
Neural Architecture Search for Lightweight Non-Local Networks

Yingwei Li1∗ Xiaojie Jin2 Jieru Mei1∗ Xiaochen Lian2 Linjie Yang2

Cihang Xie1 Qihang Yu1 Yuyin Zhou1 Song Bai3 Alan Yuille1

1Johns Hopkins University 2ByteDance AI Lab 3University of Oxford

Abstract

Non-Local (NL) blocks have been widely studied in var-

ious vision tasks. However, it has been rarely explored to

embed the NL blocks in mobile neural networks, mainly

due to the following challenges: 1) NL blocks generally

have heavy computation cost which makes it difficult to be

applied in applications where computational resources are

limited, and 2) it is an open problem to discover an op-

timal configuration to embed NL blocks into mobile neu-

ral networks. We propose AutoNL to overcome the above

two obstacles. Firstly, we propose a Lightweight Non-Local

(LightNL) block by squeezing the transformation operations

and incorporating compact features. With the novel design

choices, the proposed LightNL block is 400× computation-

ally cheaper than its conventional counterpart without sac-

rificing the performance. Secondly, by relaxing the struc-

ture of the LightNL block to be differentiable during train-

ing, we propose an efficient neural architecture search algo-

rithm to learn an optimal configuration of LightNL blocks

in an end-to-end manner. Notably, using only 32 GPU

hours, the searched AutoNL model achieves 77.7% top-1

accuracy on ImageNet under a typical mobile setting (350M

FLOPs), significantly outperforming previous mobile mod-

els including MobileNetV2 (+5.7%), FBNet (+2.8%) and

MnasNet (+2.1%). Code and models are available at

https://github.com/LiYingwei/AutoNL.

1. Introduction

Non-Local (NL) block [2, 39] aims to capture long-

range dependencies in deep neural networks, which have

been used in a variety of vision tasks such as video clas-

sification [39], object detection [39], semantic segmenta-

tion [39, 46], image classification [2], and adversarial ro-

bustness [41]. Despite the remarkable progress, the general

utilization of non-local modules under resource-constrained

scenarios such as mobile devices remains underexplored.

This may be due to the following two factors.

∗Work done during an internship at Bytedance AI Lab.

250 275 300 325 350 375 400
FLOPs (M)

72

73

74

75

76

77

78

Im
ag

en
et

 T
op

-1
 A

cc
ur

ac
y 

(%
)

AutoNL (ours)
MobileNetV2
MobileNetV3
ShuffleNetV2
FBNet
ProxylessNas
SinglePath
MnasNet
EfficientNet

Figure 1. ImageNet Accuracy vs. Computation Cost. Details

can be found in Table 3.

First, NL blocks compute the response at each posi-

tion by attending to all other positions and computing a

weighted average of the features in all positions, which in-

curs a large computation burden. Several efforts have been

explored to reduce the computation overhead. For instance,

[7, 22] use associative law to reduce the memory and com-

putation cost of matrix multiplication; Yue et al. [44] use

Taylor expansion to optimize the non-local module; Cao et

al. [4] compute the affinity matrix via a convolutional layer;

Bello et al. [2] design a novel attention-augmented con-

volution. However, these methods either still lead to rela-

tively large computation overhead (via using heavy opera-

tors, such as large matrix multiplications) or result in a less

accurate outcome (e.g., simplified NL blocks [4]), making

these methods undesirable for mobile-level vision systems.

Second, NL blocks are usually implemented as individ-

ual modules which can be plugged into a few manually se-

lected layers (usually relatively deep layers). While it is in-

tractable to densely embed it into a deep network due to the

high computational complexity, it remains unclear where to

insert those modules economically. Existing methods have

not fully exploited the capacity of NL blocks in relational

modeling under mobile settings.

Taking the two factors aforementioned into account, we

aim to answer the following questions in this work: is it pos-

10297



sible to develop an efficient NL block for mobile networks?

What is the optimal configuration to embed those modules

into mobile neural networks? We propose AutoNL to ad-

dress these two questions. First, we design a Lightweight

Non-Local (LightNL) block, which is the first work to apply

non-local techniques to mobile networks to our best knowl-

edge. We achieve this with two critical design choices 1)

lighten the transformation operators (e.g., 1 × 1 convolu-

tions) and 2) utilize compact features. As a result, the pro-

posed LightNL blocks are usually 400× computationally

cheaper than conventional NL blocks [39], which is favor-

able to be applied to mobile deep learning systems. Second,

we propose a novel neural architecture search algorithm.

Specifically, we relax the structure of LightNL blocks to

be differentiable so that our search algorithm can simulta-

neously determine the compactness of the features and the

locations for LightNL blocks during the end-to-end train-

ing. We also reuse intermediate search results by acquiring

various affinity matrices in one shot to reduce the redundant

computation cost, which speeds up the search process.

Our proposed searching algorithm is fast and delivers

high-performance lightweight models. As shown in Fig-

ure 1, our searched small AutoNL model achieves 76.5%
ImageNet top-1 accuracy with 267M FLOPs, which is

faster than MobileNetV3 [16] with comparable perfor-

mance (76.6% top-1 accuracy with 356M FLOPs). Also,

our searched large AutoNL model achieves 77.7% Ima-

geNet top-1 accuracy with 353M FLOPs, which has similar

computation cost as MobileNetV3 but improves the top-1

accuracy by 1.1%.

To summarize, our contributions are three-fold: (1) We

design a lightweight and search compatible NL block for

visual recognition models on mobile devices and resource-

constrained platforms; (2) We propose an efficient neural

architecture search algorithm to automatically learn an op-

timal configuration of the proposed LightNL blocks; 3) Our

model achieves state-of-the-art performance on the Ima-

geNet classification task under mobile settings.

2. Related Work

Attention mechanism. The attention mechanism has been

successfully applied to neural language processing in recent

years [1, 36, 11]. Wang et al. [39] bridge attention mech-

anism and non-local operator, and use it to model long-

range relationships in computer vision applications. Atten-

tion mechanisms can be applied along two orthogonal di-

rections: channel attention and spatial attention. Channel

attention [18, 37, 27] aims to model the relationships be-

tween different channels with different semantic concepts.

By focusing on a part of the channels of the input feature

and deactivating non-related concepts, the models can fo-

cus on the concepts of interest. Due to its simplicity and

effectiveness [18], it is widely used in neural architecture

search [33, 35, 16, 9].

Our work explores in both directions of spatial/channel

attention. Although existing works [7, 44, 4, 2, 38] exploit

various techniques to improve efficiency, they are still too

computationally heavy under mobile settings. To alleviate

this problem, we design a lightweight spatial attention mod-

ule with low computational cost and it can be easily inte-

grated into mobile neural networks.

Efficient mobile architectures. There are a lot of hand-

crafted neural network architectures [19, 42, 17, 30, 45, 25]

for mobile applications. Among them, the family of Mo-

bileNet [17, 30] and the family of ShuffleNet [45, 25]

stand out due to their superior efficiency and performance.

MobileNetV2 [30] proposes the inverted residual block

to improve both efficiency and performance over Mo-

bileNetV1 [17]. ShuffleNet [25] proposes to use efficient

shuffle operations along with group convolutions to design

efficient networks. Above methods are usually subject to

trial-and-errors by experts in the model design process.

Neural Architecture Search. Recently, it has received

much attention to use neural architecture search (NAS) to

design efficient network architectures for various applica-

tions [34, 13, 23, 43, 21]. A critical part of NAS is to

design proper search spaces. Guided by a meta-controller,

early NAS methods either use reinforcement learning [49]

or evolution algorithm [29] to discover better architectures.

These methods are computationally inefficient, requiring

thousands of GPU days to search. ENAS [28] shares param-

eters across sampled architectures to reduce the search cost.

DARTS [24] proposes a continuous relaxation of the archi-

tecture parameters and conducts one-shot search and evalu-

ation. These methods all adopt a NASNet [49] like search

space. Recently, more expert knowledge in handcrafting

network architectures are introduced in NAS. Using Mo-

bileNetV2 basic blocks in search space [3, 40, 33, 35, 31,

14, 26] significantly improves the performance of searched

architectures. [3, 14] reduce the GPU memory consump-

tion by executing only part of the super-net in each forward

pass during training. [26] proposes an ensemble perspective

of the basic block and simultaneously searches and trains

the target architecture in the fine-grained search space. [31]

proposes a super-kernel representation to incorporate all ar-

chitectural hyper-parameters (e.g., kernel sizes, expansion

rations in MobileNetV2 blocks) in a unified search frame-

work to reuse model parameters and computations. In our

proposed searching algorithm, we focus on seeking an op-

timal configuration of LightNL blocks in low-cost neural

networks which brought significant performance gains.

3. AutoNL

In this section, we present AutoNL: we first elaborate on

how to design a Lightweight Non-Local (LightNL) block in

10298



C

HW

!

C

HW

!

C

HW

!

4(!)

5(!)

6(!)

1×1

Conv

1×1

Conv

1×1

Conv

×

C

HW

7

× 1×1

Conv

C

HW

!

+

C

HW

!

C

HW

!

C

HW

!

!8

!98

!9
(!

8 !
9
8
-
)!

9
o
r
!
8 (!

9
8
-
!
9 )

Depthwise

3×3 Conv
C

HW

7

C

HW

!

+

(a) (b)

Figure 2. Original NL vs. LightNL Block. (a) A typical architecture of the NL block contains several heavy operators, such as 1 × 1
convolution ops and large matrix multiplications. (b) The proposed LightNL block contains much more lightweight operators, such as

depthwise convolution ops and small matrix multiplications.

Section 3.1; then we introduce a novel neural architecture

search algorithm in Section 3.2 to automatically search for

an optimal configuration of LightNL blocks.

3.1. Lightweight Non­Local Blocks

In this section, we first revisit the NL blocks, then we

introduce our proposed Lightweight Non-Local (LightNL)

block in detail.

Revisit NL blocks. The core component in the NL blocks is

the non-local operation. Following [39], a generic non-local

operation can be formulated as

yi =
1

C(x)

∑

∀j

f(xi, xj)g(xj), (1)

where i indexes the position of input feature x whose re-

sponse is to be computed, j enumerates all possible posi-

tions in x, f(xi, xj) outputs the affinity matrix between xi
and its context features xj , g(xj) computes an embedding

of the input feature at the position j, and C(x) is the nor-

malization term. Following [39], the non-local operation in

Eqn. (1) is wrapped into a NL block with a residual connec-

tion from the input feature x. The mathematical formulation

is given as

zi = Wzyi + xi, (2)

where Wz denotes a learnable feature transformation.

Instantiation. Dot product is used as the function form of

f(xi, xj) due to its simplicity in computing the correlation

between features. Eqn. (1) thus becomes

y =
1

C(x)
θ(x)θ(x)Tg(x). (3)

Here the shape of x is denoted as (H,W,C) where H , W

and C are the height, width and number of channels, respec-

tively. θ(·) and g(·) are 1 × 1 convolutional layers with C

filters. Before matrix multiplications, the outputs of 1 × 1
convolution are reshaped to (H ×W,C).

Levi et al. [22] discover that for NL blocks instantiated

in the form of Eqn. (3), employing the associative law of

matrix multiplication can largely reduce the computation

overhead. Based on the associative rules, Eqn. (3) can be

written in two equivalent forms:

y =
1

C(x)

(

θ(x)θ(x)T
)

g(x) =
1

C(x)
θ(x)

(

θ(x)Tg(x)
)

. (4)

Although the two forms produce the same numerical results,

they have different computational complexity [22]. There-

fore in computing Eqn. (3), one can always choose the form

with smaller computation cost for better efficiency.

Design principles. The following part introduces two key

principles to reduce the computation cost of Eqn. (3).

Design principle 1: Share and lighten the feature transfor-

mations. Instead of using two different transformations (θ

and g) on the same input feature x in Eqn. (3), we use a

shared transformation in the non-local operation. In this

way, the computation cost of Eqn. (3) is significantly re-

duced by reusing the result of g(x) in computing the affinity

matrix. The simplified non-local operation is

y =
1

C(x)
g(x)g(x)Tg(x). (5)

The input feature x (output of hidden layer) can be seen

as the transformation of input data x0 through a feature

transformer F (·). Therefore Eqn. (5) can be written as

y =
1

C(F (x0))
g(F (x0))g(F (x0))

Tg(F (x0)). (6)

In the scenario of using NL blocks in neural networks, F (·)
is represented by a parameterized deep neural network. In

contrast, g(·) is a single convolution operation. To further

simplify Eqn. (6), we integrate the learning process of g(·)
into that of F (·). Taking advantage of the strong capability

of deep neural networks on approximating functions [15],

we remove g(·) and Eqn. (6) is simplified as

y =
1

C(x)
xxTx. (7)

10299



At last, we introduce our method to simplify “Wz”, an-

other heavy transformation function in Eqn. (2). Recent

works [39] instantiate it as a 1 × 1 convolutional layer. To

further reduce the computation cost of NL blocks, we pro-

pose to replace the 1×1 convolution with a 3×3 depthwise

convolution [17] since the latter is more efficient. Eqn. (2)

is then modified to be

z = DepthwiseConv(y,Wd) + x, (8)

where Wd denotes the depthwise convolution kernel.

Design principle 2: Use compact features for computing

affinity matrices. Since x is a high-dimensional feature, di-

rectly performing matrix multiplication using the full-sized

x per Eqn. (7) leads to large computation overhead. To solve

this problem, we propose to downsample x first to obtain a

more compact feature which replaces x in Eqn. (7). Since x
is a three-dimensional feature with depth (channels), width

and height, we propose to downsample x along either chan-

nel dimension, spatial dimension or both dimensions to

obtain compact features xc, xs and xsc respectively. Conse-

quently, the computation cost of Eqn. (7) is reduced.

Therefore, based on Eqn. (7), we can simply apply the

compact features {xc, xsc, xs} in the NL block to compute

xcx
T
sc and xTscxs as

y =
1

C(x)
xcx

T
scxs. (9)

Note that there is a trade-off between the computation cost

and the representation capacity of the output (i.e., y) of the

non-local operation: using more compact features (with a

lower downsampling ratio) reduces the computation cost

but the output fails to capture the informative context in-

formation in those discarded features; on the other hand,

using denser features (with a higher downsampling ratio)

helps the output capture richer contexts, but it is more com-

putationally demanding. Manually setting the downsam-

pling ratios requires trial-and-errors. To solve this issue, we

propose a novel neural network architecture search (NAS)

method in Section 3.2 to efficiently search for the configu-

ration of NL blocks that achieve descent performance under

specific resource constraints.

Before introduce our NAS method, let’s briefly sum-

marize the advantages of the proposed LightNL blocks.

Thanks to the aforementioned two design principles, our

proposed LightNL block is empirically demonstrated to be

much more efficient (refer to Section 4) than the conven-

tional NL block [39], making it favorable to be deployed

in mobile devices with limited computational budgets. In

addition, since the computational complexity of the blocks

can be easily adjusted by the downsampling ratios, the pro-

posed LightNL blocks can provide better support on deep

learning models at different scales. We illustrate the struc-

Classification Segmentation
71

72

73

74

75

76

Im
ag

eN
et

 T
op

-1
 A

cc
 (%

)

w/o LightNL

w/ LightNL

68

69

70

71

72

73

74

PA
SC

A
L

 V
O

C
 m

Io
U

w/o LightNL

w/ LightNL

Figure 3. MobileNetV2 vs. MobileNetV2 + LightNL. The pro-

posed LightNL block improves the baseline by 1.6% in ImageNet

top-1 accuracy and 2.3% in PASCAL VOC 2012 mIoU.

ture of the conventional NL block and that of the proposed

block in Figure 2.

3.2. Neural Architecture Search for LightNL

To validate the efficacy and generalization of the pro-

posed LightNL block for deep networks, we perform a

proof test by applying it to every MobileNetV2 block. As

shown in Figure 3, such a simple way of using the proposed

LightNL blocks can already significantly boost the perfor-

mance on both image classification and semantic segmen-

tation. This observation motivates us to search for a better

configuration of the proposed LightNL blocks in neural net-

works to fully utilize its representation learning capacity.

As can be seen in Section 3.1, except for the insert loca-

tions in a neural network, the downsampling scheme that

controls the complexity of the LightNL blocks is another

important factor to be determined. We note that both insert

locations and downsampling schedule of LightNL blocks

are critical to the performance and computational cost of

models. To automate the process of model design and find

an optimal configuration of the proposed LightNL blocks,

we propose an efficient Neural Architecture Search (NAS)

method. Concretely, we propose to jointly search the con-

figurations of LightNL blocks and the basic neural network

architectural parameters (e.g., kernel size, number of chan-

nels) using a cost-aware loss function.

Insert location. Motivated by [31], we select several can-

didate locations for inserting LightNL blocks throughout

the network and decide whether a LightNL block should

be used by comparing the L2 norm of the depthwise convo-

lution kernel Wd to a trainable latent variable t:

Ŵd = ✶
(

‖Wd‖
2 > t

)

·Wd, (10)

where Ŵd replaces Wd to be used in Eqn. (8), and ✶(·) is an

indicator function. ✶(·) = 1 indicates that a LightNL block

will be used with Ŵd = Wd being the depthwise convolu-

tion kernel. Otherwise, Ŵd = 0 when ✶(·) = 0 and thus

Eqn. (8) is degenerated to z = x meaning no lightweight

non-local block will be inserted.

10300



HW

CHW

C

× = × = +

HW

C/2

Correlation Map from Compact Feature

HW

HW+⋯ +HW

HW

C/2

HW

HW+⋯ +HW

Figure 4. Illustrate the feature reuse paradigm along channel dimension.

Instead of manually selecting the value of threshold t,

we set it to be a trainable parameter, which is jointly op-

timized with other parameters via gradient decent. To

compute the gradient of t, we relax the indicator function

I(x, t) = ✶(x > t) to a differentiable sigmoid function

σ(·) during the back-propagation process.

Module compactness. As can be seen from Eqn. (7),

the computational cost of LightNL block when perform-

ing the matrix multiplication is determined by the compact-

ness of downsampled features. Given a search space R

which contains n candidate downsampling ratios, i.e., R =
{r1, r2, r3, ..., rn} where 0 ≤ r1 < r2 < r3 < ... < rn ≤
1, our goal is to search for an optimal downsampling ratio

r∗ for each LightNL block. For the sake of clarity, here

we use the case of searching downsampling ratios along

the channel dimension to illustrate our method. Note that

searching downsampling ratios along other dimensions can

be performed in the same manner.

Different from searching for the insert locations through

Eqn. (10), we encode the choice of downsampling ratios in

the process of computing affinity matrix:

xatt =✶(r1) · xr1x
T
r1
+ ✶(r2) · xr2x

T
r2
+ ...

+ ✶(rn−1) · xrn−1
xTrn−1

+ ✶(rn) · xrnx
T
rn
,

(11)

where xatt denotes the computed affinity matrix, xr denotes

the downsampled feature with downsampling ratio r, and

✶(r) is an indicator which holds true when r is selected. By

setting the constraint that only one downsampling ratio is

used, Eqn. (11) can be simplified as xatt = xrix
T
ri

when ri
is selected as the downsampling ratio.

A critical step is how to formulate the condition of ✶(·)
for deciding which downsampling ratio to use. A reason-

able intuition is that the criteria should be able to determine

whether the downsampled feature can be used to compute

an accurate affinity matrix. Thus, our goal is to define a

“similarity” signal that models whether the affinity matrix

from the downsampled feature is close to the “ground-truth”

affinity matrix, denotes as xgtx
T
gt. Specifically, we write the

indicator as

✶(r1) =✶
(

‖xr1x
T
r1
− xrgtx

T
gt‖

2 < t
)

,

✶(r2) =✶
(

‖xr2x
T
r2
− xgtx

T
gt‖

2 < t
)

∧ ¬✶(r1),

...

✶(rn) =✶
(

‖xrnx
T
rn

− xgtx
T
gt‖

2 < t
)

∧ ¬✶(r1) ∧ ¬✶(r2) ∧ ... ∧ ¬✶(rn−1),

(12)

where ∧ denotes the logical operator AND. An intuitive ex-

planation to the rational of Eqn. (12) is the algorithm always

selects the smallest r with which the Euclidean distance be-

tween xrxr
T and xgtxgt

T is lower than threshold t. To en-

sure ✶(rn) = 1 when all other indicators are zeros, we set

xgt = xrn so that ✶
(

‖xrnx
T
rn

− xgtx
T
gt‖

2 < t
)

≡ 1. Mean-

while, we relax the indicator function to sigmoid when com-

puting gradients and update the threshold t via gradient de-

scent. Since the output of indicator changes with differ-

ent input feature x, for better training convergence, we get

inspired from batch normalization [20] and use the expo-

nential moving average of affinity matrices in computing

Eqn. (12). After the searching stage, the downsampling ra-

tio is determined by evaluating the following indicators:

✶(r1) =✶
(

EMA(‖xr1x
T
r1
− xrgtx

T
gt‖

2) < t
)

,

...

✶(rn) =✶
(

EMA(‖xrnx
T
rn

− xgtx
T
gt‖

2) < t
)

∧ ¬✶(r1) ∧ ¬✶(r2) ∧ ... ∧ ¬✶(rn−1).

(13)

where EMA(x) denotes the exponential moving averaged

value of x.

From Eqn. (12), one can observe that the output of in-

dicator depends on indicators with smaller downsampling

ratio. Based on this finding, we propose to reuse the affin-

ity matrix computed with low-dimensional features (gen-

erated with lower downsampling ratios) when computing

affinity matrix with high-dimensional features (generated

with higher downsampling ratios). Concretely, xri can be

partitioned into [xri−1
, xri\ri−1

], i > 1. The calculation of

affinity matrix using xri can be decomposed as

xrix
T
ri
=
[

xri−1
xri\ri−1

]

[

xTri−1

xT
ri\ri−1

]

= xri−1
xTri−1

+ xri\ri−1
xTri\ri−1

,

(14)

where xri−1
xTri−1

is the reusable affinity matrix computed

with a smaller downsampling ratio (recall that ri−1 <

ri). This feature reusing paradigm can largely reduce

the search overhead since computing affinity matrices with

more choices of downsampling ratios does not incur any ad-

ditional computation cost. The process of feature reusing is

illustrated in Figure 4.

Searching process. We integrate our proposed search algo-

rithm with Single-path NAS [31] and jointly search basic

10301



architectural parameters (following MNasNet [33]) along

with the insert locations and downsampling schemes of

LightNL blocks. We search downsampling ratios along

both spatial and channel dimensions to achieve better com-

pactness. To learn efficient deep learning models, the over-

all objective function is to minimize both standard classifi-

cation loss and the model’s computation complexity which

is related to both the insert locations and the compactness

of LightNL blocks:

minL(w, t) = CE(w, t) + λ · log(CC(w, t)), (15)

where w denotes model weights and t denotes architec-

tural parameters which can be grouped in two categories:

one is from LightNL block including the insert positions

and downsampling ratios while the other follows MNas-

Net [33] including kernel size, number of channels, etc.

CE(·) is the cross-entropy loss and CC(·) is the computa-

tion (i.e., FLOPs) cost. We use gradient descent to optimize

the above objective function in an end-to-end manner.

4. Experiments

We first demonstrate the efficacy and efficiency of

LightNL by manually inserting it into lightweight models

in Section 4.1. Then we apply the proposed search algo-

rithm to the LightNL blocks in Section 4.2. The evaluation

and comparison with state-of-the-art methods are done on

ImageNet classification [10].

4.1. Manually Designed LightNL Networks

Models. Our experiments are based on MobileNetV2

1.0 [30]. We insert LightNL blocks after the second 1 × 1
point-wise convolution layer in every MobileNetV2 block.

We use 25% channels to compute the affinity matrix for

the sake of low computation cost. Also, if the feature

map is larger than 14 × 14, we downsample it along the

spatial axis with a stride of 2. We call the transformed

model MobileNetV2-LightNL for short. We compare the

two models with different depth multipliers, including 0.5,

0.75, 1.0 and 1.4.

Training setup. Following the training schedule in MNas-

Net [33], we train the models using the synchronous train-

ing setup on 32 Tesla-V100-SXM2-16GB GPUs. We use

an initial learning rate of 0.016, and a batch size of 4096
(128 images per GPU). The learning rate linearly increases

to 0.256 in the first 5 epochs and then is decayed by 0.97
every 2.4 epochs. We use a dropout of 0.2, a weight de-

cay of 1e−5 and Inception image preprocessing [32] of size

224× 224. Finally, we use exponential moving average on

model weights with a momentum of 0.9999. All batch nor-

malization layers use a momentum of 0.99.

ImageNet classification results. We compare the results

between the original MobileNetV2 and MobileNetV2-

100 200 300 400 500 600
FLOPs (M)

66

68

70

72

74

76

Im
ag

en
et

 T
op

-1
 A

cc
ur

ac
y 

(%
)

MobileNetV2
MobileNetV2-LightNL

Figure 5. MobileNetV2 vs. MobileNetV2-LightNL. We apply

LightNL blocks to MobileNetV2 with different depth multipli-

ers, i.e., 0.5, 0.75, 1.0, 1.4, from left to right respectively. Despite

inserting LightNL blocks manually, consistent performance gains

can be observed for different MobileNetV2 base models.

Non-local Module FLOPs /
Acc (%)

Operator Wrapper ∆FLOPs

- - 301M 73.4

Wang et al. [39]
Wang et al.

[39]

+6.2G 75.2

Levi et al. [22] +146M 75.2

Zhu et al. [48] +107M -

Eqn. (3)

Wang et al.

[39]

+119M 75.2

Eqn. (5) +93M 75.1

Eqn. (7) +66M 75.0

Eqn. (9) +38M 75.0

Eqn. (9) Eqn. (8) +15M 75.0

Table 1. Ablation Analysis. We present the comparison of dif-

ferent NL blocks and different variants in our design. The base

model is MobileNetV2, which achieves a top-1 accuracy of 73.4
with 301M FLOPs.

Method FLOPs (M) mIoU

MobileNetV2 301 70.6

MobileNetV2-LightNL (ours) 316 72.9

Table 2. Comparison of FLOPs and mIoU on PASCAL VOC 2012.

LightNL in Figure 5. We observe consistent performance

gain even without tuning the hyper-parameters of LightNL

blocks for models with different depth multipliers. For ex-

ample, when the depth multiplier is 1, the original Mo-

bileNetV2 model achieves a top-1 accuracy of 73.4% with

301M FLOPs, while our MobileNetV2-LightNL achieves

75.0% with 316M FLOPs. According to Figure 5, it is un-

likely to boost the performance of the MobileNetV2 model

to the comparable performance by simply increasing the

width to get a 316M FLOPs model. When the depth mul-

tiplier is 0.5, LightNL blocks bring a performance gain of

2.2% with a marginal increase in FLOPs (6M).

Ablation study. To diagnose the proposed LightNL block,

we present a step-by-step ablation study in Table 1. As

shown in the table, every modification preserves the model

performance but reduces the computation cost. By compar-

ing with the baseline model, the proposed LightNL block

10302



typewriter

keyboard

typewriter

keyboard
space bar

sewing 

machine

sewing 

machine

tricycle, 

trike, 

velocipede

gas pump gas pumpspace bar

kit fox kit foxred fox redshank redshank
African 

crocodile
umbrella umbrellabubble

Original 

Image

MobileNet

V2-LightNL

MobileNet

V2

Original 

Image

MobileNet

V2-LightNL

MobileNet

V2

Original 

Image

MobileNet

V2-LightNL

MobileNet

V2

Figure 6. Class Activation Map (CAM) [47] for MobileNetV2 and MobileNetV2-LightNL. The three columns correspond to the ground

truth, predictions by MobileNetV2 and predictions by MobileNetV2-LightNL respectively. The proposed LightNL block helps the model

attend to image regions with more class-specific discriminative features.

improves ImageNet top-1 accuracy by 1.6% (from 73.4% to

75.0%), but only increases 15M FLOPs, which is only 5%
of the total FLOPs on MobileNetV2. Comparing with the

standard NL block, the proposed LightNL block is about

400× computationally cheaper (6.2G vs. 15M) with com-

parable performance (75.2% vs. 75.0%). Comparing with

Levi et al. [22] which optimized the matrix multiplication

with the associative law, the proposed LightNL block is still

10× computationally cheaper. Compared with a very recent

work proposed by Zhu et al. [48] which leverages the pyra-

mid pooling to reduce the complexity, LightNL is around

7× computationally cheaper.

CAM visualization. In order to illustrate the efficacy of our

LightNL, Figure 6 compares the class activation map [47]

for the original MobileNetV2 and MobileNetV2-LightNL.

We see that LightNL is capable of helping the model to

focus on more relevant regions while it is much computa-

tionally cheaper than the conventional counterparts as ana-

lyzed above. For example, at the middle top of Figure 6, the

model without the LightNL blocks focus on only a part of

the sewing machine. When LightNL is applied, the model

can “see” the whole machine, leading to more accurate and

robust predictions.

PASCAL VOC segmentation results. To demonstrate

the generalization ability of our method, we compare

the performance of MobileNetV2 and MobileNetV2-

LightNL on the PASCAL VOC 2012 semantic segmenta-

tion dataset [12]. Following Chen et al. [8], we use the

classification model as a drop-in replacement for the back-

bone feature extractor in the Deeplabv3 [6]. It is cascaded

by an Atrous Spatial Pyramid Pooling module (ASPP) [5]

with three 3×3 convolutions with different atrous rates. The

modified architectures share the same computation costs as

the backbone models due to the low computation cost of

LightNL blocks. All models are initialized with ImageNet

pre-trained weights and then fine-tuned with the same train-

Model #Params Flops Top-1 Top-5

MobileNetV2 [30] 3.4M 300M 72.0 91.0

MBV2 (our impl.) 3.4M 301M 73.4 91.4

ShuffleNetV2 [25] 3.5M 299M 72.6 -

FBNet-A [40] 4.3M 249M 73.0 -

Proxyless [3] 4.1M 320M 74.6 92.2

MnasNet-A1 [33] 3.9M 312M 75.2 92.5

MnasNet-A2 4.8M 340M 75.6 92.7

AA-MnasNet-A1 [2] 4.1M 350M 75.7 92.6

MobileNetV3-L 5.4M 217M 75.2 -

MixNet-S [35] 4.1M 256M 75.8 92.8

AutoNL-S (ours) 4.4M 267M 76.5 93.1

FBNet-C [40] 5.5M 375M 74.9 -

Proxyless (GPU) [3] - 465M 75.1 92.5

SinglePath [31] 4.4M 334M 75.0 92.2

SinglePath (our impl.) 4.4M 334M 74.7 92.2

FairNAS-A [9] 4.6M 388M 75.3 92.4

EfficientNet-B0 [34] 5.3M 388M 76.3 93.2

SCARLET-A [9] 6.7M 365M 76.9 93.4

MBV3-L (1.25x) [16] 7.5M 356M 76.6 -

MixNet-M [35] 5.0M 360M 77.0 93.3

AutoNL-L (ours) 5.6M 353M 77.7 93.7

Table 3. Comparison with the state-of-the-art models on ImageNet

2012 Val set.

ing protocol in [5]. It should be emphasized here that the

focus of this part is to assess the efficacy of the proposed

LightNL while keeping other factors fixed. It is notable that

we do not adopt complex training techniques such as multi-

scale and left-right flipped inputs, which may lead to better

performance. The results are shown in Table 2, LightNL

blocks bring a performance gain of 2.3 in mIoU with a mi-

nor increase in FLOPs. The results indicate the proposed

LightNL blocks are well suitable for other tasks such as se-

mantic segmentation.

4.2. AutoNL

We apply the proposed neural architecture search algo-

rithm to search for an optimal configuration of LightNL

blocks. Specifically, we have five LightNL candidates for

10303



3
x2

2
4

x2
2

4

C
o

n
v
 3

x3 3
2

x1
1

2
x1

1
2

1
6

x1
2

8
x1

2
8

2
4

x5
6

x5
6

2
4

x5
6

x5
6

2
4

x5
6

x5
6

4
0

x2
8

x2
8

4
0

x2
8

x2
8

4
0

x2
8

x2
8

4
0

x2
8

x2
8

8
0

x1
4

x1
4

8
0

x1
4

x1
4

8
0

x1
4

x1
4

8
0

x1
4

x1
4

9
6

x1
4

x1
4

9
6

x1
4

x1
4

9
6

x1
4

x1
4

9
6

x1
4

x1
4

1
9

2
x7

x7

1
9

2
x7

x7

1
9

2
x7

x7

1
9

2
x7

x7

P
o

o
li

n
g

 F
C

3
2

0
x7

x7

LS
A

M
(C

=
0

.2
5

 S
=

1
)

LS
A

M
(C

=
0

.2
5

 S
=

2
)

LS
A

M
(C

=
0

.2
5

 S
=

1
)

LS
A

M
(C

=
0

.2
5

 S
=

2
)

LS
A

M
(C

=
0

.2
5

 S
=

2
)

LS
A

M
(C

=
0

.2
5

 S
=

2
)

LS
A

M
(C

=
0

.2
5

 S
=

1
)

LS
A

M
(C

=
0

.2
5

 S
=

2
)

K=3

E=1

K=3

E=3

K=3

E=6

K=5

E=3

K=5

E=6

LS
A

M
(C

=
0

.2
5

 S
=

1
)

LS
A

M
(C

=
0

.2
5

 S
=

1
)

LS
A

M
(C

=
0

.1
2

5
 S

=
1

)

LS
A

M
(C

=
0

.1
2

5
 S

=
1

)

LS
A

M
(C

=
0

.2
5

 S
=

1
)

SE=0.5

LS
A

M
(C

=
0

.1
2

5
 S

=
2

)

C
o

n
v
 1

x1 1
2

8
0

x7
x7

Figure 7. The searched architecture of AutoNL-L. C and S denote channel downsampling ratio and the stride of spatial downsampling

respectively. We use different colors to denote the kernel size (K) of the depthwise convolution and use height to denote the expansion rate

(E) of the block. We use the round corner to denote adding SE [18] to the MobileNetV2 block.

each potential insert location, i.e., sampling 25% or 12.5%
channels to compute affinity matrix, sampling along spatial

dimensions with stride 1 or 2, inserting a LightNL block

at the current position or not. Note that it is easy to en-

large the search space by including other LightNL blocks

with more hyper-parameters. In addition, similar to recent

work [33, 40, 3, 31], we also search for optimal kernel sizes,

optimal expansion ratios and optimal SE ratios with Mo-

bileNetV2 block [30] as the building block.

We directly search on the ImageNet training set and

use a computation cost loss and the cross-entropy loss

as guidance, both of which are differentiable thanks to

the relaxations of the indicator functions during the back-

propagation process. It takes 8 epochs (about 32 GPU

hours) for the search process to converge.

Performance on classification. We obtain two models us-

ing the proposed neural architecture search algorithm; we

denote the large one as AutoNL-L and the small one as

AutoNL-S in Table 3. The architecture of AutoNL-L is pre-

sented in Figure 7.

Table 3 shows that AutoNL outperforms all the lat-

est mobile CNNs. Comparing to the handcrafted models,

AutoNL-S improves the top-1 accuracy by 4.5% over Mo-

bileNetV2 [30] and 3.9% over ShuffleNetV2 [25] while

saving about 10% FLOPs. Besides, AutoNL achieves better

results than the latest models from NAS approaches. For ex-

ample, compared to EfficientNet-B0, AutoNL-L improves

the top-1 accuracy by 1.4% while saving about 10% FLOPs.

Our models also achieve better performance than the latest

MobileNetV3 [16], which is developed with several manual

optimizations in addition to architecture search.

AutoNL-L also surpasses the state-of-the-art NL method

(i.e., AA-MnasNet-A1) by 2% with comparable FLOPs.

Even AutoNL-S improves accuracy by 0.8% while saving

25% FLOPs. We also compare with MixNet, which is a

very recent state-of-the-art model under mobile settings,

both AutoNL-L and AutoNL-S achieve 0.7% improvement

with comparable FLOPs but with much less search time (32
GPU hours vs. 91, 000 GPU hours [40], 2, 800× faster).

We also search for models under different combinations

20 40 60 80 100
FLOPs (M)

45

50

55

60

65

70

Im
ag

en
et

 T
op

-1
 A

cc
ur

ac
y 

(%
)

MobileNetV2
MnasNet
FBNet
AutoNL (ours)

Figure 8. Performance comparison on different input resolutions

and depth multipliers under extremely low FLOPs. For Mo-

bileNetV2 [30], FBNet [40] and our searched models, the tuples

of (input resolution, depth multiplier) are (96, 0.35), (128, 0.5),
(192, 0.5) and (128, 1.0) respectively from left to right. For

MNasNet [33], we show the result of 128 input resolution with

1.0 depth multiplier.

of input resolutions and channel sizes under extremely low

FLOPs. The results are summarized in Figure 8. AutoNL

achieves consistent improvement over MobileNetV2, FB-

Net, and MNasNet. For example, when the input resolution

is 192 and the depth multiplier is 0.5, our model achieves

69.6% accuracy, outperforming MobileNetV2 by 5.7% and

FBNet by 3.7%.

5. Conclusion

As an important building block for various vision appli-

cations, NL blocks under mobile settings remain underex-

plored due to their heavy computation overhead. To our best

knowledge, AutoNL is the first method to explore the us-

age of NL blocks for general mobile networks. Specifically,

we design a LightNL block to enable highly efficient con-

text modeling in mobile settings. We then propose a neural

architecture search algorithm to optimize the configuration

of LightNL blocks. Our method significantly outperforms

prior arts with 77.7% top-1 accuracy on ImageNet under a

typical mobile setting (350M FLOPs).

Acknowledgements This work was partially supported by ONR

N00014-15-1-2356.

10304



References

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.

Neural machine translation by jointly learning to align and

translate. In ICLR, 2015. 2

[2] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens,

and Quoc V Le. Attention augmented convolutional net-

works. arXiv preprint arXiv:1904.09925, 2019. 1, 2, 7

[3] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. In

ICLR, 2019. 2, 7, 8

[4] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han

Hu. Gcnet: Non-local networks meet squeeze-excitation net-

works and beyond. arXiv preprint arXiv:1904.11492, 2019.

1, 2

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. TPAMI, 40(4):834–848, 2017.

7

[6] Liang-Chieh Chen, George Papandreou, Florian Schroff, and

Hartwig Adam. Rethinking atrous convolution for seman-

tic image segmentation. arXiv preprint arXiv:1706.05587,

2017. 7

[7] Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng

Yan, and Jiashi Feng. Aˆ 2-nets: Double attention networks.

In NeurIPS, pages 352–361, 2018. 1, 2

[8] Yukang Chen, Gaofeng Meng, Qian Zhang, Shiming Xiang,

Chang Huang, Lisen Mu, and Xinggang Wang. Renas: Re-

inforced evolutionary neural architecture search. In CVPR,

pages 4787–4796, 2019. 7

[9] Xiangxiang Chu, Bo Zhang, Jixiang Li, Qingyuan Li, and

Ruijun Xu. Scarletnas: Bridging the gap between scal-

ability and fairness in neural architecture search. CoRR,

abs/1908.06022, 2019. 2, 7

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, 2009. 6

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. BERT: pre-training of deep bidirectional trans-

formers for language understanding. In NAACL, pages 4171–

4186, 2019. 2

[12] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christo-

pher KI Williams, John Winn, and Andrew Zisserman. The

pascal visual object classes challenge: A retrospective. IJCV,

111(1):98–136, 2015. 7

[13] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn:

Learning scalable feature pyramid architecture for object de-

tection. In CVPR, pages 7036–7045, 2019. 2

[14] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot

neural architecture search with uniform sampling. CoRR,

abs/1904.00420, 2019. 2

[15] Kurt Hornik, Maxwell Stinchcombe, and Halbert White.

Multilayer feedforward networks are universal approxima-

tors. Neural networks, 2(5):359–366, 1989. 3

[16] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. arXiv preprint arXiv:1905.02244, 2019. 2, 7, 8

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 2, 4

[18] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In CVPR, pages 7132–7141, 2018. 2, 8

[19] Gao Huang, Shichen Liu, Laurens van der Maaten, and Kil-

ian Q Weinberger. Condensenet: An efficient densenet using

learned group convolutions. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2017. 2

[20] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015. 5

[21] Qing Jin, Linjie Yang, and Zhenyu Liao. Adabits: Neu-

ral network quantization with adaptive bit-widths. arXiv

preprint arXiv:1912.09666, 2019. 2

[22] Hila Levi and Shimon Ullman. Efficient coarse-to-fine non-

local module for the detection of small objects. arXiv

preprint arXiv:1811.12152, 2018. 1, 3, 6, 7

[23] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig

Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Auto-

deeplab: Hierarchical neural architecture search for semantic

image segmentation. In CVPR, pages 82–92, 2019. 2

[24] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

Differentiable architecture search. In ICLR, 2019. 2

[25] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In ECCV, 2018. 2, 7, 8

[26] Jieru Mei, Yingwei Li, Xiaochen Lian, Xiaojie Jin, Linjie

Yang, Alan Yuille, and Jianchao Yang. Atomnas: Fine-

grained end-to-end neural architecture search. In ICLR,

2020. 2

[27] Jongchan Park, Sanghyun Woo, Joon-Young Lee, and In So

Kweon. BAM: bottleneck attention module. In BMVC, page

147, 2018. 2

[28] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. In ICML, pages 4092–4101, 2018. 2

[29] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V.

Le. Regularized evolution for image classifier architecture

search. In AAAI 2019, pages 4780–4789, 2019. 2

[30] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In CVPR, 2018. 2, 6, 7,

8

[31] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios

Lymberopoulos, Bodhi Priyantha, Jie Liu, and Diana Mar-

culescu. Single-path nas: Designing hardware-efficient con-

vnets in less than 4 hours. arXiv preprint arXiv:1904.02877,

2019. 2, 4, 5, 7, 8

[32] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and

Alexander A Alemi. Inception-v4, inception-resnet and the

impact of residual connections on learning. In AAAI, 2017.

6

10305



[33] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In CVPR, 2019. 2, 6, 7, 8

[34] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In ICML, pages

6105–6114, 2019. 2, 7

[35] Mingxing Tan and Quoc V Le. Mixnet: Mixed depthwise

convolutional kernels. In BMVC, 2019. 2, 7

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, pages

5998–6008, 2017. 2

[37] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng

Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang.

Residual attention network for image classification. In

CVPR, pages 6450–6458, 2017. 2

[38] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam,

Alan Yuille, and Liang-Chieh Chen. Axial-deeplab: Stand-

alone axial-attention for panoptic segmentation. arXiv

preprint arXiv:2003.07853, 2020. 2

[39] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In CVPR, pages 7794–

7803, 2018. 1, 2, 3, 4, 6

[40] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

CVPR, pages 10734–10742, 2019. 2, 7, 8

[41] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L

Yuille, and Kaiming He. Feature denoising for improving

adversarial robustness. In CVPR, 2019. 1

[42] Guotian Xie, Jingdong Wang, Ting Zhang, Jianhuang Lai,

Richang Hong, and Guo-Jun Qi. IGCV2: interleaved struc-

tured sparse convolutional neural networks. In CVPR, 2018.

2

[43] Qihang Yu, Dong Yang, Holger Roth, Yutong Bai, Yixiao

Zhang, Alan L Yuille, and Daguang Xu. C2fnas: Coarse-to-

fine neural architecture search for 3d medical image segmen-

tation. In CVPR, 2020. 2

[44] Kaiyu Yue, Ming Sun, Yuchen Yuan, Feng Zhou, Errui Ding,

and Fuxin Xu. Compact generalized non-local network. In

NeurIPS, pages 6510–6519, 2018. 1, 2

[45] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

6848–6856, 2018. 2

[46] Hengshuang Zhao, Yi Zhang, Shu Liu, Jianping Shi, Chen

Change Loy, Dahua Lin, and Jiaya Jia. Psanet: Point-wise

spatial attention network for scene parsing. In ECCV, pages

267–283, 2018. 1

[47] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,

and Antonio Torralba. Learning deep features for discrimi-

native localization. In CVPR, pages 2921–2929, 2016. 7

[48] Zhen Zhu, Mengde Xu, Song Bai, Tengteng Huang, and Xi-

ang Bai. Asymmetric non-local neural networks for semantic

segmentation. In ICCV, pages 593–602, 2019. 6, 7

[49] Barret Zoph and Quoc V. Le. Neural architecture search with

reinforcement learning. In ICLR, 2017. 2

10306


