a partial model is fairly stable and discrimina-

tive among candidates. See Algorithm 1 for pseudocode.

The latency constraint is imposed by discarding invalid full

models when calculating potentials of partial models in

the pool. Unlike previous soft constraint training methods

[6, 36], our PC-NAS will guarantee the latency constraint

to be satisfied.

Training based on partial model pool The training it-

eration of the supergraph along with the partial model pool

13839

has two steps. First, for a partial model from the pool, we

randomly sample the missing operator {ol+1, ol+2, ..., oL}
to complement the partial model to a full model. Then we

optimize θ using the sampled full model and mini-batch

data. Initially, the partial model pool is empty. Thus the

supergraph is trained by uniformly sampled models, which

is identical to previous one-shot training stage. After the

initial training, all operators in the first mixop are evalu-

ated. The top P operators form the partial model pool in

the second training stage. Then, the supergraph resumes

training and the training procedure is identical to the one

discussed in last paragraph. Inspired by warm-up, the first

stage is set much more epochs than following stages de-

noted as Tw. The whole PC-NAS process is elaborated in

algorithm 2. The number of models in shrunk search space

at the interval l is strictly less than interval l − 1. At the

final interval, the number of cross-entropy terms in (8) are

P-1 for each architectures in final pool. Thus the parameter

posterior of PC-NAS would move towards the true posterior

during these intervals.

Algorithm 2 PC-NAS: Posterior Convergent Architecture

Search

Inputs: P (size of partial model pool), G(supergraph), Oi

(the ith operator in mixed operator), L(num of mixed op-

erators in G), Tw(warm-up epochs), Ti(interval between

updation of partial model pool), Dtrain(train set), Dval

(validataion set), Lat(latency constraint)

PartialModels = ∅
Warm-up(G, Dtrain, Tw) uniformly sample models

from G and train

for I = 0:(L · Ti−1) do

if I mod Ti == 0 then

ExtendedPartialModels = ∅
if PartialModels == ∅ then

ExtendedPartialModels.append([Oi]) add all

operator in the first mixop

end if

for m in PartialModels do

ExtendedPartialModels.append(Extend(m,O1),

..., Extend(m,ON))

end for

for m
′ in ExtendedPartialModels do

m
′.potential = Potential(m′, Dval, Lat, S)

evaluate the extended partial model

end for

PartialModels = Top(ExtendedPartialModels, P)

keep P best partial models

end if

Train(PartialModels, Dtrain) train one epoch using

partial models

end for

Outputs: PartialModels

4. Experiments Results

We demonstrate the effectiveness of our methods on Im-

ageNet [30], a large scale benchmark dataset, whose train-

ing set contains 1,000,000 training samples. For this task,

we focus on models that have high accuracy under certain

GPU latency constraint. We search models using PC-NAS,

which progressively updates a partial model pool and trains

shared weights. Then, we select the model with the high-

est potential in the pool and report its performance on the

test set after training from scratch. Finally, we investigate

the transferability of the model learned on ImageNet by

evaluating it on two tasks, object detection and person re-

identification.

4.1. Training Details

Dataset and latency measurement: As a common prac-

tice, we randomly sample 50,000 images from the train set

to form a validation set during the model search. We con-

duct our PC-NAS on the remaining images in train set. The

original validation set is used as test set to report the perfor-

mance of the model generated by our method. The latency

is evaluated on Nvidia GTX 1080Ti and the batch size is set

16 to fully utilize GPU resources.

Search spaces: We use two search spaces. We bench-

mark our small space similar to recent state-of-the-art NAS

systems ProxylessNAS [6], FBNet [36] and EfficientNet

[33] for fair comparison. To test our PC-NAS method in

a more complicated search space, we add 3 more kinds of

operators to the small space’s mixoperators to construct our

large space. Details of the two spaces are in A.1.

PC-NAS hyperparameters: We use PC-NAS to search

in both small and large space. To balance training time and

performance, we set evaluation number S = 900 and partial

model pool size P = 5 in both experiments. Ablation study

of the two values is in 5. When updating weights of the

supergraph, we adopt mini-batch nesterov SGD optimizer

with momentum 0.9, cosine learning rate decay from 0.1

to 5e-4, batch size 512, and L2 regularization with weight

1e-4. The warm-up epochs Tw and shrinking interval Ti

are set 100 and 5, thus the total training of supergraph lasts

100 + 20× 5 = 200 epochs. After searching, we select the

best one from the top 5 final partial models and train it from

scratch. Similar to EfficientNet [33] and MixNet [34], We

add squeeze-and-excitation (SE) layers [15] to our model

at the end of each operator. However, given that squeeze-

and-excitation is relatively new and many existing models

don’t have this extra optimization, results with and without

SE layers are listed separately in the Table 1. Our PC-NAS

models perform consistently the best in either case.

4.2. ImageNet Results

Table 1 shows the performance of our model on Ima-

geNet. We set our target latency at 10ms according to our

13840

Table 1. PC-NAS’ Imagenet results compared with state-of-the-art methods in the mobile setting.

model space params latency top-1 top-1(+SE)

MobileNetV2 1.4x [31] - 6.9 M 10 ms 74.7% -

AmoebaNet-A [28] - 5.1 M 23 ms 74.5% -

PNASNet [21] 5.6x1014 5.1 M 25 ms 74.2% -

FBNet-C [36] 1021 5.5 M - 74.9% -

MnasNet [32] - 4.4 M 11 ms 74.8% 76.1%

ProxylessNAS-gpu [6] 721 7.1 M 8 ms 75.1% -

MixNet-S [34] - 4.1 M 13 ms - 75.8%

EfficientNet-B0 [33] - 5.3 M 13 ms - 76.3%

RandomSearch 1021 3.6M 10 ms 75.5% -

PC-NAS-S 1021 5.1 M 10 ms 76.1% 76.8%

PC-NAS-L 2021 15.3 M 11 ms 77.5% 78.1%

measurement of mobile setting models on GPU. Our search

result in the small space, namely PC-NAS-S, achieves

76.8% top-1 accuracy under our latency constraint, which

is 0.5% higher than EffcientNet-B0 (in terms of absolute

accuracy improvement), 1% higher than MixNet-S. If we

slightly relax the time constraint, our search result from the

large space, namly PC-NAS-L, achieves 78.1% top-1 ac-

curacy, which improves top-1 accuracy by 1.8% compared

to EfficientNet-B0, 2.3% compared to MixNet-S. Both PC-

NAS-S and PC-NAS-L are faster than previous state-of-the-

art models EffcientNet-B0 and MixNet-S.

4.3. Transferability of PCNAS

We validate our PC-NAS’s transferability on object de-

tection. We use COCO [20] dataset as benchmark. For

the dataset, PC-NAS-L pretrained on ImageNet is utilized

as feature extractor, and is compared with other models un-

der the same training script. The experiment is conducted

with the two-stage framework FPN [19]. Table 2 shows

the performance of our PC-NAS model on COCO. Our ap-

proach significantly surpasses the mAP of MobileNetV2

[31] as well as ResNet50 [14]. Compare to the standard

ResNet101 [14] backbone, our model achieves comparable

mAP quality with almost 1/3 parameters and 2.3× faster

speed.

5. Ablation Study

In this section, we study the impact of hyperparameters,

and discuss the effectiveness of our space shrinking tech-

nique and search method.

Impact of hyperparameters: We investigate the impact

of hyperparameters on our method within our small space

on ImageNet. The hyperparameters include warm-up, train-

ing epochs Tw, partial model pool size P , and evaluation

number S. We tried setting Tw as 100 and 150 with fixed

P = 5 and S = 900. The resulting models of these two set-

tings show no significant difference in top-1 accuracy (less

than 0.1%), shown as in Fig. 2. Thus we choose warm-up

training epochs as 100 in our experiment to save computa-

tion resources. For the influence of P and S, we show the

results in Fig. 2. It can be seen that the top-1 accuracy of the

models found by PC-NAS increases with both P and S. Thus

we choose P = 5, S = 900 in the experiments for better

performance. we did not observe significant improvements

when further increasing these two hyperparameters in our

small space.

5

0.75

0.755

9

A
c
c
u

ra
c
y
 o

f
P

C
-N

A
S

4

Impact of hyperparameters

0.76

8

Pool size P

3

Evaluation number S x100

72 61 5

Tw=150
Tw=100

Figure 2. Influence of warm-up epochs Tw, partial model pool size

P , and evaluation number S to the resulted model.

Effectiveness of shrinking search space: One advan-

tage of one-shot method is that the shared weights of the

supergraph could be used to conveniently predict the perfor-

mance of various architectures. However, previous models

[5, 21] turn out to be unsatisfactory when ranking models.

To assess the extent space shrinking could mitigate this is-

sue, we do the first comparison as follows. Initially, we

select a bunch of models from the candidates of our final

pool under small space, train them from scratch and eval-

uate their stand alone top-1 accuracy. Then we use One-

Shot to train the supergraph also under small space without

shrinking. Finally, we show the model rankings of PC-NAS

and One-Shot using the accuracy obtained from inferring

the models in the supergraphs trained with two methods.

The difference is shown in Fig. 3: the pearson correlation

13841

Table 2. Performance Comparison on COCO

backbone params latency COCO

MobileNetV2 [31] 3.5 M 7 ms 31.7 mAP

ResNet50 [14] 25.5 M 15 ms 36.8 mAP

ResNet101 [14] 44.4 M 26 ms 39.4 mAP

ProxylessNAS [6] 6.3 M 11 ms 38.7 mAP

PC-NAS-L 15.3 M 11 ms 38.5 mAP

coefficients between stand-alone accuracy and accuracy in

supergraph of One-Shot and PC-NAS are 0.11 and 0.92,

thus models under PC-NAS’s space shrinking can be ranked

by their accuracy evaluated on sharing weights much more

precisely than One-Shot. Repeated experiments have shown

similar phenomenon.

Next, we explore how space shrinking influences our fi-

nal searched results. We train the supergraph of our large

space using One-Shot [5] method without any shrinking

of the search space. Then we conduct model search on

this supergraph by progressively updating a partial model

pool in our method. The resulting model using this set-

ting attains 77.1% top-1 accuracy on ImageNet, which is

1% lower than our PC-NAS-L. Since shrinking takes 100

additional epochs and training is more expensive than eval-

uation, a natural question to ask is, could additional models

(larger P , larger S) instead of space shrinking compensate

the unshrunk space. To address this question, we double

the value of P or S, and the results are listed in Table 3.

PC-NAS without space shrinking attains 77.4% and 77.2%
respectively with larger P or S. From these results, we can

conclude that our search method alone already lead to im-

pressive performance. Larger P and S increase the final

result around 0.2%, space shrinking strategy however im-

proves model ranking and brings extra 0.7%-1% accuracy

boost.

Figure 3. Comparison of model rankings for One-Shot (left) and

PC-NAS (right).

Effectiveness of our search method: Generally speak-

ing, our method can be classified as a sampling based

NAS method.There are two popular counterparts in previ-

ous NAS works: Evolutionary Algorithm [7, 10] and ran-

dom search [17]. It is widely admitted that EA methods

outperform random search consistently. Thus to evaluate

the performance of our search method, we utilize Evolu-

tionary Algorithm (EA) as the baseline to search for models

in the same supergraph trained with One-Shot. We imple-

ment EA with population size p = 5, aligned to the value

of pool size P in our method, and set the mutation opera-

tion as randomly replace the operator in one mixop operator

to another. We constrain the total number of validation im-

ages in EA the same as PC-NAS. The top-1 accuracy of

discovered model drops to 75.9% accuracy, which is 2.2%
lower than PC-NAS-L. When we further enlarge the popu-

lation size of EA method to 20, the accuracy increases to

76.5%, but still not comparable to our search strategy. We

conclude the performance gap comes from the better effi-

ciency of our sampling method. In PC-NAS approach, ev-

ery architecture is evaluated batch-wise, whose size is 512.

Then average accuracy is computed to represent the the po-

tential of each mixop. However, in classical EA methods,

the whole validation set which contains 50000 images has

to be traversed to evaluate a single model. This is not effi-

cient especially when the shared weights are not predictive,

as shown in Fig. 3. Thus the results summarized in Table 3

suggest the effectiveness of our novel search method.

Table 3. Comparison of different one-shot search methods

training method search method top-1 acc

PC-NAS PC-NAS 78.1%

One-Shot PC-NAS 77.1%

One-Shot PC-NAS (P = 10) 77.4%

One-Shot PC-NAS (S = 1800) 77.2%

One-Shot EA (p = 5) 75.9%

One-Shot EA (p = 20) 76.5%

6. Conclusion

In this paper, a novel architecture search approach called

PC-NAS is proposed. We for the first time study the con-

ventional weight sharing approach from Bayesian point of

view and identify a key issue that compromises the effec-

tiveness of shared weights. With the theoretical motivation,

an original method is devised to mitigate this issue. Experi-

13842

M
B

C
o

n
v
_

3
_

3
 S

E

M
B

C
o

n
v
_

3
_

5
S

E

M
B

C
o

n
v
_

6
_

5
S

E

M
B

C
o

n
v
_

3
_

3
S

E

M
B

C
o

n
v
_

6
_

5
S

E

M
B

C
o

n
v
_

1
_

3
S

E

M
B

C
o

n
v
_

3
_

3
S

E

M
B

C
o

n
v
_

1
_

5
S

E

M
B

C
o

v
_

6
_

5
S

E

M
B

C
o

n
v
_

3
_

7
S

E

M
B

C
o

n
v
_

1
_

3
S

E

M
B

C
o

n
v
3

_
3

S
E

M
B

C
o

n
v
_

6
_

3
S

E

M
B

C
o

n
v
_

6
_

3
S

E

M
B

C
o

n
v
_

3
_

5
S

E

M
B

C
o

n
v
_

3
_

5
S

E

M
B

C
o

n
v
_

6
_

3
 S

E

M
B

C
o

n
v
_

3
_

7
S

E

M
B

C
o

n
v
_

6
_

7
S

E

M
B

C
o

n
v
_

6
_

3
S

E

C
o

n
v
1
×

1

2
2
4
×
2
2
4
×
3

1
1
2
×
1
1
2
×
1
6

1
1
2
×
1
1
2
×
1
6

5
6
×
5
6
×
3
2

5
6
×
5
6
×
3
2

5
6
×
5
6
×
3
2

2
8
×
2
8
×
6
4

2
8
×
2
8
×
6
4

2
8
×
2
8
×
6
4

1
4
×
1
4
×
1
3
6

1
4
×
1
4
×
1
3
6

1
4
×
1
4
×
1
3
6

1
4
×
1
4
×
1
3
6

1
4
×
1
4
×
1
3
6

1
4
×
1
4
×
1
3
6

1
4
×
1
4
×
1
3
6

7
×
7
×
2
6
4

7
×
7
×
2
6
4

7
×
7
×
2
6
4

2
8
×
2
8
×
6
4

1
4
×
1
4
×
1
3
6

7
×
7
×
2
6
4

7
×
7
×
1
0
2
4

P
o

o
li

n
g

F
C

C
o

n
v
3
×
3

(a) Specification for PC-NAS-S

(b) Specification for PC-NAS-L

2
2
4
×
2
2
4
×
3

1
1
2
×
1
1
2
×
1
6

1
1
2
×
1
1
2
×
1
6

5
6
×
5
6
×
3
2

5
6
×
5
6
×
3
2

5
6
×
5
6
×
3
2

5
6
×
5
6
×
3
2

2
8
×
2
8
×
6
4

2
8
×
2
8
×
6
4

2
8
×
2
8
×
6
4

2
8
×
2
8
×
6
4

1
4
×
1
4
×
1
3
6

1
4
×
1
4
×
1
3
6

1
4
×
1
4
×
1
3
6

1
4
×
1
4
×
1
3
6

1
4
×
1
4
×
1
3
6

1
4
×
1
4
×
1
3
6

1
4
×
1
4
×
1
3
6

1
4
×
1
4
×
1
3
6

7
×
7
×
2
6
4

7
×
7
×
2
6
4

7
×
7
×
2
6
4

7
×
7
×
1
0
2
4

C
o

n
v
3
×
3

R
C

o
n

v
_

2
_

7
 S

E

D
C

o
n

v
_

2
_

3
S

E

N
C

o
n

v
_

2
_

3
S

E

R
C

o
n

v
_

1
_

5
S

E

M
B

C
o

n
v
_

1
_

5
S

E

M
B

C
o

n
v
_

6
_

5
S

E

R
C

o
n

v
_

2
_

7
S

E

D
C

o
n

v
_

2
_

3
S

E

C
o

n
v
1
×

1

P
o

o
li

n
g

F
C

R
C

o
n

v
_

2
_

7
 S

E

R
C

o
n

v
_

2
_

7
 S

E

D
C

o
n

v
_

1
_

3
S

E

D
C

o
n

v
_

2
_

3
S

E

R
C

o
n

v
_

1
_

7
 S

E

M
B

C
o

n
v
_

6
_

7
S

E

D
C

o
n

v
_

2
_

3
S

E

R
C

o
v
_

2
_

5
S

E

M
B

C
o

n
v
_

6
_

5
S

E

N
C

o
n

v
_

2
_

3
S

E

R
C

o
n

v
_

1
_

5
S

E

R
C

o
n

v
_

1
_

5
S

E

Figure 4. The architectures of PC-NAS-S and PC-NAS-L.

mental results demonstrate our approach can automatically

find significantly better mobile setting models than existing

approaches, and achieve new state-of-the-art results.

A. Appendix

A.1. Construction of the Search Space

The operators in our spaces have structures described

by either Conv1x1-ConvNxM-Conv1x1 or Conv1x1-

ConvNxM-ConvMxN-Conv1x1. We define expand ratio

as the ratio between the channel numbers of the ConvNxM

in the middle and the input of the first Conv1x1.

Small search space Our small search space contains a set

of MBConv operators (mobile inverted bottleneck convolu-

tion [31]) with different kernel sizes and expand ratios, plus

Identity, adding up to 10 operators to form a mixoperator.

The 10 operators in our small search space are listed in the

left column of Table 4, where notation OP X Y represents

the specific operator OP with expand ratio X and kernel size

Y.

Large search space We add 3 more kinds of opera-

tors to the mixoperators of our large search space, namely

NConv, DConv, and RConv. We use these 3 operators

with different kernel sizes and expand ratios to form 10

operators exclusively for large space, thus the large space

contains 20 operators. For large search space, the struc-

ture of NConv, DConv are Conv1x1-ConvKxK-Conv1x1

and Conv1x1-ConvKxK-ConvKxK-Conv1x1, and that of

RConv is Conv1x1-Conv1xK-ConvKx1-Conv1x1. The ker-

nel sizes and expand ratios of operators exclusively for large

space are listed in the right column of Table 4, where nota-

tion OP X Y represents the specific operator OP with ex-

pand ratio X and K=Y. The difference between these three

kinds of operators lie in the choice of middle convolution

operators. In principle, these three kinds of operators are in-

creasingly general and capable, but at the same time, more

and more time consuming. There is a trade off between ex-

pressiveness and speed for our PC-NAS to balance.

There are altogether 21 mixoperators in both small and

large search spaces. Thus our small search space contains

1021 models, while the large one contains 2021.

Table 4. operator table

Ops in both large Ops exclusively

and small space in large space

MBConv 1 3 MBConv 3 3 NConv 1 3 NConv 2 3

MBConv 6 3 MBConv 1 5 DConv 1 3 DConv 2 3

MBConv 3 5 MBConv 6 5 RConv 1 5 RConv 2 5

MBConv 1 7 MBConv 3 7 RConv 4 5 RConv 1 7

MBConv 6 7 Identity RConv 2 7 RConv 4 7

A.2. Specifications of Discovered Models

The specifications of PC-NAS-S and PC-NAS-L are

shown in Fig. 4. We observe that PC-NAS-S adopts either

high expansion rate or large kernel size at the tail end, which

enables a full use of high level features. However, it tends

to select small kernels and low expansion rates to ensure

the model remains lightweight. PC-NAS-L chooses lots

of powerful bottlenecks exclusively contained in the large

space to achieve the accuracy boost. The high expansion

rate is not quite frequently seen which is to compensate the

computation utilized by large kernel size. Both PC-NAS-S

and PC-NAS-L tend to use heavy operator when the reso-

lution reduces, circumventing too much information loss in

these positions.

13843

References

[1] Georege Adam and Jonathan Lorraine. Understanding

neural architecture search techniques. arXiv preprint

arXiv:1904.00438, 2019.

[2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh

Raskar. Designing neural network architectures using rein-

forcement learning. International Conference on Learning

Representations, 2017a.

[3] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay

Vasudevan, and Quoc V. Le. Understanding and simplifying

one-shot architecture search. ICML, 2018.

[4] Andrew Brock, Theodore Lim, James M. Ritchie, and Nick

Weston. Smash: one-shot model architecture search through

hypernetworks. NIPS Workshop on Meta-Learning, 2017.

[5] Andrew Brock, J.M. Ritchie, Theodore Lim, and Nick We-

ston. Smash: One-shot model architecture search through

hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

[6] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. arXiv

preprint arXiv:1812.00332, 2018.

[7] Yukang Chen, Gaofeng Meng, Qian Zhang, Shiming Xi-

ang, Chang Huang, Lisen Mu, and Xinggang Wang. Re-

nas: Reinforced evolutionary neural architecture search.

arXiv:1808.00193, 2019.

[8] Hugh Chipman, Edward I. George, and Robert E. McCul-

loch. The practical implementation of bayesian model selec-

tio. In Institute of Mathematical Statistics Lecture Notes -

Monograph Series, 38, pages 65–116, 2001.

[9] XiangXiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li.

Fairnas:rethinking evaluation of weight sharing neural archi-

tecture search. arXiv preprint arXiv:1907.01845v2, 2019.

[10] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin,

Fei Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu,

Yiming Wu, Yangqing Jia, Peter Vajda, Matt Uytten-

daele, and Niraj K. Jha. Chamnet: Towards efficient

network design through platform-aware model adaptation.

arXiv:1812.08934, 2018.

[11] Xuanyi Dong and Yi Yang. Searching for a robust neural

architecture in four gpu hours. cvpr, 2019.

[12] Thomas Elsken, Jan-Hendrik Metzen, and Frank Hutter.

Simple and efficient architecture search for convolutional

neural networks. ICLR workshop, 2017.

[13] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-

shot neural architecture search with uniform sampling. arXiv

preprint arXiv:1904.00420, 2019.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[15] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu.

Squeeze-and-excitation networks. CVPR, 2018.

[16] Chuming Li, Xin Yuan, Chen Lin, Minghao Guo, Wei Wu,

Wanli Ouyang, and Junjie Yan. Am-lfs: Automl for loss

function search. arXiv preprint arXiv:1905.07375, 2019.

[17] Liam Li and Ameet Talwalkar. Random search and re-

producibility for neural architecture search. arXiv preprint

arXiv:1902.0763, 2019.

[18] Chen Lin, Minghao Guo, Chuming Li, Xin Yuan, Wei Wu,

Dahua Lin, Wanli Ouyang, and Junjie Yan. Online hyper-

parameter learning for auto-augmentation strategy. arXiv

preprint arXiv:1905.07373, 2019.

[19] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyra-

mid networks for object detection. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 2117–2125, 2017.

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014.

[21] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Fei-Fei Li, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

search. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 19–34, 2018.

[22] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha

Fernando, and Koray Kavukcuoglu. Hierarchical representa-

tions for efficient architecture search. ICLR, 2018.

[23] Hanxiao Liu, Karen Simonyan, and Yiming Yang.

Darts: Differentiable architecture search. arXiv preprint

arXiv:1806.09055, 2018.

[24] Geoffrey F. Miller, Peter M. Todd, and Shailesh U. Hegde.

Designing neural networks using genetic algorithms. ICGA,

pages volume 89, pages 379–384, 1989.

[25] Niv Nayman, Asaf Noy, Tal Ridnik, Itamar Friedman, Rong

Jin, and Lihi Zelnik-Manor. Xnas: Neural architecture

search with expert advice. arXiv preprint arXiv:1906.08031,

2019.

[26] Asaf Noy, Niv Nayman, Tal Ridnik, Nadav Zamir, Sivan

Doveh, Itamar Friedman, Raja Giryes, and Lihi Zelnik-

Manor. Asap: Architecture search, anneal and prune. arXiv

preprint arXiv:1904.04123, 2019.

[27] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. arXiv preprint arXiv:1802.03268, 2018.

[28] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V.

Le. Regularized evolution for image classifier architecture

search. arXiv preprint arXiv:1802.01548, 2018.

[29] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Sax-

ena, Yutaka L. Suematsu, Jie Tan, Quoc V. Le, and Alexey

Kurakin. Large-scale evolution of image classifiers. In Pro-

ceedings of the 34th International Conference on Machine

Learning-Volume 70, pages 2902–2911. JMLR. org, 2017.

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Fei-Fei Li. Imagenet large scale visual recognition chal-

lenge. International Journal of Computer Vision, pages

115(3):211–252, 2015.

[31] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

13844

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4510–4520, 2018.

[32] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

and Quoc V. Le. Mnasnet: Platform-aware neural architec-

ture search for mobile. arXiv preprint arXiv:1807.11626,

2018.

[33] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019.

[34] Mingxing Tan and Quoc V. Le. Mixnet: Mixed depthwise

convolutional kernels. BMVC, 2019.

[35] Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, and

Rodrigo Fonseca. Alphax: exploring neural architectures

with deep neural networks and monte carlo tree search. arXiv

preprint arXiv:1903.11059, 2019.

[36] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient

convnet design via differentiable neural architecture search.

arXiv preprint arXiv:1812.03443, 2018.

[37] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.

Snas: stochastic neural architecture search. arXiv preprint

arXiv:1812.09926, 2018.

[38] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin

Liu. Practical block-wise neural network architecture gener-

ation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2423–2432, 2018.

[39] Barret Zoph and Quoc V. Le. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016.

13845

